JP3151571B2 - Oxidation resistant solvent - Google Patents
Oxidation resistant solventInfo
- Publication number
- JP3151571B2 JP3151571B2 JP36135191A JP36135191A JP3151571B2 JP 3151571 B2 JP3151571 B2 JP 3151571B2 JP 36135191 A JP36135191 A JP 36135191A JP 36135191 A JP36135191 A JP 36135191A JP 3151571 B2 JP3151571 B2 JP 3151571B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- distillation
- boiling point
- copper
- reaction medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B47/00—Porphines; Azaporphines
- C09B47/04—Phthalocyanines abbreviation: Pc
- C09B47/06—Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は沸点が高く耐酸化性に優
れた炭化水素系溶剤に関するものであり、更に顔料であ
る銅フタロシアニンを、該耐酸化性溶剤を反応用媒体と
して用いて製造する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrocarbon solvent having a high boiling point and excellent oxidation resistance, and further produces copper phthalocyanine as a pigment by using the oxidation resistant solvent as a reaction medium. It is about the method.
【0002】[0002]
【従来技術】炭化水素系溶剤は塗料、インキ、ゴム、粘
着剤、接着剤、金属の脱脂洗浄、反応溶剤等多方面で使
用されている。溶剤には使用目的に応じて樹脂との相溶
性および樹脂や汚れの原因物質などへの溶解性が要求さ
れる。溶解の効率を高めるために高温に曝される様な条
件で使用されることが多く、実用上は安全性に加えて、
酸化されにくいことが重要となっている。このため高温
で使用しても酸化に耐える安定した溶剤が望まれてい
た。2. Description of the Related Art Hydrocarbon solvents are used in various fields such as paints, inks, rubbers, adhesives, adhesives, degreasing and cleaning of metals, and reaction solvents. The solvent is required to have compatibility with the resin and solubility in the resin and the substance causing stains, depending on the purpose of use. It is often used under conditions where it is exposed to high temperatures to increase the efficiency of dissolution, and in addition to safety in practice,
It is important that it is not easily oxidized. Therefore, a stable solvent that can withstand oxidation even when used at a high temperature has been desired.
【0003】高い溶解性を持ち、高温での使用に耐える
溶剤として従来から多くの場合芳香族炭化水素系溶剤が
用いられてる。酸化に耐える芳香族炭化水素系溶剤の多
くは高温で使用できる溶剤ほど結晶の析出傾向が高くな
るため、例え高温で使用するときは液状を保っていて
も、常温に戻すと結晶化するなど実用溶剤としては使用
できないのが現状である。また使用上の高温でも常温で
も液状を保つ高沸点芳香族溶剤類は、高温での使用によ
り酸化をうけや易く溶剤自身の劣化が問題となる。この
ため使用上の高温でも酸化に耐え且つ常温でも液状態を
維持できる溶剤の安価で効率的な製造方法が望まれてい
た。[0003] Aromatic hydrocarbon solvents have been used in many cases as solvents which have high solubility and can withstand use at high temperatures. Most aromatic hydrocarbon solvents that can withstand oxidation tend to precipitate crystals as they can be used at high temperatures, so even if they remain liquid when used at high temperatures, they crystallize when returned to room temperature. At present, it cannot be used as a solvent. High-boiling aromatic solvents that remain liquid at high or normal temperatures during use are susceptible to oxidation by use at high temperatures, and the solvent itself tends to deteriorate. Therefore, there has been a demand for an inexpensive and efficient method for producing a solvent that can withstand oxidation even at a high temperature in use and maintain a liquid state at room temperature.
【0004】また有用な顔料である銅フタロシアニンは
種々な合成法が提案されているが、工業的な製造法に
は、(1)フタロニトリルと銅または銅塩とを反応用媒
体中で反応させるニトリル溶剤法、(2)フタル酸、無
水フタル酸またはフタルイミド等と尿素および銅または
銅塩とを反応用媒体中で反応させるフタル酸溶剤法が多
く用いられている。Various synthetic methods have been proposed for copper phthalocyanine, which is a useful pigment. However, industrial production methods include (1) reacting phthalonitrile with copper or a copper salt in a reaction medium. A nitrile solvent method and (2) a phthalic acid solvent method of reacting phthalic acid, phthalic anhydride, phthalimide, or the like with urea and copper or a copper salt in a reaction medium are often used.
【0005】これらの反応用媒体には従来はクロルベン
ゼン類等が用いられていたが、ハロゲン化溶剤からの臭
い等の作業環境を守る必要性から改善がなされてきてい
る。この改善の一つとしてハロゲンを含まないアルキル
ベンゼンなどの反応用媒体の提案が見られ、特開昭48
−60126号、特開昭49−63735号、特開昭4
9−116121号、特開昭50−44224号、特開
昭52−38536号、特公昭44−26372号公報
等に種々の反応用媒体が提案されている。Conventionally, chlorobenzenes and the like have been used for these reaction media, but improvements have been made from the necessity of protecting the working environment such as odor from halogenated solvents. As one of the improvements, there has been proposed a reaction medium such as alkylbenzene containing no halogen.
-60126, JP-A-49-63735, JP-A-Showa 4
Various reaction media have been proposed in JP-A No. 9-116121, JP-A-50-44224, JP-A-52-38536, and JP-B-44-26372.
【0006】[0006]
【発明が解決しようとする課題】しかしこれら提案され
ている反応用媒体は、製造された銅フタロシアニン顔料
の色調が鮮明でない、特定の構造をもつ溶剤であるため
溶剤供給性が充分でないため価格が高い等大規模に実施
する工業的な面から鮮明な色調を与える反応用媒体の効
率的な製造方法が望まれている。本発明者は、蒸留によ
り得られた特定の留分であり、特定の指数を満足する留
分が高沸点でかつ耐酸化性の高い溶剤となり得ることを
見いだした。更に本発明の耐酸化性溶剤を銅フタロシア
ニン製造用の反応用媒体として使用すれば、色調の鮮明
な顔料の得られることを見いだし本発明を完成させたも
のである。However, the proposed reaction medium is a solvent having a specific structure in which the color tone of the produced copper phthalocyanine pigment is not clear, and the supply of the solvent is not sufficient. From an industrial point of view, which is carried out on a large scale, etc., an efficient production method of a reaction medium giving a vivid color tone is desired. The present inventor has found that a specific fraction obtained by distillation and that satisfies a specific index can be a solvent having a high boiling point and high oxidation resistance. Furthermore, they have found that a clear color pigment can be obtained by using the oxidation-resistant solvent of the present invention as a reaction medium for producing copper phthalocyanine, thereby completing the present invention.
【0007】さらに、上記特許公報など文献的には単一
の化合物を使用することが記載されてはいるが、たとえ
ば銅フタロシアニン製造用溶媒を例に取ると、低価格で
あること融点降下が期待できることなどの点から実際に
工業的に使用されている溶剤は、異性体も含めて多成分
の混合物の態様であることが多い。そして、このような
溶剤はいずれも蒸留による留分として使用される。その
反面、多成分混合物であるところから場合によっては対
象反応に対して好ましからざる成分が混入することがあ
り、ひいては必ずしも銅フタロシアニン製造用溶媒とし
て好ましいとはいえなくなる。このような場合、多成分
混合物であるところから成分分析も容易ではなく、溶剤
調製が困難とならざるを得ない。Further, although the use of a single compound is described in the literature such as the above-mentioned patent gazette, for example, a solvent for producing copper phthalocyanine is expected to be inexpensive and to have a low melting point, for example, in the case of a solvent for producing copper phthalocyanine. In many cases, the solvents that are actually used industrially from the viewpoint of, for example, being in the form of a mixture of multiple components including isomers. All such solvents are used as distillates. On the other hand, components that are not suitable for the target reaction may be mixed in some cases from the fact that they are a multi-component mixture, and thus cannot be said to be necessarily preferable as a solvent for producing copper phthalocyanine. In such a case, since it is a multi-component mixture, component analysis is not easy, and preparation of a solvent must be difficult.
【0008】[0008]
【課題を解決するための手段】すなわち本発明の第一
は、沸点200℃以上230℃以下の成分を主として含
む蒸留分離された炭化水素混合物留分に於て、平均沸点
が200℃以上220℃以下、沸点範囲が30℃以下、
次式で示される指数That is, the first aspect of the present invention is to provide a fractionated hydrocarbon mixture containing mainly components having a boiling point of 200 ° C to 230 ° C and having an average boiling point of 200 ° C to 220 ° C. The boiling point range is 30 ° C. or less,
Exponent given by the following equation
【数2】 (式中n20は20℃に於ける屈折率、D20は20℃
に於ける密度(g/cc)、Bpは平均沸点(℃)であ
って、蒸留試験による10%、50%、90%留出温度
を(10%留出温度(℃)+2×50%留出温度(℃)
+90%留出温度(℃))/4で算出した数値をそれぞ
れ示す。)が7.0×10−4以上7.6×10−4以
下の範囲にあり、赤外吸収スペクトルの波長領域650
cm−1から2000cm−1に於ける最大吸収波長λ
maxが690cm−1以上710cm−1以下の範囲
に存在することを特徴とする耐酸化性溶剤に関する。(Equation 2) (Where n 20 is the refractive index at 20 ° C., D 20 is 20 ° C.)
(G / cc) and Bp are average boiling points (° C.), and the distillation temperatures of 10%, 50%, and 90% obtained by the distillation test were calculated as (10% distillation temperature (° C.) + 2 × 50% distillation). Outlet temperature (℃)
+ 90% distillation temperature (° C.)) / 4. ) Is in the range of 7.0 × 10 −4 to 7.6 × 10 −4 , and the wavelength region 650 of the infrared absorption spectrum is
maximum absorption wavelength λ from cm −1 to 2000 cm −1
The present invention relates to an oxidation-resistant solvent, wherein max is in a range of 690 cm -1 to 710 cm -1 .
【0009】本発明の第二は、無水フタル酸もしくはそ
の誘導体と尿素と銅もしくは銅塩を、またはフタロニト
リルもしくはその誘導体と銅もしくは銅塩を反応用媒体
中で加熱反応せしめて銅フタロシアニンを製造する方法
において、上記耐酸化性溶剤を反応用媒体として用いる
ことを特徴とする銅フタロシアニンの製造方法に関し、
工業的に有用な溶剤を提供することと、鮮明な顔料の製
造を可能ならしめるものである。The second aspect of the present invention is to produce copper phthalocyanine by reacting phthalic anhydride or a derivative thereof with urea and copper or a copper salt, or phthalonitrile or a derivative thereof and copper or a copper salt in a reaction medium under heating. In the method, the method for producing copper phthalocyanine, characterized in that the oxidation-resistant solvent is used as a reaction medium,
An object of the present invention is to provide an industrially useful solvent and to enable production of a clear pigment.
【0010】以下、本発明をさらに説明する。本発明に
おいて、留出温度および平均沸点は石油製品一般に適応
されているASTM試験法D86(対応JIS K22
54−1990、ISO 3405−1988 Pet
roleum products−Determina
tion distillation charact
eristics)により定義されている蒸留試験法に
より決定される数値である。また沸点範囲は10%留出
温度(℃)と90%留出温度(℃)との差で表される数
値である。そして平均沸点は10%、50%および90
%留出温度から、(10%留出温度(℃)+2×50%
留出温度(℃)+90%留出温度(℃))/4の式によ
り算出される数値である。ただし、単に沸点という場合
は通常の意味による。Hereinafter, the present invention will be further described. In the present invention, the distillation temperature and the average boiling point are determined according to ASTM test method D86 (corresponding to JIS K22) which is generally applied to petroleum products.
54-1990, ISO 3405-1988 Pet
roleum products-Determina
Tion distilation charact
The values are determined by the distillation test method as defined by the following methods. The boiling point range is a numerical value represented by the difference between the 10% distillation temperature (° C.) and the 90% distillation temperature (° C.). And the average boiling point is 10%, 50% and 90%
% Distillation temperature, (10% distillation temperature (° C) + 2 x 50%
Distillation temperature (° C.) + 90% distillation temperature (° C.)) / 4. However, the term “boiling point” simply means the usual meaning.
【0011】工業的に使用する時、溶剤は高い溶解性や
高温での使用でそれ自身が安定であることに加え、使用
後の回収が容易なこと、安全に取り扱えることも実用上
は重要な要素となる。本発明の耐酸化性溶剤は、沸点2
00℃以上230℃以下の成分を主として含む蒸留分離
された炭化水素混合物留分であって、平均沸点が200
℃以上220℃以下、沸点範囲が30℃以下である。平
均沸点が200℃未満で沸点範囲が30℃を越える時
は、耐酸化性溶剤が引火しやすくなり取り扱う上で特別
な対策が必要となる。また平均沸点が220℃を越え沸
点範囲が30℃を越える場合は、耐酸化性溶剤回収の効
率が落ちると共に耐酸化性溶剤の溶解性が低下し使用上
好ましくない。When used industrially, it is important in practical use that the solvent has high solubility, is stable when used at high temperatures, is easy to recover after use, and can be handled safely. Element. The oxidation resistant solvent of the present invention has a boiling point of 2
A hydrocarbon-distilled fraction containing mainly components having a temperature of from 00 ° C to 230 ° C and having an average boiling point of 200
The temperature is not lower than 220 ° C and the boiling point is not higher than 30 ° C. When the average boiling point is less than 200 ° C. and the boiling point range exceeds 30 ° C., the oxidation-resistant solvent is easily flammable and requires special measures in handling. If the average boiling point exceeds 220 ° C. and the boiling point range exceeds 30 ° C., the efficiency of recovery of the oxidation-resistant solvent decreases and the solubility of the oxidation-resistant solvent decreases, which is not preferable for use.
【0012】本発明の耐酸化性溶剤は、赤外吸収スペク
トルの波長領域650cm−1から2000cm−1に
於ける最大吸収波長λmaxが690cm−1以上71
0cm−1以下の範囲に存在するものである。最大吸収
波長λmaxを690cm−1未満または710cm
−1を越える範囲に持つ時は、低温時に結晶析出の危険
性が増して好ましくない。[0012] Oxidation solvents of the present invention, in the maximum absorption wavelength lambda max of the wavelength region 650 cm -1 to 2000 cm -1 in the infrared absorption spectrum is 690 cm -1 or more 71
It exists in a range of 0 cm -1 or less. Maximum absorption wavelength λ max is less than 690 cm −1 or 710 cm
If it exceeds -1 , the risk of crystal precipitation at low temperatures increases, which is not preferable.
【0013】本発明者は、たとえばアルキルベンゼンな
どの芳香族炭化水素化合物の耐酸化性能、特に銅フタロ
シアニン製造用溶剤としての性能とその化学構造との関
係を考察し、その結果、分子としての形状がよりコンパ
クトな分子である方が好ましいことを見いだした。そし
て、分子量一定ならば分子形状としての分子のコンパク
トな度合は密度や屈折率に比例することに着目し、炭化
水素混合物留分の密度や屈折率を関数とする前記特定指
数によれば、特に複雑な成分分析によらなくとも簡便に
耐酸化性能、特に銅フタロシアニン製造用溶剤としての
性能と相関付けられることを見いだしたのである。The present inventor has studied the oxidation resistance of aromatic hydrocarbon compounds such as alkylbenzenes, especially the relationship between the performance as a solvent for producing copper phthalocyanine and its chemical structure. It has been found that a more compact molecule is preferable. Then, if the molecular weight is constant, paying attention to the fact that the degree of compactness of the molecule as the molecular shape is proportional to the density or the refractive index, and particularly according to the specific index as a function of the density or the refractive index of the hydrocarbon mixture fraction, It has been found that it is possible to easily correlate the anti-oxidation performance, particularly the performance as a solvent for producing copper phthalocyanine, even without complicated component analysis.
【0014】更に本発明者は、得られた耐酸化性溶剤を
銅フタロシアニン製造用溶剤に用いると、顔料として好
ましい鮮明な銅フタロシアニン製造のための反応用媒体
になることを見いだした。前記1)のニトリル溶剤法に
よる銅フタロシアニン顔料の製造は、フタロニトリルま
たはクロロフタロニトリル、フェニルフタロニトリルな
どのその誘導体と銅または塩化銅、硫酸銅、酢酸銅など
の銅塩とを本発明の溶剤の存在下に反応させる。Further, the present inventor has found that the use of the obtained oxidation-resistant solvent as a solvent for producing copper phthalocyanine is a preferable reaction medium for producing copper phthalocyanine which is preferable as a pigment. In the production of the copper phthalocyanine pigment by the nitrile solvent method of the above 1), phthalonitrile or a derivative thereof such as chlorophthalonitrile or phenylphthalonitrile and copper or a copper salt such as copper chloride, copper sulfate or copper acetate are mixed with the solvent of the present invention. In the presence of
【0015】銅または銅塩中の銅1グラム原子あたりフ
タロニトリルもしくはその誘導体を1〜10モル使用す
る。また、前記2)のフタル酸溶剤法による銅フタロシ
アニン顔料の製造は、無水フタル酸またはフタル酸、フ
タル酸ジアミド、フタルアミノ酸、フタルイミド、ハロ
ゲン核置換体、アルキル核置換体などのその誘導体と、
尿素またはビューレット、トリウレットなどの無水フタ
ル酸の誘導体と銅または塩化銅、硫酸銅、酢酸銅などの
銅塩とを本発明の溶剤の存在下に反応させる。1 to 10 moles of phthalonitrile or a derivative thereof is used per gram atom of copper in copper or copper salt. Further, the production of the copper phthalocyanine pigment by the phthalic acid solvent method of the above 2) is a method of producing a phthalic anhydride or a derivative thereof such as phthalic acid, phthalic diamide, phthalamino acid, phthalimide, a halogen nucleus-substituted product, an alkyl nucleus-substituted product,
Urea or a derivative of phthalic anhydride such as buret or triuret is reacted with copper or a copper salt such as copper chloride, copper sulfate or copper acetate in the presence of the solvent of the present invention.
【0016】触媒は必須ではないが、酸化モリブデン、
モリブデン酸アンモニウム、モリブデンカルボニルのよ
うなモリブデン化合物、酸化砒素のような砒素化合物あ
るいはホウ酸などを触媒とすることができる。上記原料
等の使用割合は、フタル酸に対して銅または銅塩を10
〜30モル%、尿素類を50〜500モル%、本発明の
溶剤を1〜10重量倍程度、そして必要に応じて添加す
る触媒が、0.1重量倍程度である。A catalyst is not essential, but molybdenum oxide,
Molybdenum compounds such as ammonium molybdate and molybdenum carbonyl, arsenic compounds such as arsenic oxide, and boric acid can be used as catalysts. The usage ratio of the above raw materials and the like is as follows.
3030 mol%, urea is 50-500 mol%, the solvent of the present invention is about 1-10 weight times, and the catalyst to be added as needed is about 0.1 weight times.
【0017】いずれの方法も、銅フタロシアニン製造反
応を効率よく達成するために上記溶剤を反応用媒体とし
て用い、160℃以上250℃以下好ましくは180℃
以上230℃以下の反応温度で製造される。従って工業
的な銅フタロシアニン顔料製造には使用される反応用媒
体の沸点が重要な因子となる。本発明の方法で用いる反
応用媒体は、沸点が200℃以上230℃以下の成分を
主として含む炭化水素混合物で、平均沸点が200℃以
上220℃以下、沸点範囲が30℃以下の沸点を持つも
のである。主として含まれる成分の沸点が200℃未満
であるかまたは溶媒の平均沸点が200℃未満の場合、
上記の反応温度を維持するために必要以上の加圧に耐え
得る製造設備が要求され工業的な実施には好ましくな
い。また主として含まれる成分の沸点が230℃を越え
るかまたは溶媒の平均沸点が220℃を越えると、製造
された顔料から反応用媒体を蒸発分離するときの効率が
低くなると共に反応用媒体を蒸発回収する時に必要以上
の高温が必要となり顔料の鮮明さに良くない効果をもた
らすため好ましくない。さらに銅フタロシアニン顔料の
工業規模での製造では、反応終了後生成した顔料と反応
用媒体との分離を減圧蒸発分離で行うのが一般的な方法
として採用されている。この際30℃を越えた沸点範囲
を持つ反応用媒体では、安定して反応用媒体を除去する
ためには、減圧および加熱操作に対して複雑な調整を必
要とし大量に扱う工業的実施には好ましくない。In any of the methods, the above-mentioned solvent is used as a reaction medium in order to achieve a copper phthalocyanine production reaction efficiently, and the temperature is from 160 ° C. to 250 ° C., preferably 180 ° C.
It is produced at a reaction temperature of at least 230 ° C. Therefore, for industrial copper phthalocyanine pigment production, the boiling point of the reaction medium used is an important factor. The reaction medium used in the method of the present invention is a hydrocarbon mixture mainly containing components having a boiling point of 200 ° C to 230 ° C, and having an average boiling point of 200 ° C to 220 ° C and a boiling point of 30 ° C or less. It is. When the boiling point of mainly contained components is less than 200 ° C or the average boiling point of the solvent is less than 200 ° C,
In order to maintain the above-mentioned reaction temperature, manufacturing equipment capable of withstanding excessive pressurization is required, which is not preferable for industrial practice. If the boiling point of the components mainly exceeds 230 ° C. or the average boiling point of the solvent exceeds 220 ° C., the efficiency of evaporating and separating the reaction medium from the produced pigment decreases, and the reaction medium is evaporated and recovered. This is not preferable because a higher temperature than necessary is required at the time of performing the process, which results in an effect of deteriorating the sharpness of the pigment. Further, in the production of copper phthalocyanine pigments on an industrial scale, it is generally employed to separate the pigment produced after the reaction from the reaction medium by evaporation under reduced pressure. At this time, in the case of a reaction medium having a boiling point range exceeding 30 ° C., in order to stably remove the reaction medium, complicated adjustment is required for the decompression and heating operations, and for industrial practice in which a large amount is used. Not preferred.
【0018】本発明の方法に用いる反応反応用媒体は2
0℃に於ける屈折率、20℃に於ける密度および平均沸
点によって導かれる指数が7.0×10−4以上7.6
×10−4以下にあるものである。本発明者らは、製造
される銅フタロシアニン顔料の性能を決定するうえで反
応用媒体の沸点が実用上重要な要因であると共に、反応
用媒体の持つこの指数が非常に重要な役割を果たしてい
ることを見いだした。反応用媒体の持つ指数が7.0×
10−4未満の場合は、用いる原料に対する製品顔料の
得率が低下し、工業的に銅フタロシアニン顔料製造用に
使用することができなくなる。また指数が7.6×10
−4を越える場合は、反応用媒体自身の安定性が充分で
なく製造される顔料の鮮明さに良くない影響を与えると
共に、反応用媒体それ自身かなり強い臭気を持ち大量の
使用を前提とする工業的には作業環境の維持の点からも
好ましくない。本発明の方法に用いられる反応用媒体と
して好ましくは赤外吸収スペクトルの波長領域650c
m−1から2000cm−1に於ける最大吸収波長λ
maxが690cm−1以上710cm−1以下の範囲
にあるものである。The reaction medium used in the method of the present invention is 2
The index derived from the refractive index at 0 ° C., the density at 20 ° C., and the average boiling point is 7.0 × 10 −4 or more and 7.6.
× 10 −4 or less. The present inventors have found that the boiling point of the reaction medium is a practically important factor in determining the performance of the produced copper phthalocyanine pigment, and this index of the reaction medium plays a very important role. I found something. The index of the reaction medium is 7.0 ×
When it is less than 10 -4, the yield of the product pigment with respect to the raw material used is reduced, and it cannot be industrially used for producing a copper phthalocyanine pigment. The index is 7.6 × 10
If it exceeds -4 , the stability of the reaction medium itself is not sufficient, which adversely affects the sharpness of the pigment to be produced, and the reaction medium itself has a rather strong odor and is presumed to be used in large quantities. It is not industrially preferable from the viewpoint of maintaining the working environment. The reaction medium used in the method of the present invention is preferably a wavelength region 650c of an infrared absorption spectrum.
Maximum absorption wavelength λ from m -1 to 2000 cm -1
max is in the range of 690 cm -1 to 710 cm -1 .
【0019】[0019]
【発明の効果】炭化水素混合物留分の密度や屈折率を関
数とする前記特定指数によれば、特に複雑な成分分析に
よらなくとも簡便に耐酸化性能、特に銅フタロシアニン
製造用溶剤としての性能と相関付けられ、多成分炭化水
素混合物留分でも、耐酸化性能、特に銅フタロシアニン
製造用溶剤としての性能に優れた溶剤が得られる。According to the above-mentioned specific index, which is a function of the density and the refractive index of the hydrocarbon mixture fraction, it is possible to easily carry out oxidation resistance without using particularly complicated component analysis, and particularly to use it as a solvent for producing copper phthalocyanine. As a result, even with a multi-component hydrocarbon mixture fraction, a solvent having excellent oxidation resistance, particularly excellent performance as a solvent for producing copper phthalocyanine, can be obtained.
【0020】[0020]
【実施例】以下実施例により本発明の方法を更に詳しく
具体的に説明する。 参考例1「溶剤の製造」 無水塩化アルミニウムを触媒に用いて、ベンゼン、トル
エン、オルソキシレンまたはプソイドキュメンにプロピ
レンを反応させ、蒸留により下記の性状を有する留分を
得た。The method of the present invention will be described in more detail with reference to the following examples. Reference Example 1 "Production of solvent" Using anhydrous aluminum chloride as a catalyst, propylene was reacted with benzene, toluene, orthoxylene or pseudocumene, and a fraction having the following properties was obtained by distillation.
【0021】[0021]
【表1】 [Table 1]
【0022】溶剤A、溶剤B、溶剤C、溶剤Dの赤外吸
収スペクトルは波長領域650cm−1から2000c
m−1に於いていずれも690cm−1以上700cm
−1以下の範囲に最大吸収波長λmaxを示さなかっ
た。The infrared absorption spectrum of solvent A, solvent B, solvent C and solvent D has a wavelength range of 650 cm -1 to 2000 c.
690 cm -1 or more and 700 cm at m -1
The maximum absorption wavelength λ max was not shown in the range of −1 or less.
【0023】参考例2「溶剤の製造」 無水塩化アルミニウムを触媒に用いて、ベンゼンとブテ
ン、ペンテンとヘキセンの混合物およびブテン、ペンテ
ンとメチルペンテン混合物を反応させ蒸留により下記の
性状を有する留分を得た。Reference Example 2 "Preparation of solvent" A mixture of benzene and butene, a mixture of pentene and hexene, and a mixture of butene and a mixture of pentene and methylpentene were reacted with anhydrous aluminum chloride as a catalyst, and a fraction having the following properties was obtained by distillation. Obtained.
【0024】[0024]
【表2】 [Table 2]
【0025】溶剤Eおよび溶剤Fの赤外吸収スペクトル
は波長領域650cm−1から2000cm−1に於い
ていずれも690cm−1以上700cm−1以下の範
囲に最大の吸収を示した。The infrared absorption spectrum of the solvent E and the solvent F was the maximum absorption in the range of either 690 cm -1 or more 700 cm -1 or less at the 2000 cm -1 wavelength region 650 cm -1.
【0026】参考例3「溶剤の製造」 無水塩化アルミニウムを触媒に用い、ベンゼンに平均分
子量が217であるプロピレンポリマーを反応させ蒸留
により下記の性状を有する留分を得た。Reference Example 3 "Production of Solvent" A propylene polymer having an average molecular weight of 217 was reacted with benzene using anhydrous aluminum chloride as a catalyst, and a fraction having the following properties was obtained by distillation.
【0027】[0027]
【表3】 [Table 3]
【0028】溶剤Gおよび溶剤Hの赤外吸収スペクトル
は波長領域650cm−1から2000cm−1に於い
ていずれも690cm−1以上700cm−1以下の範
囲に最大の吸収を示した。The infrared absorption spectrum of the solvent G and solvent H is the maximum absorption in the range of either 690 cm -1 or more 700 cm -1 or less at the 2000 cm -1 wavelength region 650 cm -1.
【0029】参考例4「溶剤の製造」 ナフサ原料を白金系触媒で異性化させた留分から蒸留に
より、下記性状の留分を得た。Reference Example 4 "Production of Solvent" A fraction having the following properties was obtained by distillation from a fraction obtained by isomerizing a naphtha raw material with a platinum-based catalyst.
【0030】[0030]
【表4】 [Table 4]
【0031】溶剤Iの赤外吸収スペクトルは波長領域6
50cm−1から2000cm−1に於いて690cm
−1以上700cm−1以下の範囲に最大吸収波長λm
axを示さなかった。The infrared absorption spectrum of solvent I has a wavelength range of 6
690 cm at 50 cm -1 to 2000 cm -1
The maximum absorption wavelength λm is in the range of -1 to 700 cm -1.
ax was not indicated.
【0032】実施例1「溶剤の耐酸化性」 加熱装置、温度計、還流冷却器を備えた容量200ml
のガラス製丸底フラスコに上記参考例で得られた溶剤A
から溶剤Iを各々100cc供給し、還流温度に保ち、
溶剤自身の着色の程度を比較するために波長420nm
における吸光度の時間変化を測定した。還流温度に保っ
ている期間中蒸発した留分の蒸気は還流冷却器の中で空
気と接触する状態に保った。Example 1 "Oxidation resistance of solvent" 200 ml capacity equipped with heating device, thermometer, reflux condenser
Solvent A obtained in the above reference example in a glass round bottom flask
To supply 100 cc of the solvent I, and maintain the reflux temperature.
Wavelength 420 nm to compare the degree of coloring of the solvent itself
The time change of the absorbance at was measured. The vapor of the evaporated fraction was kept in contact with air in the reflux condenser while maintaining the reflux temperature.
【0033】[0033]
【表5】 表中の数値は波長420nmに於ける吸光度×1000
を表す。[Table 5] Numerical values in the table are absorbance at a wavelength of 420 nm × 1000.
Represents
【0034】各溶剤の耐酸化性を加熱下に於ける着色の
程度で比較するための420nmに於ける吸光度測定
(溶液の黄色に着色する程度を示す)の結果、本発明の
方法による溶剤である溶剤F、溶剤Gおよび溶剤Hは他
の溶剤に比較し高温で空気と接触する状態に置かれても
安定性が高く溶剤自身着色する程度が低いことが明かと
なり、耐酸化性が優れていた。As a result of measuring the absorbance at 420 nm (indicating the degree of yellowing of the solution) at 420 nm for comparing the oxidation resistance of each solvent with the degree of coloring under heating, the solvent according to the method of the present invention was used. Certain solvent F, solvent G and solvent H have higher stability and lower coloration of the solvent itself even when placed in contact with air at a high temperature compared to other solvents, and have excellent oxidation resistance. Was.
【0035】実施例2「銅フタロシアニンの製造」 無水フタル酸26.6g、尿素45.6g、無水塩化第
一銅4.4g、モリブデン酸アンモニウム0.01gと
反応媒体として実施例および比較例で得られた各留分1
85gを用いて攪拌器、温度計、加熱器、還流冷却器を
備えた容量500mlの容器に供給し、還流温度に保ち
保ち2時間反応させた。還流温度に保った反応期間中蒸
発した反応媒体として用いた各留分の蒸気は還流冷却器
の中で空気と接触する状態に保った。Example 2 "Production of copper phthalocyanine" 26.6 g of phthalic anhydride, 45.6 g of urea, 4.4 g of anhydrous cuprous chloride and 0.01 g of ammonium molybdate were obtained in Examples and Comparative Examples as a reaction medium. Each fraction 1
Using 85 g, the mixture was supplied to a 500 ml container equipped with a stirrer, a thermometer, a heater and a reflux condenser, and reacted at the reflux temperature for 2 hours. The vapor of each fraction used as the reaction medium evaporated during the reaction maintained at the reflux temperature was kept in contact with air in the reflux condenser.
【0036】冷却後反応物を減圧濾過により除去し、4
00gのメタノール中で2回洗浄し濾過した。溶剤を除
去後2%苛性曹達水溶液4l中で1時間煮沸洗浄した後
濾過し、洗浄水が中和するまで熱水洗浄を繰り返した。
さらに2%塩酸2lを用い同様に煮沸洗浄、濾過、熱水
で中和点まで洗浄し青色粉末である銅フタロシアニンを
得た。温度85〜95℃の減圧乾燥器により乾燥後得ら
れた顔料を鮮明度試験に使用した。After cooling, the reaction product was removed by filtration under reduced pressure.
Washed twice in 00 g of methanol and filtered. After removing the solvent, the mixture was boiled and washed in 4 l of a 2% aqueous solution of caustic soda for 1 hour, filtered, and washed with hot water until the washing water was neutralized.
Further, by using 2 liters of 2% hydrochloric acid in the same manner, washing by boiling, filtration, and washing with hot water to the neutralization point were performed to obtain copper phthalocyanine as a blue powder. The pigment obtained after drying with a reduced-pressure drier at a temperature of 85 to 95 ° C. was used for a sharpness test.
【0037】得られた顔料12g、椰子油変性アルキッ
ド樹脂(油長33%でキシレンの60%溶液)56g、
メラミン樹脂28g、キシレン10gおよび酸化チタン
粉末2gを容量300ccの陶器製回転式ボールミルに
入れ5時間混練し、顔料分散塗料を調整した。得られた
塗料を膜厚10ミルのアプリケーターで厚み0.2mの
白色上質紙に塗布後、120℃において熱風乾燥し焼付
け処理を行い、塗料塗布面の反射率を測定し塗布面の色
相の濃さを測定した。反射率の測定は610nmの波長
を用いた。12 g of the obtained pigment, 56 g of a coconut oil-modified alkyd resin (oil length 33%, 60% solution of xylene),
28 g of melamine resin, 10 g of xylene and 2 g of titanium oxide powder were put into a 300 cc ceramic rotary ball mill and kneaded for 5 hours to prepare a pigment-dispersed paint. The obtained paint is applied on a 0.2 m thick white high quality paper with an applicator having a thickness of 10 mil, dried with hot air at 120 ° C. and baked, the reflectance of the paint-coated surface is measured, and the hue of the coated surface is measured. Was measured. The reflectance was measured at a wavelength of 610 nm.
【0038】[0038]
【表6】 塗布面の濃さは上白紙面の反射率を100%とした反射
率(%)で示す。[Table 6] The density of the coated surface is represented by a reflectance (%) where the reflectance of the upper blank paper surface is 100%.
【0039】反応媒体として使用した各留分の顔料製造
用反応媒体として比較するための反射率(塗布面の色相
の濃さの程度を示す)の結果、本発明の方法による溶剤
である溶剤F、溶剤G、溶剤Hは他の留分に比較して銅
フタロシアニンの収量と濃厚な色相との両面で他の溶剤
より優れており、合成用溶剤として好ましい性能を備え
ていることを示している。As a result of the reflectance (indicating the degree of hue density on the coated surface) for comparison as a reaction medium for pigment production of each fraction used as a reaction medium, the solvent F which is a solvent by the method of the present invention was obtained , Solvent G and Solvent H are superior to other fractions in both the yield of copper phthalocyanine and the rich hue, as compared with other fractions, indicating that they have preferred performance as solvents for synthesis. .
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−247296(JP,A) 特開 平2−247295(JP,A) 特開 平2−247293(JP,A) 特開 平2−247292(JP,A) 特開 平2−247291(JP,A) 特開 平2−247290(JP,A) 特開 平2−247289(JP,A) 特開 平2−247288(JP,A) 特開 平2−247287(JP,A) 特開 平2−247286(JP,A) 特開 昭53−22524(JP,A) 特開 昭52−38536(JP,A) 特開 昭52−36130(JP,A) 特開 昭50−44224(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10G 7/00 C09B 47/06 C07C 15/00 - 15/085 C11D 7/50 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-247296 (JP, A) JP-A-2-247295 (JP, A) JP-A-2-247293 (JP, A) JP-A-2-247 247292 (JP, A) JP-A-2-247291 (JP, A) JP-A-2-247290 (JP, A) JP-A-2-247289 (JP, A) JP-A-2-247288 (JP, A) JP-A-2-247287 (JP, A) JP-A-2-247286 (JP, A) JP-A-53-22524 (JP, A) JP-A-52-38536 (JP, A) JP-A-52-36130 (JP, A) JP-A-50-44224 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C10G 7/00 C09B 47/06 C07C 15/00-15/085 C11D 7 / 50
Claims (2)
主として含む蒸留分離された炭化水素混合物留分に於
て、平均沸点が200℃以上220℃以下、沸点範囲が
30℃以下、次式で示される指数 【数1】 (式中n20は20℃に於ける屈折率、D20は20℃
に於ける密度(g/cc)、Bpは平均沸点(℃)であ
って蒸留試験による10%、50%、90%留出温度を
(10%留出温度(℃)+2×50%留出温度(℃)+
90%留出温度(℃))/4で算出した数値をそれぞれ
示す。)が7.0×10−4以上7.6×10−4以下
の範囲にあり、赤外吸収スペクトルの波長領域650c
m−1から2000cm−1に於ける最大吸収波長λ
maxが690cm−1以上710cm−1以下の範囲
に存在することを特徴とする耐酸化性溶剤。1. A distillation-separated hydrocarbon mixture fraction mainly containing components having a boiling point of 200 ° C. or more and 230 ° C. or less, having an average boiling point of 200 ° C. or more and 220 ° C. or less, and a boiling point range of 30 ° C. or less. Exponent shown (Where n 20 is the refractive index at 20 ° C., D 20 is 20 ° C.)
(G / cc) and Bp are average boiling points (° C.), and 10%, 50%, and 90% distillation temperatures obtained by a distillation test were calculated as (10% distillation temperature (° C.) + 2 × 50% distillation). Temperature (℃) +
Numerical values calculated by (90% distillation temperature (° C.)) / 4 are shown. ) Is in the range of 7.0 × 10 −4 to 7.6 × 10 −4 , and the wavelength region 650c of the infrared absorption spectrum
Maximum absorption wavelength λ from m -1 to 2000 cm -1
An oxidation-resistant solvent, wherein max is in a range of 690 cm -1 to 710 cm -1 .
と銅もしくは銅塩を、またはフタロニトリルもしくはそ
の誘導体と銅もしくは銅塩を反応用媒体中で加熱反応せ
しめて銅フタロシアニンを製造する方法において、請求
項1記載の耐酸化性溶剤を反応用媒体として用いること
を特徴とする銅フタロシアニンの製造方法。2. A method for producing copper phthalocyanine by reacting phthalic anhydride or a derivative thereof with urea and copper or a copper salt, or phthalonitrile or a derivative thereof and copper or a copper salt in a reaction medium under heating. Item 6. A method for producing copper phthalocyanine, comprising using the oxidation-resistant solvent according to Item 1 as a reaction medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36135191A JP3151571B2 (en) | 1991-12-27 | 1991-12-27 | Oxidation resistant solvent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36135191A JP3151571B2 (en) | 1991-12-27 | 1991-12-27 | Oxidation resistant solvent |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05179257A JPH05179257A (en) | 1993-07-20 |
JP3151571B2 true JP3151571B2 (en) | 2001-04-03 |
Family
ID=18473230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36135191A Expired - Fee Related JP3151571B2 (en) | 1991-12-27 | 1991-12-27 | Oxidation resistant solvent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3151571B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7454163B2 (en) | 2002-11-08 | 2008-11-18 | Konica Minolta Holdings, Inc. | Bookbinding system |
-
1991
- 1991-12-27 JP JP36135191A patent/JP3151571B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7454163B2 (en) | 2002-11-08 | 2008-11-18 | Konica Minolta Holdings, Inc. | Bookbinding system |
Also Published As
Publication number | Publication date |
---|---|
JPH05179257A (en) | 1993-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH633519A5 (en) | METHOD FOR PRODUCING fluorobenzenes. | |
KR100230612B1 (en) | Pigment composition of copper phthalocyanine | |
US5817805A (en) | Synthesis of bis(phthalocyanylalumino)tetraphenyldisiloxanes | |
US2214469A (en) | Process for manufacturing halogenated phthalocyanines | |
JP3151571B2 (en) | Oxidation resistant solvent | |
JP3151570B2 (en) | Oxidation resistant solvent | |
CA1088255A (en) | Pigment compositions | |
JP3151569B2 (en) | Solvent manufacturing method | |
KR100337409B1 (en) | Method for producing copper phthalocyanine | |
CH656139A5 (en) | DIOXAZINE CONNECTIONS. | |
JP3084494B2 (en) | Pigment manufacturing method | |
KR0153296B1 (en) | Process of producing copper phthalocyanine pigment having bright tone | |
JPH0730265B2 (en) | Crystal type conversion method | |
US2910482A (en) | Phthalocyanine coloring matters in pigmentary form | |
US3137703A (en) | Phthalocyanine chelates | |
WO2002088256A1 (en) | Oxidation-resistant water-soluble dye of copper/phthalocyanine compound complex, dye composition containing the same, and recording fluid | |
JPS62135568A (en) | Production of dimethylaminomethyl copper phthalocyanine and derivative thereof | |
US3985767A (en) | Process for the preparation of copper phthalocyanine | |
JPH07119369B2 (en) | Method for producing metal phthalocyanine and / or derivative thereof | |
JP2662445B2 (en) | Method for producing copper phthalocyanine compound | |
JPS6342944B2 (en) | ||
JP3496276B2 (en) | Method for producing copper phthalocyanine | |
JPS5842219B2 (en) | Method for producing vivid copper phthalocyanine pigments | |
JPS5949259B2 (en) | Method for producing vivid copper phthalocyanine pigments | |
CA1071208A (en) | Preparation of quinacridone using fecl3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |