JP3152461B2 - Light emitting element - Google Patents

Light emitting element

Info

Publication number
JP3152461B2
JP3152461B2 JP26898391A JP26898391A JP3152461B2 JP 3152461 B2 JP3152461 B2 JP 3152461B2 JP 26898391 A JP26898391 A JP 26898391A JP 26898391 A JP26898391 A JP 26898391A JP 3152461 B2 JP3152461 B2 JP 3152461B2
Authority
JP
Japan
Prior art keywords
light emitting
light
optical waveguide
emitting device
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26898391A
Other languages
Japanese (ja)
Other versions
JPH0582895A (en
Inventor
克己 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26898391A priority Critical patent/JP3152461B2/en
Publication of JPH0582895A publication Critical patent/JPH0582895A/en
Application granted granted Critical
Publication of JP3152461B2 publication Critical patent/JP3152461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信に用いる 1.5μ
m帯の発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to an m-band light emitting element.

【0002】[0002]

【従来の技術】光通信に用いる 1.5μm帯の発光素子
は、InP基板上に禁制帯幅の狭いInGaAs層を禁制帯幅が
より広いInP層ではさんだダブルへテロ構造を形成して
得られる。この発光素子の発振波長を安定させるには、
回折格子を設けた構造のDFB,DBRレーザが適している
が、この構造には回折格子として導波路に周期的な凹凸
を形成する工程が必要である。
2. Description of the Related Art A 1.5 .mu.m-band light-emitting element used for optical communication is obtained by forming a double heterostructure in which an InGaAs layer having a narrow band gap is sandwiched by an InP layer having a wider band gap on an InP substrate. To stabilize the oscillation wavelength of this light emitting element,
DFB and DBR lasers having a structure provided with a diffraction grating are suitable, but this structure requires a step of forming periodic irregularities in a waveguide as a diffraction grating.

【0003】一方、光ファイバの分野では、希土類の殻
内準位遷移による発光波長が、光通信に用いる石英系光
ファイバの最低損失波長領域の 1.5μmに一致すること
を利用した希土類ドープ光ファイバ増幅器の研究が盛ん
である(「Erドープファイバ光増幅器」鈴木他:pp.7〜
12, 日本学術振興会光電相互変換第125 委員会第134回
研究会資料,1991.9.14 )。
On the other hand, in the field of optical fibers, rare-earth-doped optical fibers utilizing the fact that the emission wavelength due to the transition of the rare-earth in-shell level coincides with the minimum loss wavelength range of 1.5 μm of the silica-based optical fiber used for optical communication. Amplifier research is active ("Er-doped fiber optical amplifier" Suzuki et al .: pp.7-
12, JSPS Photoelectric Interconversion 125th Committee, 134th meeting, 1991.9.14).

【0004】[0004]

【発明が解決しようとする課題】以上のように、従来の
発光素子では発振波長を安定させようとすると回折格子
を形成する工程が必要となって製造コストが高くなる。
As described above, in the conventional light emitting device, a step of forming a diffraction grating is required to stabilize the oscillation wavelength, which increases the manufacturing cost.

【0005】また、現在、波長帯 1.5μmの光を得る発
光素子にはInGaAsP系材料が用いられているが、この材
料に含まれるV族元素のAs, Pは蒸気圧が高いため、 I
II族に比べて結晶成長に大量のソース化合物(PH3
AsH3 )が必要である。なかでもPH3 はAsH3 に比べ
て分解効率が約1桁悪いため、より大量のソース化合物
が必要である。
At present, an InGaAsP-based material is used for a light-emitting element that emits light in a wavelength band of 1.5 μm. However, As and P of a group V element contained in this material have a high vapor pressure, so that
A larger amount of source compounds (PH 3 ,
AsH 3 ) is required. Above all, PH 3 has a decomposition efficiency about one order of magnitude lower than that of AsH 3 , so a larger amount of source compounds is required.

【0006】本発明はこのような問題点を解決するため
になされたものであって、共振器にErをドープすること
により、回折格子を設ける工程を必要とせず、燐を含ま
ない材料で波長安定な 1.5μmの発光が得られる安価な
発光素子の提供を目的とする。
The present invention has been made in order to solve such a problem, and does not require a step of providing a diffraction grating by doping the resonator with Er. It is an object of the present invention to provide an inexpensive light emitting device capable of obtaining stable light emission of 1.5 μm.

【0007】[0007]

【課題を解決するための手段】本発明に係る発光素子
は、燐を含まない基板上に、活性層を有するメサ部と、
前記活性層の光導波方向端部に位置し、前記活性層を形
成する半導体層とは異なる材料よりなる複数の層が積層
されてなる光導波路とが形成され、前記メサ部と前記光
導波路とによって光共振器が構成されている発光素子に
おいて、前記光導波路に希土類元素がドープされている
ことを特徴とする。
According to the present invention, there is provided a light emitting device comprising: a mesa portion having an active layer on a substrate not containing phosphorus;
The active layer is formed at an end of the active layer in the optical waveguide direction, and the active layer is formed.
Multiple layers made of materials different from the semiconductor layer to be formed
An optical waveguide is formed, and the mesa portion and the light
For light-emitting elements whose optical resonator is composed of waveguides
Wherein the optical waveguide is doped with a rare earth element.

【0008】[0008]

【作用】本発明に係る発光素子は、動作電流が印加され
ると、光共振器にドープされた希土類元素が光励起さ
れ、希土類元素の準位遷移によって放出された光を誘導
放出を介して増幅し、活性領域の端面で反射を繰り返し
て往復させて波長安定の光を発する。
In the light emitting device according to the present invention, when an operating current is applied, the rare earth element doped in the optical resonator is photoexcited, and the light emitted by the level transition of the rare earth element is amplified through stimulated emission. Then, reflection is repeated at the end face of the active region and reciprocated to emit light with a stable wavelength.

【0009】[0009]

【実施例】以下、本発明をその実施例を示す図に基づい
て説明する。図1は本発明に係るメサ型の発光素子の断
面図である。発光素子は、GaAs基板上にGaAsバッファ
層、AlGaAsクラッド層、AlGaAs活性層、AlGaAsクラッド
層、GaAsキャップ層をこの順に積層したダブルヘテロ構
造のメサ部と、AlGaAs活性層の光導波方向端部にSi
2 , TiO2 , SiO2 をこの順に積層して光導波路の一
部を形成するErドープ光導波路とによって共振器を構成
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing the embodiments. FIG. 1 is a sectional view of a mesa light emitting device according to the present invention. The light-emitting device has a double hetero structure mesa section in which a GaAs buffer layer, an AlGaAs clad layer, an AlGaAs active layer, an AlGaAs clad layer, and a GaAs cap layer are stacked in this order on a GaAs substrate, and an optical waveguide direction end of the AlGaAs active layer. Si
A resonator is constituted by an Er-doped optical waveguide that forms a part of an optical waveguide by laminating O 2 , TiO 2 , and SiO 2 in this order.

【0010】次に、本発明に係る発光素子の製造方法に
ついて説明する。結晶成長方法はMBE法を用い、n-Ga
As基板( (100) 面) の基板温度 650℃,成長速度 1.3μ
m/hの条件で、以下の層を成長させてダブルヘテロ構
造を形成する。 (1) n-GaAsバッファ層を注入キャリア密度1×1018cm-3
(Si)で0.5 μm (2) n-Al0.4 Ga0.6 Asクラッド層を注入キャリア密度2
×1017cm-3(Si)で 1.0μm (3) Al0.12Ga0.88As活性層をアンドープで0.05μm (4) p-Al0.4 Ga0.6 Asクラッド層を注入キャリア密度5
×1017cm-3(Be)で1.0 μm (5) p-GaAsキャップ層を注入キャリア密度1×1019cm-3
(Be)で 0.5μm
Next, a method for manufacturing a light emitting device according to the present invention will be described. The crystal growth method is MBE, and n-Ga
As substrate ((100) plane) substrate temperature 650 ℃, growth rate 1.3μ
Under the condition of m / h, the following layers are grown to form a double hetero structure. (1) Inject n-GaAs buffer layer with injected carrier density of 1 × 10 18 cm -3
(Si) 0.5 μm (2) n-Al 0.4 Ga 0.6 As cladding layer injected carrier density 2
× 10 17 cm -3 (Si) 1.0 μm (3) Al 0.12 Ga 0.88 As Active layer undoped 0.05 μm (4) p-Al 0.4 Ga 0.6 As cladding layer injected carrier density 5
1.0 μm at × 10 17 cm -3 (Be) (5) Inject carrier density of 1 × 10 19 cm -3 with p-GaAs cap
(Be) 0.5μm

【0011】この後、AlGaAs活性層の光導波方向におけ
るダブルヘテロ構造の端部を表面より1.8 μmのn-AlGa
Asクラッド層の途中まで化学エッチングで除去する。こ
の時のエッチング液は(H3 PO4 +2H2 2 +10H2
O)、エッチング時間は200sec. 、温度は30℃である。
After that, the end of the double hetero structure in the optical waveguide direction of the AlGaAs active layer is n-AlGa 1.8 μm from the surface.
It is removed by chemical etching up to the middle of the As cladding layer. The etching solution at this time is (H 3 PO 4 + 2H 2 O 2 + 10H 2
O), the etching time is 200 sec., And the temperature is 30 ° C.

【0012】このエッチング除去した部分に電子ビーム
蒸着法によりSiO2 を 0.2μm、TiO2 を 0.1μm、Si
2 を 0.2μm積層し、この時各層にErを約1×1018cm
-3ドーピングして半導体レーザ共振器の一部を構成する
Erドープ光導波路を形成する。
[0012] 0.2μm of SiO 2 by an electron beam evaporation method on the etched portions, a TiO 2 0.1 [mu] m, Si
O 2 is laminated in a thickness of 0.2 μm. At this time, about 1 × 10 18 cm
-3 doping to form part of semiconductor laser cavity
An Er-doped optical waveguide is formed.

【0013】この発光素子は、4μm幅のメサ構造を有
し、Erドープ光導波路(長さ 200μm)を含めた共振器
長が 500μmである。共振器の端面は 0.8μmのレーザ
光に対する反射率が80%以上になるようにコーティング
されている。
This light emitting device has a mesa structure of 4 μm width, and has a resonator length of 500 μm including an Er-doped optical waveguide (length 200 μm). The end face of the resonator is coated so as to have a reflectivity of at least 80% for 0.8 μm laser light.

【0014】図2は、本発明に係る発光素子の電流対光
出力特性を示すグラフであって、図から明らかなよう
に、この素子は閾値電流35mAで発振して0.8μmの光強
度が動作電流に比例して安定的に増大してくる。
FIG. 2 is a graph showing the current vs. light output characteristics of the light emitting device according to the present invention. As is apparent from FIG. It stably increases in proportion to the current.

【0015】また、Erの殻内遷移で生じる 1.5μmの光
は準位間遷移であるため波長安定性に優れるので、動作
電流70mA以上では明確に 1.5μmの光強度が動作電流に
比例して安定的に増大してくる。
Further, since 1.5 μm light generated by the transition in the shell of Er is an interlevel transition and has excellent wavelength stability, the light intensity of 1.5 μm is clearly proportional to the operating current at an operating current of 70 mA or more. It increases stably.

【0016】一方、Erを効率良く励起する光の波長 0.8
μm,0.98μm,1.48μmのうち、0.8 μm,0.98μm
の波長の光は燐を含まない材料で実現できる。この場
合、電子デバイスで既に技術が確立しているGaAs系素子
を同一基板上に形成すればよいので、光通信用OEIC(opt
o-electronic integrated circuits) もGaAs基板上で実
現できることになる。
On the other hand, the wavelength of light that efficiently excites Er 0.8
0.8 μm, 0.98 μm among μm, 0.98 μm and 1.48 μm
Can be realized by a material containing no phosphorus. In this case, the OEIC for optical communication (opt
o-electronic integrated circuits) can also be realized on a GaAs substrate.

【0017】なお、本実施例ではレーザ共振器の一部に
Erをドープする場合について説明したが、共振器の全部
にErをドープしてもよい。
In this embodiment, a part of the laser resonator is used.
Although the case of doping with Er has been described, the entire resonator may be doped with Er.

【0018】また、本実施例ではドープする希土類元素
がErの場合について説明したが、Erに限らず他の希土類
元素であってもよい。
In this embodiment, the case where the rare earth element to be doped is Er has been described. However, the present invention is not limited to Er, and other rare earth elements may be used.

【0019】[0019]

【発明の効果】以上のように、本発明に係る発光素子
は、回折格子を設けなくても波長安定な発光が得られ、
またソース化合物を大量に要する燐を含まない基板を用
いた素子で波長安定な発光が得られるため、製造コスト
が安いという優れた効果を奏する。
As described above, the light emitting device according to the present invention can emit light with stable wavelength without providing a diffraction grating.
In addition, an element using a phosphorus-free substrate that requires a large amount of a source compound can emit light with stable wavelength, and thus has an excellent effect of low manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る発光素子の断面図である。FIG. 1 is a sectional view of a light emitting device according to the present invention.

【図2】本発明に係る発光素子の電流対光出力特性を示
すグラフである。
FIG. 2 is a graph showing current versus light output characteristics of a light emitting device according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01S 3/00 - 3/30 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01S 5/00-5/50 H01S 3/00-3/30

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燐を含まない基板上に、活性層を有する
メサ部と、前記活性層の光導波方向端部に位置し、前記
活性層を形成する半導体層とは異なる材料よりなる複数
の層が積層されてなる光導波路とが形成され、前記メサ
部と前記光導波路とによって光共振器が構成されている
発光素子において、前記光導波路に希土類元素がドープ
されていることを特徴とする発光素子。
An active layer is provided on a substrate not containing phosphorus.
A mesa portion, located at an end of the active layer in the optical waveguide direction,
A plurality of materials different from the semiconductor layer forming the active layer
And an optical waveguide formed by stacking layers of
An optical resonator is constituted by the portion and the optical waveguide
A light-emitting device, wherein the optical waveguide is doped with a rare earth element.
JP26898391A 1991-09-19 1991-09-19 Light emitting element Expired - Fee Related JP3152461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26898391A JP3152461B2 (en) 1991-09-19 1991-09-19 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26898391A JP3152461B2 (en) 1991-09-19 1991-09-19 Light emitting element

Publications (2)

Publication Number Publication Date
JPH0582895A JPH0582895A (en) 1993-04-02
JP3152461B2 true JP3152461B2 (en) 2001-04-03

Family

ID=17466028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26898391A Expired - Fee Related JP3152461B2 (en) 1991-09-19 1991-09-19 Light emitting element

Country Status (1)

Country Link
JP (1) JP3152461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055717A (en) 2002-07-18 2004-02-19 Oki Electric Ind Co Ltd Variable light gain control device

Also Published As

Publication number Publication date
JPH0582895A (en) 1993-04-02

Similar Documents

Publication Publication Date Title
US4928285A (en) Impurity-doped semiconductor laser device for single wavelength oscillation
US20040179569A1 (en) Wavelength tunable DBR laser diode
JP2008227367A (en) Distributed feedback semiconductor laser element
US6594297B1 (en) Laser apparatus in which surface-emitting semiconductor is excited with semiconduct laser element and high-order oscillation modes are suppressed
US6850550B2 (en) Complex coupling MQW semiconductor laser
JP3898042B2 (en) Semiconductor laser device and optical amplification device
US6822988B1 (en) Laser apparatus in which GaN-based compound surface-emitting semiconductor element is excited with GaN-based compound semiconductor laser element
JP2002111135A (en) Semiconductor laser device and optical fiber amplifier exciting light source using the same
JP4047358B2 (en) Self-excited semiconductor laser device
US6731663B1 (en) Ridge waveguide type semiconductor laser device
JP3024354B2 (en) Semiconductor laser
JP3152461B2 (en) Light emitting element
US7081643B2 (en) Gain-clamped semiconductor optical amplifier having horizontal lasing structure and manufacturing method thereof
JP2661307B2 (en) Semiconductor laser
JP2002111125A (en) Distributed feedback semiconductor laser
US7072372B2 (en) Semiconductor laser device, semiconductor laser module, and optical fiber amplifier
JP2000357841A (en) Semiconductor laser element, semiconductor laser module, rare earth element added optical fiber amplifier and fiber laser
Du et al. The monolithic integration of a superluminescent diode with a power amplifier
JPH0730199A (en) Semiconductor laser element
US7269195B2 (en) Laser diode with an amplification section that has a varying index of refraction
US6014388A (en) Short wavelength laser
JP2007165599A (en) Semiconductor light emitting element, and manufacturing method thereof
JP2565909B2 (en) Semiconductor laser device
JP3046454B2 (en) Quantum well semiconductor light emitting device
JP2941463B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees