JP3024354B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP3024354B2
JP3024354B2 JP4113284A JP11328492A JP3024354B2 JP 3024354 B2 JP3024354 B2 JP 3024354B2 JP 4113284 A JP4113284 A JP 4113284A JP 11328492 A JP11328492 A JP 11328492A JP 3024354 B2 JP3024354 B2 JP 3024354B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser
face
present
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4113284A
Other languages
Japanese (ja)
Other versions
JPH05315695A (en
Inventor
博仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4113284A priority Critical patent/JP3024354B2/en
Priority to EP19930101130 priority patent/EP0557727A3/en
Publication of JPH05315695A publication Critical patent/JPH05315695A/en
Priority to US08/291,498 priority patent/US5511089A/en
Application granted granted Critical
Publication of JP3024354B2 publication Critical patent/JP3024354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0203Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光通信用の半導体レーザ
に関し、特に優れた耐環境性能が求められる光加入者用
の半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser for optical communication, and more particularly to a semiconductor laser for an optical subscriber who is required to have excellent environmental resistance.

【0002】[0002]

【従来の技術】光加入者用の1.3μm帯半導体レーザ
には優れた耐環境性能が求められ、システム側からは、
85℃、30mA駆動時において8mW以上の光出力が
求められている。しかしながら従来のバルク活性層を有
するレーザでは、裏面に70%の反射率のコーティング
を施したものでは85℃、30mAでの発振動作は望め
なかった。一方、亀井らは1991年のオプティカル・
ファイバー・コミュニケーション・コンファレンス(O
FC’91)の講演論文集のWM11に、多重量子井戸
活性層を有するレーザの裏面に90%のコーティングを
施したものを試作し報告しているが、85℃、30mA
駆動時の光出力は3mW程度であり、光加入者用として
はまだ十分ではない。尚、これらは共に300μmの共
振器長を有するものであった。
2. Description of the Related Art A 1.3 μm band semiconductor laser for optical subscribers is required to have excellent environmental resistance performance.
An optical output of 8 mW or more when driven at 85 ° C. and 30 mA is required. However, in the case of a conventional laser having a bulk active layer, an oscillation operation at 85 ° C. and 30 mA could not be expected with a coating having a 70% reflectance on the back surface. On the other hand, Kamei et al.
Fiber Communication Conference (O
FC'91), a prototype of WM11 with a 90% coating on the back surface of a laser having a multiple quantum well active layer was reported at WM11 at 85 ° C and 30 mA.
The optical output at the time of driving is about 3 mW, which is not yet sufficient for optical subscribers. Each of these had a resonator length of 300 μm.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的はこの様
な従来の1.3μm帯半導体レーザの温度特性を大幅に
改善し、85℃の高温においても30mA程度の駆動電
流で8mW以上の光出力が得られ、光加入者用として十
分使用できる長波長帯あるいは短波長帯半導体レーザを
実現することにある。
SUMMARY OF THE INVENTION An object of the present invention is to greatly improve the temperature characteristics of such a conventional 1.3 .mu.m band semiconductor laser so that a driving current of about 30 mA even at a high temperature of 85.degree. An object of the present invention is to realize a long wavelength band or short wavelength band semiconductor laser which can obtain an output and can be sufficiently used for optical subscribers.

【0004】[0004]

【課題を解決するための手段】本発明は、基板上にDH
構造を有する半導体レーザであって、前記半導体素子の
一方の端面側に光出射方向に形成された溝によって光出
射端面が形成され、前記半導体レーザの共振器長が15
0μm以下であることを特徴とする
SUMMARY OF THE INVENTION The present invention provides a DH on a substrate.
A semiconductor laser having a structure, wherein:
Light is emitted by a groove formed on one end face in the light emission direction.
A tip end face is formed, and the cavity length of the semiconductor laser is 15
It is not more than 0 μm .

【0005】また本発明によれば、上記の構成において
溝と反対側の光出射端面に70%以上の反射率を有する
コーティングが施されている。
Further, according to the present invention, in the above structure, a coating having a reflectance of 70% or more is applied to the light emitting end face opposite to the groove.

【0006】さらに本発明によれば、上記の構成におい
前記溝の部分に光ファイバ又は光導波路を結合させる
ことを特徴とする
Further, according to the present invention, in the above structure, an optical fiber or an optical waveguide is coupled to the groove.
It is characterized by the following .

【0007】また本発明は、多重量子井戸活性層がIn
Pと格子整合する1.35〜1.45μmバンドギャッ
プ組成のInGaAsPウエルと1.05〜1.2μm
バンドギャップ組成のInGaAsPバリヤを有する多
重量子井戸半導体レーザにおいて、共振器長が150μ
m以下であり、かつ一方の端面に90%以上の反射率を
有するコーティングを施すことを特徴とする。長波長帯
とは1μm帯のことで特に1.3〜1.5μm帯をさし
ている。
Further, according to the present invention, the multiple quantum well active layer is formed of In.
1.35 to 1.45 μm band gap that lattice matches with P
InGaAsP wells with a composition of 1.05 to 1.2 μm
Multi-layer with InGaAsP barrier of bandgap composition
In a quantum well semiconductor laser, the cavity length is 150 μm.
m and a coating having a reflectance of 90% or more on one end face. The long wavelength band is a 1 μm band, and particularly refers to a 1.3 to 1.5 μm band.

【0008】また本発明によれば、上記の多重量子井戸
活性層がInPと格子整合する1.35〜1.45μm
バンドギャップ組成のInGaAsPウエルと1.05
〜1.2μmバンドギャップ組成のInGaAsPバリ
ヤからなることを特徴としている。
According to the present invention, the multiple quantum well active layer has a lattice matching of 1.35 to 1.45 μm with InP.
InGaAsP well with bandgap composition and 1.05
It is characterized by being composed of an InGaAsP barrier having a band gap composition of .about.1.2 .mu.m.

【0009】さらに本発明によれば、上記の多重量子井
戸活性層のウエル数が7層からなるようにするのが好適
である。
Further, according to the present invention, it is preferable that the number of wells of the multiple quantum well active layer be seven.

【0010】[0010]

【作用】以下に本発明の原理について説明する。まず、
半導体レーザにおいて、共振器長を150μm以下と短
くし、片端面に90%以上のコーティングを施すことに
よって何故温度特性が改善されるかについて簡単に説明
する。
The principle of the present invention will be described below. First,
In the semiconductor laser, the reason why the temperature characteristic is improved by shortening the cavity length to 150 μm or less and coating one end face with 90% or more will be briefly described.

【0011】半導体レーザから最も効率良く光出力を取
り出すためには、内部の利得に見合う大きさの適度の共
振器損失を与えるような最適な動作点にしきい値を設定
する必要がある。共振器損失が内部利得に比べて小さ過
ぎても大き過ぎても光出力は効率良く得られない。共振
器損失は内部損失と共振器長および端面反射率によって
決まるので、内部損失が分かっていれば、半導体レーザ
の利得の大きさに対応して共振器長および端面反射率を
適切に選んでやれば、最適な動作条件が得られるはずで
ある。そのためにはまず半導体レーザの基本的なデバイ
スパラメータである内部損失、内部量子効率、利得定
数、利得が生じ始める電流密度等の値を求めなければな
らない。半導体レーザの電流−光出力(I−L)特性
は、これらのデバイスパラメータが分かれば計算でき
る。そこで多重量子井戸レーザを例にとって説明する。
まず最初に我々は、1.3μm帯の各種のMQWレーザ
を試作し、しきい値電流および微分量子効率の共振器長
依存性を測定し、これらデバイスパラメータの値を求め
ることから始めた。
In order to extract light output most efficiently from a semiconductor laser, it is necessary to set a threshold value at an optimum operating point that gives an appropriate resonator loss of a size commensurate with the internal gain. If the resonator loss is too small or too large compared to the internal gain, light output cannot be obtained efficiently. Since the cavity loss is determined by the internal loss, the cavity length, and the facet reflectivity, if the internal loss is known, the cavity length and the facet reflectivity can be appropriately selected according to the gain of the semiconductor laser. If so, optimal operating conditions should be obtained. For that purpose, first, values such as internal loss, internal quantum efficiency, gain constant, and current density at which gain starts to occur, which are basic device parameters of the semiconductor laser, must be obtained. The current-light output (IL) characteristics of the semiconductor laser can be calculated if these device parameters are known. Therefore, a multiple quantum well laser will be described as an example.
First, we prototyped various MQW lasers in the 1.3 μm band, measured the dependence of the threshold current and differential quantum efficiency on the cavity length, and started by obtaining the values of these device parameters.

【0012】表1には試作した1.3μm帯MQWレー
ザの一つについて、25℃と85℃において求めたこれ
らデバイスパラメータを示す。高温での最適設計を行う
には、その温度における値を知る必要がある。
Table 1 shows the device parameters obtained at 25 ° C. and 85 ° C. for one of the prototype 1.3 μm band MQW lasers. To perform an optimal design at a high temperature, it is necessary to know the value at that temperature.

【0013】[0013]

【表1】 [Table 1]

【0014】図3にはこれらのパラメータを用いて計算
した1.3μm帯MQWレーザの85℃におけるI−L
特性を示す。図に示す様に、150μmと短共振器にし
て、裏面に99%の高反射率のコーティングを施すこと
により特性を大幅に改善できることが分かる。元々MQ
Wレーザはバルクのレーザに比べて大きな利得を有する
ので、短共振器にしても十分な利得が得られるためにし
きい値が下がり、駆動電流が低減できるのである。尚、
ウエル組成は1.35μm組成のものと1.40μm組
成のレーザ試作して、これらデバイスパラメータを評価
し、I−L特性を計算してみたが、1.35μmよりは
1.40μmの方が85℃での特性は良くなることが分
かった。また、ウエル数に関しても7層、10層、18
層、22層のものを試作して評価したが、7層のものが
最も駆動電流は小さくなった。
FIG. 3 shows an IL at 85 ° C. of a 1.3 μm band MQW laser calculated using these parameters.
Show characteristics. As shown in the figure, it can be seen that the characteristics can be significantly improved by making the resonator as short as 150 μm and applying a coating having a high reflectance of 99% on the back surface. Originally MQ
Since a W laser has a larger gain than a bulk laser, a sufficient gain can be obtained even with a short resonator, so that the threshold value is lowered and the drive current can be reduced. still,
Lasers with well compositions of 1.35 μm composition and 1.40 μm composition were fabricated, these device parameters were evaluated, and the IL characteristics were calculated. It was found that 1.40 μm was 85% better than 1.35 μm. It was found that the characteristics at ° C were improved. Also, the number of wells is 7 layers, 10 layers, 18 layers.
Layers and 22 layers were prototyped and evaluated. The drive current of the 7 layers was the smallest.

【0015】これらの実験結果を基に、MQWレーザで
150μm以下の短共振器長と90%以上の端面コーテ
ィングを組み合わせることにより、温度特性を大幅に改
善できることが分かる。尚バルク活性層のレーザにおい
ても同様の理由で温度特性が改善される。
Based on these experimental results, it can be seen that temperature characteristics can be significantly improved by combining an MQW laser with a short cavity length of 150 μm or less and an end face coating of 90% or more. The temperature characteristics of the laser of the bulk active layer are also improved for the same reason.

【0016】[0016]

【実施例】次に本発明の実施例について図面を参照して
説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0017】図1(a),(b)はそれぞれ本発明の第
一の実施例であるInGaAsP/InP系半導体レー
ザ11の外観図および実装方法を示す図である。この素
子の作製に当たっては、まずMOVPE成長によりレー
ザ用のDHウエハを作製し、LPE成長によりCD−P
BH構造に埋め込む。次にp側電極を蒸着し、この上に
レジストマスクを形成する。さらに電極をエッチング除
去した後、ウエットエッチングによってレーザの片端面
側に図のような溝12を形成する。この場合、溝の形成
によって、レーザの一方の光出射端面の形成も同時に行
っている。13は活性層である。そして基板を約150
μmの厚さまで研磨した後n側にも電極を形成する。最
後に共振器長が約150μmとなるようにへき開し、こ
のへき開面にλ/4SiO2 /Si全7層からなる70
%以上の反射率を有する高反射コーティング14を形成
した後、チップに切り出した。
FIGS. 1A and 1B are an external view and a diagram showing a mounting method of an InGaAsP / InP semiconductor laser 11 according to a first embodiment of the present invention, respectively. In manufacturing this device, first, a DH wafer for laser is manufactured by MOVPE growth, and CD-P is grown by LPE growth.
Embed in BH structure. Next, a p-side electrode is deposited, and a resist mask is formed thereon. After the electrode is further removed by etching, a groove 12 as shown in the figure is formed on one end surface side of the laser by wet etching. In this case, by forming the groove, the formation of one light emitting end face of the laser is also performed at the same time. 13 is an active layer. And the substrate is about 150
After polishing to a thickness of μm, an electrode is also formed on the n-side. Finally, the cavity is cleaved so as to have a cavity length of about 150 μm, and the cleaved surface is composed of a total of seven layers of λ / 4 SiO 2 / Si.
After forming the high-reflection coating 14 having a reflectance of not less than%, the chip was cut into chips.

【0018】以上のような工程に従って作製した素子を
図1(b)のようにシリコンのヒートシンク15の上に
マウントし、溝の部分に沿って光ファイバー16と結合
させ、特性を評価した。切り出した素子の内で約8割が
発振し、良好な歩留りが得られていることが確認され
た。85℃、40mAの駆動電流において、ファイバー
内光出力は3mWが得られており、この素子が良好な温
度特性を有することが伺える。
The device fabricated according to the above-described steps was mounted on a heat sink 15 made of silicon as shown in FIG. 1B, and bonded to an optical fiber 16 along the groove, and the characteristics were evaluated. Approximately 80% of the cut out devices oscillated, confirming that a good yield was obtained. At a driving current of 85 ° C. and 40 mA, an optical output in the fiber of 3 mW was obtained, indicating that this element has good temperature characteristics.

【0019】図2(a),(b)はそれぞれ本発明の第
二の実施例であるInGaAsP/InP系半導体レー
ザ21の外観図および実装方法を示す図である。この素
子の作製に当たっては第一の実施例と同様に、まずレー
ザ用のウエハを作製し、p側電極を蒸着した後この上に
レジストマスクを形成する。さらに電極をエッチング除
去した後、ドライエッチングによってレーザの片端面側
に図のような溝22を形成する。この場合、溝の形成に
よって、レーザの一方の光出射端面の形成も同時に行っ
ている。23は活性層である。そして基板を約150μ
mの厚さまで研磨した後n側にも電極を形成する。最後
に共振器長が約150μmとなるようにへき開し、この
へき開面にλ/4Si2 /Si全7層からなる70%以
上の反射率を有する高反射コーティング24を形成した
後、チップに切り出した。
FIGS. 2A and 2B are an external view and a diagram showing a mounting method of an InGaAsP / InP semiconductor laser 21 according to a second embodiment of the present invention, respectively. In manufacturing this element, as in the first embodiment, first, a laser wafer is manufactured, a p-side electrode is deposited, and a resist mask is formed thereon. Further, after the electrode is removed by etching, a groove 22 as shown in the figure is formed on one end surface side of the laser by dry etching. In this case, by forming the groove, the formation of one light emitting end face of the laser is also performed at the same time. 23 is an active layer. And the substrate is about 150μ
After polishing to a thickness of m, an electrode is also formed on the n-side. Finally, the cavity is cleaved so as to have a cavity length of about 150 μm. After forming a high-reflection coating 24 having a reflectance of 70% or more consisting of 7 layers of λ / 4Si 2 / Si on the cleaved surface, the chip is cut out. Was.

【0020】以上のような工程に従って作製した素子
を、図2(b)に示すようにシリコン基板25の上に形
成された石英光導波路26と溝の部分に沿って結合さ
せ、特性を評価した。切り出した素子の中で約7割が発
振し、良好な歩留りが得られていることが確認された。
85℃、40mAの駆動電流において、導波路内光出力
は2mWが得られており、この素子が良好な温度特性を
有することが伺える。
The device fabricated according to the above-described steps was coupled along the groove with the quartz optical waveguide 26 formed on the silicon substrate 25 as shown in FIG. 2B, and the characteristics were evaluated. . Approximately 70% of the cut out devices oscillated, confirming that a good yield was obtained.
At a driving current of 85 ° C. and 40 mA, an optical output in the waveguide of 2 mW was obtained, which indicates that this element has good temperature characteristics.

【0021】本発明の半導体レーザは、優れた耐環境性
能が求められるホスタイル仕様のレーザとしてばかりで
はなく、光実装が容易なことから、光加入者小型パッケ
ージ用の半導体レーザとしても有用である。また同様の
構造はAlGaAs/GaAs系あるいはAlGaIn
P/GaAs系の短波長帯レーザにも適用できる。
The semiconductor laser of the present invention is useful not only as a laser having a hostile specification requiring excellent environmental resistance performance, but also as a semiconductor laser for a small optical subscriber package because of easy optical mounting. . A similar structure is made of AlGaAs / GaAs or AlGaIn.
It can also be applied to P / GaAs-based short wavelength lasers.

【0022】本発明の第三の実施例を図4を用いて説明
する。
A third embodiment of the present invention will be described with reference to FIG.

【0023】この素子の作製に当っては、まず減圧MO
VPE成長によりMQWウエハを作製する。図4にMQ
W活性層のバンドダイヤグラムを示すが、ウエルは57
オングストローム厚の1.40μm組成InGaAsP
32、バリヤは100オングストローム厚の1.13μ
m組成InGaAsP33からなり、7層MQWの両側
は600オングストローム厚の1.13μm組成InG
aAsPガイド層で挟まれている。このウエハは引き続
きLPE成長によりDC−PBH構造に埋め込み、p側
にメサ電極を形成した後、ウエハを約150μmの厚さ
まで研磨し、n側にも電極を蒸着した。最後に共振器長
が約150μmとなるようにへき開し、片端面にλ/4
SiO2 /Si全7層からなる高反射膜を形成した後、
チップに切り出した。
In manufacturing this device, first, a decompression MO
An MQW wafer is manufactured by VPE growth. FIG.
The band diagram of the W active layer is shown.
Angstrom thickness 1.40 μm composition InGaAsP
32, the barrier is 100Å thick 1.13μ
The 7-layer MQW is made of 1.13 μm InG having a thickness of 600 angstroms on both sides of the m-layer InGaAsP33.
It is sandwiched between aAsP guide layers. The wafer was subsequently embedded in a DC-PBH structure by LPE growth, a mesa electrode was formed on the p-side, the wafer was polished to a thickness of about 150 μm, and an electrode was deposited on the n-side. Finally, the cavity is cleaved so that the cavity length becomes about 150 μm, and λ / 4
After forming a high reflection film composed of a total of seven layers of SiO 2 / Si,
Cut into chips.

【0024】以上のような工程に従って作製した素子を
評価した。図5には試作した素子のパルスのI−L特性
を示すが、85℃、30mAの駆動電流において光出力
は8mW以上が得られており、この素子が良好な温度特
性を有することが伺える。
The device manufactured according to the above steps was evaluated. FIG. 5 shows the IL characteristics of the pulse of the prototype device. The light output of 8 mW or more was obtained at a driving current of 85 ° C. and 30 mA, indicating that the device has good temperature characteristics.

【0025】本発明の半導体レーザは、1.3μm帯の
光加入者用の半導体レーザとしてだけでなく、優れた耐
環境性能が求められる1.5μm帯のレーザにも適用で
きる。また活性層にはInGaAsを求めてもよい。
The semiconductor laser of the present invention can be applied not only to a 1.3 μm band semiconductor laser for optical subscribers but also to a 1.5 μm band laser which is required to have excellent environmental resistance. Further, InGaAs may be obtained for the active layer.

【0026】[0026]

【発明の効果】本発明によれば温度特性に優れた半導体
レーザが得られる。
According to the present invention, a semiconductor laser having excellent temperature characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例の半導体レーザを説明す
るための図である。
FIG. 1 is a diagram for explaining a semiconductor laser according to a first embodiment of the present invention.

【図2】本発明の第二の実施例の半導体レーザを説明す
るための図である。
FIG. 2 is a diagram for explaining a semiconductor laser according to a second embodiment of the present invention.

【図3】本発明の原理を説明するためのI−L特性の計
算結果の図である。
FIG. 3 is a diagram showing calculation results of IL characteristics for explaining the principle of the present invention.

【図4】本発明の第三の実施例の半導体レーザを説明す
るための、活性層のバンドタイヤグラムの図である。
FIG. 4 is a band diagram of an active layer for explaining a semiconductor laser according to a third embodiment of the present invention.

【図5】本発明の第三の実施例を説明するための、パル
スI−L特性の図である。
FIG. 5 is a diagram of a pulse IL characteristic for explaining a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11、21 半導体レーザ 12、22 溝 13、23 活性層 14、24 高反射コーティング 15 ヒートシンク 16 光ファイバ 25 シリコン基板 26 石英光導波路 31 InP 32 InGaAsP(λg =1.40μm) 33 InGaAsP(λg =1.13μm)11, 21 semiconductor laser 12, 22 groove 13, 23 the active layer 14 and 24 highly reflective coating 15 the heat sink 16 optical fiber 25 silicon substrate 26 of quartz optical waveguide 31 InP 32 InGaAsP (λ g = 1.40μm) 33 InGaAsP (λ g = 1.13 μm)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−226978(JP,A) 特開 昭52−146189(JP,A) 特開 昭63−181489(JP,A) 古河電工時報 第85号 p.20−28 (1989/12/28) Applied Physics L etters Vol.60,No.15, pp.1782−1784(1992/4/13) 電子情報通信学会技術研究報告 Vo l.91,No.75,pp67−72(1991 /5/27) IEEE JOURNAL OF Q UANTUM ELECTRONIC S,Vol.QE−21,No.12,p p.1958−1963(1985/12/) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-226978 (JP, A) JP-A-52-146189 (JP, A) JP-A-63-181489 (JP, A) Furukawa Electric Time Report No. 85 No. p. 20-28 (1989/12/28) Applied Physics Letters Vol. 60, no. 15, pp. 1782-1784 (1992/4/13) IEICE Technical Report Vol. 91, No. 75, pp 67-72 (May 27, 1991) IEEE JOURNAL OF QUANTUM ELECTRONIC S, Vol. QE-21, No. 12, p.p. 1958-1963 (1985/12 /) (58) Field surveyed (Int. Cl. 7 , DB name) H01S 5/00-5/50 JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上にDH構造を有する半導体レーザ
であって、前記半導体素子の一方の端面側に光出射方向
に形成された溝によって光出射端面が形成され、前記半
導体レーザの共振器長が150μm以下であることを特
徴とする半導体レーザ。
1. A semiconductor laser having a DH structure on a substrate.
A light emitting direction on one end face side of the semiconductor element.
The light emitting end face is formed by the groove formed in
The resonator length of the semiconductor laser is 150 μm or less.
Semiconductor laser.
【請求項2】 前記溝と反対側の端面に70%以上の反
射率を有するコーティングが施されたことを特徴とする
請求項1記載の半導体レーザ。
2. A coating having a reflectance of 70% or more on an end face opposite to the groove.
The semiconductor laser according to claim 1 .
【請求項3】 前記溝の部分に光ファイバ又は光導波路
を結合させることを特徴とする請求項1又は2記載の半
導体レーザ。
3. An optical fiber or optical waveguide in the groove portion.
3. The half according to claim 1, wherein
Conductive laser.
【請求項4】 多重量子井戸活性層がInPと格子整合
する1.35〜1.45μmバンドギャップ組成のIn
GaAsPウエルと1.05〜1.2μmバンドギャッ
プ組成のInGaAsPバリヤを有する多重量子井戸半
導体レーザにおいて、共振器長が150μm以下であ
り、かつ一方の端面に90%以上の反射率を有するコー
ティングを施すことを特徴とする半導体レーザ。
4. The multiple quantum well active layer is lattice-matched with InP.
Of 1.35 to 1.45 μm band gap composition
GaAsP well and 1.05 to 1.2 μm band gap
Quantum Well Half with InGaAsP Barrier of Step Composition
1. A semiconductor laser, wherein a cavity length is 150 μm or less and a coating having a reflectance of 90% or more is applied to one end face.
【請求項5】 ウエル数が7層からなることを特徴とす
る請求項4記載の半導体レーザ。
5. The method according to claim 1, wherein the number of wells comprises seven layers.
The semiconductor laser according to claim 4.
JP4113284A 1992-01-27 1992-05-06 Semiconductor laser Expired - Lifetime JP3024354B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4113284A JP3024354B2 (en) 1992-01-27 1992-05-06 Semiconductor laser
EP19930101130 EP0557727A3 (en) 1992-01-27 1993-01-26 Semiconductor laser element with excellent high-temperature characteristic and capable of being readily mounted on an optical circuit board
US08/291,498 US5511089A (en) 1992-01-27 1994-08-17 Semiconductor laser element with excellent high-temperature characteristic and capable of being readily mounted on an optical circuit board

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1148592 1992-01-27
JP4-53887 1992-03-12
JP5388792 1992-03-12
JP4-11485 1992-04-20
JP4113284A JP3024354B2 (en) 1992-01-27 1992-05-06 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH05315695A JPH05315695A (en) 1993-11-26
JP3024354B2 true JP3024354B2 (en) 2000-03-21

Family

ID=27279442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4113284A Expired - Lifetime JP3024354B2 (en) 1992-01-27 1992-05-06 Semiconductor laser

Country Status (3)

Country Link
US (1) US5511089A (en)
EP (1) EP0557727A3 (en)
JP (1) JP3024354B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69411299T2 (en) * 1993-03-12 1999-02-25 Matsushita Electric Ind Co Ltd Multi-quantum well semiconductor laser and optical communication system with such a laser
FR2715506B1 (en) * 1994-01-21 1996-03-29 Alcatel Nv Method for replacing part of a first semiconductor structure with another semiconductor structure comprising an epitaxial layer of different composition.
US5625617A (en) * 1995-09-06 1997-04-29 Lucent Technologies Inc. Near-field optical apparatus with a laser having a non-uniform emission face
US6625357B2 (en) * 1999-03-29 2003-09-23 Tyco Electronics Corporation Method for fabricating fiducials for passive alignment of opto-electronic devices
US6863444B2 (en) * 2000-12-26 2005-03-08 Emcore Corporation Housing and mounting structure
US6799902B2 (en) 2000-12-26 2004-10-05 Emcore Corporation Optoelectronic mounting structure
US6867377B2 (en) * 2000-12-26 2005-03-15 Emcore Corporation Apparatus and method of using flexible printed circuit board in optical transceiver device
US6863453B2 (en) * 2003-01-28 2005-03-08 Emcore Corporation Method and apparatus for parallel optical transceiver module assembly
CN108431580A (en) * 2015-10-13 2018-08-21 加利福尼亚大学董事会 System and method for optical continuum bound state laser light source

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083697B1 (en) * 1981-10-19 1987-09-09 Nec Corporation Double channel planar buried heterostructure laser
US4466696A (en) * 1982-03-29 1984-08-21 Honeywell Inc. Self-aligned coupling of optical fiber to semiconductor laser or LED
US4784454A (en) * 1982-08-02 1988-11-15 Andrew Corporation Optical fiber and laser interface device
US4599728A (en) * 1983-07-11 1986-07-08 At&T Bell Laboratories Multi-quantum well laser emitting at 1.5 μm
DE3329107A1 (en) * 1983-08-11 1985-02-21 Siemens AG, 1000 Berlin und 8000 München LASER DIODE WITH HOMOGENIZED MECHANICAL VOLTAGE AND / OR HEAT EXTRACTION
DE3330392A1 (en) * 1983-08-23 1985-03-07 Siemens AG, 1000 Berlin und 8000 München LASER DIODE WITH SIMPLIFIED ADJUSTMENT
DE3728305A1 (en) * 1987-08-25 1989-03-09 Standard Elektrik Lorenz Ag SEMICONDUCTOR LASER WITH CONSTANT DIFFERENTIAL QUANTUM EXCHANGER OR CONSTANT OPTICAL OUTPUT
US4904036A (en) * 1988-03-03 1990-02-27 American Telephone And Telegraph Company, At&T Bell Laboratories Subassemblies for optoelectronic hybrid integrated circuits
US5073003A (en) * 1988-12-23 1991-12-17 At&T Bell Laboratories Optoelectronic device package method and apparatus
FR2659148B1 (en) * 1990-03-01 1993-04-16 Commissariat Energie Atomique METHOD FOR CONNECTING BETWEEN AN OPTICAL FIBER AND AN OPTICAL MICROGUIDE.
US5163108A (en) * 1990-07-11 1992-11-10 Gte Laboratories Incorporated Method and device for passive alignment of diode lasers and optical fibers
US5181214A (en) * 1991-11-18 1993-01-19 Harmonic Lightwaves, Inc. Temperature stable solid-state laser package
US5208821A (en) * 1992-01-24 1993-05-04 At&T Bell Laboratories Buried heterostructure lasers using MOCVD growth over patterned substrates
US5381434A (en) * 1993-03-30 1995-01-10 Bell Communications Research, Inc. High-temperature, uncooled diode laser

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters Vol.60,No.15,pp.1782−1784(1992/4/13)
IEEE JOURNAL OF QUANTUM ELECTRONICS,Vol.QE−21,No.12,pp.1958−1963(1985/12/)
古河電工時報 第85号 p.20−28(1989/12/28)
電子情報通信学会技術研究報告 Vol.91,No.75,pp67−72(1991/5/27)

Also Published As

Publication number Publication date
JPH05315695A (en) 1993-11-26
US5511089A (en) 1996-04-23
EP0557727A3 (en) 1993-10-27
EP0557727A2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
US6277696B1 (en) Surface emitting laser using two wafer bonded mirrors
JP3024354B2 (en) Semiconductor laser
Wade et al. High continuous wave power, 0.8 μm-band, Al-free active-region diode lasers
US20010017870A1 (en) High-output semiconductor laser element, high-output semiconductor laser apparatus and method of manufacturing the same
US20030047738A1 (en) Semiconductor laser device having selective absorption qualities over a wide temperature range
JPH08220358A (en) Waveguide type optical element
EP1569309B1 (en) Semiconductor light-emitting device and method for manufacturing same
JP2002111125A (en) Distributed feedback semiconductor laser
JP3434706B2 (en) Semiconductor laser and method of manufacturing the same
JP3053139B2 (en) Strained quantum well semiconductor laser
JP3254812B2 (en) Semiconductor laser and manufacturing method thereof
JPWO2004027950A1 (en) Semiconductor laser
JP3802465B2 (en) Vertical cavity surface emitting semiconductor laser
JPH1026710A (en) Waveguide type optical element, optical signal transmission module using the same, and integrated optical waveguide element
JPH10144990A (en) Waveguide-type optical element
JPH0856055A (en) Semiconductor laser system
JP2565909B2 (en) Semiconductor laser device
JP2004103679A (en) Semiconductor light emitting element and semiconductor light emitting element module
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same
JP3717206B2 (en) Semiconductor laser element
JP2897734B2 (en) High power semiconductor laser device
JP2849501B2 (en) Manufacturing method of semiconductor laser
JP3680283B2 (en) Manufacturing method of semiconductor element
JPH07249827A (en) Semiconductor laser, and manufacture of semiconductor laser
JPH07111363A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13