JP3149523B2 - Solid electrolytic capacitors - Google Patents

Solid electrolytic capacitors

Info

Publication number
JP3149523B2
JP3149523B2 JP10900592A JP10900592A JP3149523B2 JP 3149523 B2 JP3149523 B2 JP 3149523B2 JP 10900592 A JP10900592 A JP 10900592A JP 10900592 A JP10900592 A JP 10900592A JP 3149523 B2 JP3149523 B2 JP 3149523B2
Authority
JP
Japan
Prior art keywords
capacitor
terminal
solid electrolytic
solid electrolyte
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10900592A
Other languages
Japanese (ja)
Other versions
JPH05283300A (en
Inventor
達郎 久保内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP10900592A priority Critical patent/JP3149523B2/en
Publication of JPH05283300A publication Critical patent/JPH05283300A/en
Application granted granted Critical
Publication of JP3149523B2 publication Critical patent/JP3149523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電解質層に有機導電ポ
リマー等の固体電解質を用いた固体電解コンデンサに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor using a solid electrolyte such as an organic conductive polymer for an electrolyte layer.

【0002】[0002]

【従来の技術】この種の固体電解コンデンサは、アルミ
ニウム等からなる陽極体にエッチングで拡面化処理を施
し、その表面に電解処理によって誘電体層を形成し、こ
の誘電体層の上面に有機半導体層を成長させて固体電解
質層を形成してコンデンサ素子とし、コンデンサ素子を
外装体で覆うとともに、陽極体側に陽極端子、固体電解
質側に陰極端子を形成し、外装体から引き出したもので
ある。
2. Description of the Related Art In a solid electrolytic capacitor of this type, an anode body made of aluminum or the like is subjected to a surface enlargement process by etching, and a dielectric layer is formed on the surface thereof by an electrolytic process. A capacitor element is formed by growing a semiconductor layer to form a solid electrolyte layer, and the capacitor element is covered with an exterior body, and an anode terminal is formed on the anode body side, and a cathode terminal is formed on the solid electrolyte side, and pulled out from the exterior body. .

【0003】[0003]

【発明が解決しようとする課題】ところで、この固体電
解コンデンサは、構造上、微細化が可能であるが、その
反面、実用上の十分な静電容量の形成が望まれるところ
である。また、この種の固体電解コンデンサでは、混成
集積回路化のため面実装向けに実用化されてきており、
ハンダリフローに対する耐熱性や、空気中の水分による
劣化を防止するための耐湿性の向上を無視することがで
きない。
Although this solid electrolytic capacitor can be miniaturized structurally, on the other hand, it is desired to form a practically sufficient capacitance. In addition, this type of solid electrolytic capacitor has been put to practical use for surface mounting to form a hybrid integrated circuit.
Improvements in heat resistance against solder reflow and moisture resistance for preventing deterioration due to moisture in the air cannot be ignored.

【0004】従来、この固体電解コンデンサでは、固体
電解質層の形成処理上、陽極体には比較的厚いアルミニ
ウム板等が用いられており、これが単位体積当たりの容
量増加を妨げる原因になっているほか、陽極体の製造工
程における切り出し、切削等のストレスが陽極体に及ん
で電気的特性の劣化を招く原因ともなっている。
Conventionally, in this solid electrolytic capacitor, a relatively thick aluminum plate or the like is used for the anode body in forming the solid electrolyte layer, which causes an increase in the capacity per unit volume. In addition, stresses such as cutting and cutting in the manufacturing process of the anode body affect the anode body and cause deterioration of electrical characteristics.

【0005】そこで、本発明は、陽極に金属箔を用いて
小型化とともに高容量化を実現した固体電解コンデンサ
を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a solid electrolytic capacitor which uses a metal foil for an anode and realizes miniaturization and high capacity.

【0006】[0006]

【課題を解決するための手段】本発明の固体電解コンデ
ンサは、区画されて固体電解質層(8)が形成された複
数の容量形成部(18)、これら容量形成部を連鎖状に
連結する連結部(20)、前記容量形成部と異方向に形
成した内部端子(6)を陽極箔(2)に備え、この陽極
前記連結部で折り曲げて前記容量形成部を重ね合わ
せ、前記固体電解質層を導電性接着剤を以て結合してな
コンデンサ素子(4)と、封止樹脂で形成されて前記
コンデンサ素子及び前記内部端子を被覆する外装体(1
6)と、前記内部端子に接続されて前記外装体上に配置
された陽極端子(12)と、前記固体電解質層に接続さ
れて前記外装体上に配置された陰極端子(14)とを備
えたことを特徴とする。
A solid electrolytic capacitor according to the present invention comprises a plurality of divided solid electrolytic capacitors each having a solid electrolyte layer (8) formed thereon.
Number of capacity forming parts (18), these capacity forming parts are linked in a chain
A connecting portion (20) for connecting, formed in a different direction from the capacitance forming portion;
Form internal terminals (6) provided in the anode foil (2), superimposing the capacitor forming portion by bending at the connecting portion of the anode foil
So, it binds with a conductive adhesive said solid electrolyte layer
And a capacitor element (4) formed of a sealing resin.
An exterior body (1) covering the capacitor element and the internal terminal
6) and connected to the internal terminal and arranged on the exterior body
And anodes terminal (12), is connected to the solid electrolyte layer
Is cathode terminal (14) disposed on the outer body and Bei the
And it said that there were pictures.

【0007】また、本発明の固体電解コンンサは、
記内部端子は、前記容量形成部と同一方向に形成したも
のを前記容量形成部と方向に折曲げ加工してなること
を特徴とする。
[0007] In addition, the solid electrolyte Conde capacitors of the present invention, before
The internal terminal is formed in the same direction as the capacitance forming portion.
And characterized by being bending from the capacitor forming portion and the different direction.

【0008】[0008]

【作用】この固体電解コンデンサでは、固体電解質層を
陽極箔に形成し、この陽極箔を例えば帯状に形成すると
ともに、複数の容量形成部を連結部を介して連鎖的に形
成したものである。そこで、連結部で折り曲げ複数の
容量形成部を畳み込んで積層状態とし、各容量形成部に
形成されている固体電解質層を導電性接着剤を以て結合
することにより、一つのコンデンサ素子に形成する。こ
のようなコンデンサ素子では、容量形成部を単位とする
積層枚数に応じた複数のコンデンサを並列に接続したの
と等価になり、小型化とともに高容量化を図ることがで
きる。
In this solid electrolytic capacitor, the solid electrolyte layer
An anode foil is formed, and the anode foil is formed, for example, in a belt shape, and a plurality of capacitance forming portions are formed in a chain via a connecting portion . Therefore, a plurality of capacitance forming portions are folded at the connecting portion to form a stacked state, and the solid electrolyte layers formed on each of the capacitance forming portions are combined with a conductive adhesive to form one capacitor element. . Such a capacitor element is equivalent to connecting a plurality of capacitors corresponding to the number of stacked layers in units of the capacitance forming unit, and can achieve a reduction in size and an increase in capacitance.

【0009】そして、この固体電解コンデンサでは、コ
ンデンサ素子の基礎素材である陽極箔に内部端子を形成
しており、この内部端子は容量形成部と異なる方向とし
反対方向に形成されているので、内部端子の成形加工
や外部端子としての陽極端子との電気的な接続を容量形
成部と離間した部分で行うことができ、容量形成部に形
成されている固体電解質層への機械的なストレスの波及
を極力防止できる。
In this solid electrolytic capacitor, internal terminals are formed on an anode foil which is a basic material of the capacitor element, and the internal terminals are directed in a direction different from that of the capacitance forming portion.
Since it is formed in the opposite direction, the molding process of the internal terminal and the electrical connection with the anode terminal as the external terminal can be performed in a portion separated from the capacitor forming portion, and the capacitor is formed in the capacitor forming portion. The spread of mechanical stress on the solid electrolyte layer can be minimized.

【0010】また、陽極箔には容量形成部と同一方向に
内部端子を形成したものを用いてもよく、この場合には
内部端子を、少なくとも固体電解質層の形成前、望まし
くは誘電体酸化皮膜の形成前に、異なる方向として反対
方向への折曲げ成形処理を行なったものを用いる。この
ような前加工処理を施した陽極箔を用いることにより、
誘電体酸化皮膜、固体電解質層への機械的なストレスの
波及が抑制される。
The anode foil may be one having internal terminals formed in the same direction as the capacitance forming portion. In this case, the internal terminals are formed at least before the formation of the solid electrolyte layer, preferably a dielectric oxide film. Before the formation, a material subjected to a bending process in an opposite direction as a different direction is used. By using such pre-processed anode foil,
Spread of mechanical stress on the dielectric oxide film and the solid electrolyte layer is suppressed.

【0011】[0011]

【実施例】以下、本発明を図面に示した実施例を参照し
て詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments shown in the drawings.

【0012】図1は、本発明の固体電解コンデンサの第
1実施例を示している。この固体電解コンデンサには、
アルミニウム箔等からなる陽極箔2を折り畳んで形成さ
れたコンデンサ素子4が設置され、このコンデンサ素子
4には陽極箔2の一部を以て陽極側の内部端子6が形成
されているとともに、コンデンサ素子4に形成されてい
る固体電解質層8に導電性接着剤等の接続手段によって
接続された陰極側の内部端子10が形成されている。陽
極箔2に形成されている固体電解質層8は、陽極箔2の
表面にエッチング処理及び化成処理による誘電体酸化皮
膜24を形成した後、その上面に気相重合、化学重合又
は電解重合によってポリピロール等のポリマー膜を形成
したものである。そして、内部端子6には陽極端子1
2、内部端子10には陰極端子14がそれぞれ接続され
ている。コンデンサ素子4、内部端子6、内部端子1
0、陽極端子12及び陰極端子14の一部は、アクリ
ル、エポキシ等の封止樹脂を以て形成された外装体16
で被覆されている。
FIG. 1 shows a first embodiment of the solid electrolytic capacitor of the present invention. This solid electrolytic capacitor has
A capacitor element 4 formed by folding an anode foil 2 made of aluminum foil or the like is provided. The capacitor element 4 has an anode-side internal terminal 6 formed by a part of the anode foil 2 and a capacitor element 4. The internal terminal 10 on the cathode side is connected to the solid electrolyte layer 8 formed by a connecting means such as a conductive adhesive. The solid electrolyte layer 8 formed on the anode foil 2 is formed by forming a dielectric oxide film 24 on the surface of the anode foil 2 by etching treatment and chemical conversion treatment, and then forming polypyrrole on the upper surface thereof by vapor phase polymerization, chemical polymerization or electrolytic polymerization. And the like. The anode terminal 1 is connected to the internal terminal 6.
2. A cathode terminal 14 is connected to the internal terminal 10, respectively. Capacitor element 4, internal terminal 6, internal terminal 1
0, a part of the anode terminal 12 and a part of the cathode terminal 14 are provided with an exterior body 16 formed of a sealing resin such as acrylic or epoxy.
It is covered with.

【0013】このような固体電解コンデンサでは、陽極
箔2を折り畳んで単位体積当たりの容量形成面を拡大化
することによって高容量化とともに小型化を図ることが
できる。また、外装体16はコンデンサ素子4及びその
端子の一部を封止樹脂を以て単一工程で形成できるの
で、製造価格の低減に寄与する。
In such a solid electrolytic capacitor, the anode foil 2 is folded to enlarge the surface on which the capacitance is formed per unit volume, so that the capacitance can be increased and the size can be reduced. In addition, since the exterior body 16 can form the capacitor element 4 and a part of its terminal with a sealing resin in a single step, it contributes to a reduction in manufacturing cost.

【0014】次に、この固体電解コンデンサの製造方法
を図2及び図3を参照して説明する。図2の(A)に示
すように、陽極箔2は、帯状を成すアルミニウム箔を用
いて、矩形を成す複数の容量形成部18が連結部20を
介在させて連鎖状を成すとともに、容量形成部18とは
反対方向に突出させた内部端子6を一体に打抜き加工し
たものである。そして、連結部20は、各容量形成部1
8を連鎖的に保持する機能を有しているとともに、各容
量形成部18を重ね合わせる際に折曲げ部分を成してい
る。そこで、折り曲げの際の応力を容量形成部18に波
及させないために、各連結部20の中央にはその幅方向
に向かう断面V字形の切溝であるノッチ部22が形成さ
れている。そして、この陽極箔2の陽極形成部18には
エッチングにより拡面化処理を施し、その上に化成処理
によって誘電体酸化皮膜24を形成する。
Next, a method of manufacturing the solid electrolytic capacitor will be described with reference to FIGS. As shown in FIG. 2 (A), the anode foil 2 is formed of a band-shaped aluminum foil, and a plurality of rectangular capacity forming portions 18 are formed in a chain with a connecting portion 20 interposed therebetween. The internal terminal 6 protruding in the opposite direction to the portion 18 is integrally punched. The connecting portion 20 is connected to each of the capacitance forming portions 1.
In addition to having a function of holding the elements 8 in a chain, they form a bent portion when the respective capacitance forming parts 18 are overlapped. Therefore, in order to prevent the stress at the time of bending from spreading to the capacitance forming portion 18, a notch portion 22 having a V-shaped cross section is formed in the center of each connecting portion 20 in the width direction thereof. Then, the anode forming portion 18 of the anode foil 2 is subjected to a surface enlargement process by etching, and a dielectric oxide film 24 is formed thereon by a chemical conversion process.

【0015】次に、図2の(B)及び図4に示すよう
に、陽極箔2の容量形成部18には、誘電体酸化皮膜2
4の上に気相重合、化学重合又は電解重合によってポリ
ピロール等のポリマー膜からなる固体電解質層8を形成
する。
Next, as shown in FIG. 2B and FIG. 4, the dielectric oxide film 2
A solid electrolyte layer 8 made of a polymer film such as polypyrrole is formed on the substrate 4 by gas phase polymerization, chemical polymerization or electrolytic polymerization.

【0016】次に、図2の(C)及び(D)に示すよう
に、陽極箔2をノッチ部22で交互に山又は谷になるよ
うに折り曲げて各容量形成部18を千鳥状に折り畳むと
ともに、各固体電解質層8間を導電性接着剤26を以て
結合することにより、一つのコンデンサ素子4を形成す
る。即ち、このコンデンサ素子4では、固体電解質層8
の間に介在させ又は表面に設置されている導電性接着剤
26が導体層を成し、これが固体電解質層8とともに実
質的な陰極を成している。
Next, as shown in FIGS. 2C and 2D, the anode foils 2 are alternately bent at the notches 22 so as to form peaks or valleys, and the respective capacitance forming portions 18 are folded in a staggered manner. At the same time, one capacitor element 4 is formed by bonding the solid electrolyte layers 8 with a conductive adhesive 26. That is, in the capacitor element 4, the solid electrolyte layer 8
The conductive adhesive 26 interposed therebetween or provided on the surface forms a conductor layer, which together with the solid electrolyte layer 8 forms a substantial cathode.

【0017】次に、図3の(E)に示すように、コンデ
ンサ素子4の固体電解質層8側に内部端子10を接続す
る。この内部端子10の接続は、陽極箔2の折畳み工程
及び固体電解質層8の結合工程と同時に行なってもよ
い。また、内部端子10は各容量形成部18の固体電解
質層8の間に挟み込むようにして接続してもよい。そし
て、各内部端子6、10には、外部端子としての陽極端
子12及び陰極端子14を接続する。
Next, as shown in FIG. 3E, an internal terminal 10 is connected to the solid electrolyte layer 8 side of the capacitor element 4. The connection of the internal terminals 10 may be performed simultaneously with the step of folding the anode foil 2 and the step of bonding the solid electrolyte layer 8. Further, the internal terminals 10 may be connected so as to be sandwiched between the solid electrolyte layers 8 of the respective capacitance forming portions 18. Then, an anode terminal 12 and a cathode terminal 14 as external terminals are connected to the internal terminals 6 and 10, respectively.

【0018】次に、図3の(F)に示すように、陽極端
子12及び陰極端子14を接続したコンデンサ素子4の
外面部には、その内部端子6、10、陽極端子12及び
陰極端子14の接続部分を含んで封止樹脂によって外装
体16を形成し、この外装体16によってコンデンサ素
子4が封止される。この封止の後、外装体16の外面部
に突出している陽極端子12及び陰極端子14を外装体
16の側面から底面に向かって折り曲げることにより、
図1に示した固体電解コンデンサが得られる。
Next, as shown in FIG. 3F, on the outer surface of the capacitor element 4 to which the anode terminal 12 and the cathode terminal 14 are connected, the internal terminals 6, 10 and the anode terminal 12 and the cathode terminal 14 are connected. The exterior body 16 is formed by a sealing resin including the connection portions of the above, and the capacitor element 4 is sealed by the exterior body 16. After this sealing, the anode terminal 12 and the cathode terminal 14 projecting from the outer surface of the outer package 16 are bent from the side surface to the bottom surface of the outer package 16,
The solid electrolytic capacitor shown in FIG. 1 is obtained.

【0019】このような製造方法によれば、図1に示し
た固体電解コンデンサを容易に且つ効率的に製造するこ
とができ、しかも、陽極箔2の畳み込みという方法を採
用していることから、コンデンサ素子4の小型化及び偏
平化に加えて容量形成面の拡大化が図られ、小型で高容
量化した固体電解コンデンサを製造することができる。
特に、この実施例では、内部端子6を容量形成部18と
反対方向に形成したので、内部端子6の成形加工を容量
形成部18と離間した部分で行うことができ、成形加工
処理に伴う機械的なストレスの容量形成部18における
固体電解質層への波及を抑制できるので、漏れ電流の抑
制等、電気的な特性を向上させ、製品の信頼性向上を図
っている。
According to such a manufacturing method, the solid electrolytic capacitor shown in FIG. 1 can be easily and efficiently manufactured, and the method of folding the anode foil 2 is adopted. In addition to the miniaturization and flattening of the capacitor element 4, the size of the capacitance forming surface is increased, and a small-sized and high-capacity solid electrolytic capacitor can be manufactured.
In particular, in this embodiment, since the internal terminals 6 are formed in the direction opposite to the capacity forming portion 18, the forming process of the internal terminals 6 can be performed at a portion separated from the capacity forming portion 18, and the machine accompanying the forming process can be used. Thus, it is possible to suppress the spread of the natural stress to the solid electrolyte layer in the capacity forming section 18, thereby improving the electrical characteristics such as the suppression of the leakage current and the like, thereby improving the reliability of the product.

【0020】次に、図5は本発明の固体電解コンデンサ
の第2実施例を示している。第1実施例では、外装体1
6を封止樹脂を以て形成したが、第2実施例では絶縁性
合成樹脂を以て形成された外装ケース28と、この外装
ケース28に充填させた封止樹脂30とを以て外装体1
6としたものである。この場合、外装ケース28にコン
デンサ素子4を挿入し、このコンデンサ素子4と陽極端
子12とを接続するため、その接続の便宜上、内部端子
6を断面C字形に加工するとともに、陰極側では内部端
子10を兼ねる陰極端子14を設置している。陰極端子
14はC字形にホーミング加工された内部端子部11を
備えており、この内部端子部11を以てコンデンサ素子
4の固体電解質層8に導電性接着剤26で電気的に接続
したものである。このような固体電解コンデンサによっ
ても、前記実施例と同様に固体電解コンデンサの小型化
及び高容量化を図ることができる。
FIG. 5 shows a second embodiment of the solid electrolytic capacitor of the present invention. In the first embodiment, the exterior body 1
6 is made of a sealing resin, but in the second embodiment, the exterior body 1 is made up of an exterior case 28 made of an insulating synthetic resin and a sealing resin 30 filled in the exterior case 28.
6. In this case, since the capacitor element 4 is inserted into the outer case 28 and the capacitor element 4 is connected to the anode terminal 12, the internal terminal 6 is processed into a C-shaped cross section for convenience of connection, and the internal terminal 6 is connected on the cathode side. A cathode terminal 14 also serving as 10 is provided. The cathode terminal 14 has a C-shaped internal terminal portion 11 which is homed, and is electrically connected to the solid electrolyte layer 8 of the capacitor element 4 with a conductive adhesive 26 via the internal terminal portion 11. Even with such a solid electrolytic capacitor, it is possible to reduce the size and increase the capacity of the solid electrolytic capacitor as in the above-described embodiment.

【0021】次に、この固体電解コンデンサの製造方法
を図6を参照して説明すると、図6の(A)に示すよう
に、第1実施例と同様にコンデンサ素子4を形成した
後、内部端子6をC字形に折り曲げ、コンデンサ素子4
と平行に形成した接続部32に対してL字形の陽極端子
12を導電性接着剤等の固着手段を以て電気的に接続す
る。また、コンデンサ素子4の固体電解質層8側にはC
字形を成す陰極端子14の内部端子部11を陽極側と同
様の固着手段を以て電気的に接続する。
Next, a method of manufacturing this solid electrolytic capacitor will be described with reference to FIG. 6. As shown in FIG. 6A, after the capacitor element 4 is formed and the internal Terminal 6 is bent into a C-shape, and capacitor element 4
The L-shaped anode terminal 12 is electrically connected to the connecting portion 32 formed in parallel with the fixing member 32 by a fixing means such as a conductive adhesive. In addition, the capacitor element 4 has C
The internal terminal portion 11 of the cathode terminal 14 having a letter shape is electrically connected by the same fixing means as the anode side.

【0022】このように陽極端子12及び陰極端子14
を接続したコンデンサ素子4は、図6の(B)に示すよ
うに、予め合成樹脂で形成した外装ケース28の内部に
設置する。そして、外装ケース28の開口部にディスペ
ンサ34を望ませて封止樹脂30を注入し、その封止樹
脂30を図5に示すように、外装ケース28の開口部ま
で充填させる。
As described above, the anode terminal 12 and the cathode terminal 14
The capacitor element 4 to which is connected as shown in FIG. 6B is installed inside an exterior case 28 made of a synthetic resin in advance. Then, a sealing resin 30 is injected into the opening of the outer case 28 in a desired manner with the dispenser 34, and the sealing resin 30 is filled up to the opening of the outer case 28 as shown in FIG.

【0023】次に、図7ないし図9は本発明の固体電解
コンデンサの第3実施例を示している。第1実施例で
は、内部端子6を容量形成部18の反対側の縁部に形成
したが、図7の(A)に示すように、容量形成部18と
同様に内部端子6を形成したものである。この場合、内
部端子6は、容量形成部18の一つで充当させてもよ
い。
Next, FIGS. 7 to 9 show a third embodiment of the solid electrolytic capacitor of the present invention. In the first embodiment, the internal terminals 6 are formed on the edge opposite to the capacitance forming portion 18. However, as shown in FIG. It is. In this case, the internal terminal 6 may be assigned to one of the capacitance forming portions 18.

【0024】次に、この内部端子6は、図7の(B)及
び図8に示すように、その根元から容量形成部18と反
対側に折り返すことにより、第1実施例と同様に容量形
成部18と反対側に突出させる。この内部端子6の折曲
げ加工は、固体電解質層8の形成前に行うことにより、
固体電解質層8への機械的なストレスの波及を防止でき
る。
Next, as shown in FIG. 7B and FIG. 8, the internal terminal 6 is folded back from the root thereof to the side opposite to the capacitor forming section 18 to form the capacitor in the same manner as in the first embodiment. It protrudes to the opposite side from the part 18. The bending process of the internal terminal 6 is performed before the formation of the solid electrolyte layer 8,
It is possible to prevent mechanical stress from spreading to the solid electrolyte layer 8.

【0025】このように、内部端子6を加工した後、陽
極箔2を折り畳み、容量形成部18に形成されている固
体電解質層8を導電性接着剤26を以て結合してコンデ
ンサ素子4を形成した後、内部端子6をC字形にホーミ
ング加工し、内部端子6には陽極端子12、固体電解質
層8側には陰極端子14を接続する。
After processing the internal terminals 6 in this manner, the anode foil 2 is folded, and the solid electrolyte layer 8 formed in the capacitance forming portion 18 is joined with the conductive adhesive 26 to form the capacitor element 4. Thereafter, the internal terminal 6 is homed into a C shape, and the internal terminal 6 is connected to the anode terminal 12 and the solid electrolyte layer 8 is connected to the cathode terminal 14.

【0026】そして、図9に示すように、このコンデン
サ素子4を外装ケース28に挿入した後、封止樹脂30
を充填して固体電解コンデンサを完成する。この実施例
によっても、前記実施例と同様の効果が期待できる。
Then, as shown in FIG. 9, after inserting the capacitor element 4 into the outer case 28,
To complete the solid electrolytic capacitor. According to this embodiment, effects similar to those of the above embodiment can be expected.

【0027】[0027]

【発明の効果】以上説明したように、本発明の固定電解
コンデンサによれば、陽極箔に形成された複数の容量形
成部を以て容量形成を行うため、複数のコンデンサ素子
を並列化したことと同様に静電容量の増加を図ることが
できるほか、陽極箔を用いて小型化とともに漏れ電流の
抑制等、電気的な特性を向上させた信頼性の高い固体電
解コンデンサを提供できる。
As described above, according to the fixed electrolytic capacitor of the present invention, a plurality of capacitors formed on the anode foil are formed.
Since multiple capacitors are used to form the capacitor,
In addition to increasing the capacitance, the use of an anode foil reduces the size and suppresses leakage current. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解コンデンサの第1実施例を示
す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a first embodiment of a solid electrolytic capacitor of the present invention.

【図2】図1に示した固体電解コンデンサの製造方法を
示す図である。
FIG. 2 is a diagram illustrating a method of manufacturing the solid electrolytic capacitor shown in FIG.

【図3】図1に示した固体電解コンデンサの製造方法を
示す図である。
FIG. 3 is a diagram showing a method of manufacturing the solid electrolytic capacitor shown in FIG.

【図4】図2の(B)のG−G線に沿う断面図である。FIG. 4 is a sectional view taken along line GG of FIG. 2 (B).

【図5】本発明の固体電解コンデンサの第2実施例を示
す縦断面図である。
FIG. 5 is a longitudinal sectional view showing a second embodiment of the solid electrolytic capacitor of the present invention.

【図6】図5に示した固体電解コンデンサの製造方法を
示す図である。
6 is a diagram illustrating a method of manufacturing the solid electrolytic capacitor shown in FIG.

【図7】本発明の固体電解コンデンサの第3実施例の製
造方法を示す図である。
FIG. 7 is a diagram showing a method of manufacturing a solid electrolytic capacitor according to a third embodiment of the present invention.

【図8】図7に示した固体電解コンデンサにおける内部
端子側を示す側面図である。
8 is a side view showing an internal terminal side of the solid electrolytic capacitor shown in FIG.

【図9】本発明の固体電解コンデンサの第3実施例を示
す縦断面図である。
FIG. 9 is a longitudinal sectional view showing a third embodiment of the solid electrolytic capacitor of the present invention.

【符号の説明】[Explanation of symbols]

2 陽極箔 4 コンデンサ素子 6 内部端子 8 固体電解質層 10 内部端子 12 陽極端子 14 陰極端子 18 容量形成部 20 連結部 2 Anode foil 4 Capacitor element 6 Internal terminal 8 Solid electrolyte layer 10 Internal terminal 12 Anode terminal 14 Cathode terminal 18 Capacitor forming part 20 Connecting part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 区画されて固体電解質層が形成された複
数の容量形成部、これら容量形成部を連鎖状に連結する
連結部、前記容量形成部と異方向に形成した内部端子を
陽極箔に備え、この陽極箔前記連結部で折り曲げて前
記容量形成部を重ね合わせ、前記固体電解質層を導電性
接着剤を以て結合してなるコンデンサ素子と、 封止樹脂で形成されて前記コンデンサ素子及び前記内部
端子を被覆する外装体と、 前記内部端子に接続されて前記外装体上に配置された
極端子と、 前記固体電解質層に接続されて前記外装体上に配置され
陰極端子と、 を備えた ことを特徴とする固体電解コンデンサ。
1. A composite having a solid electrolyte layer formed by partitioning
Number of capacity forming parts, connecting these capacity forming parts in a chain
Connecting part, internal terminal formed in a different direction from the capacitance forming part
With the anode foil, superposing the capacitor forming portion by bending at the connecting portion of the anode foil, the solid electrolyte layer and a capacitor element formed by bonding with a conductive adhesive, the capacitor is formed by the sealing resin Element and the interior
An exterior member covering the terminal, an anode terminal which is disposed on the outer body is connected to the internal terminal being arranged to be connected to the solid electrolyte layer on the outer body
The solid electrolytic capacitor comprising: the cathode terminals, a.
【請求項2】 前記内部端子は、前記容量形成部と同一
方向に形成したものを前記容量形成部と方向に折曲げ
加工してなることを特徴とする請求項1記載の固体電解
コンデンサ。
2. The internal terminal is the same as the capacitor forming section.
The solid electrolytic capacitor according to claim 1, characterized by being bending one formed in a direction in different directions the capacitor forming portion.
JP10900592A 1992-03-31 1992-03-31 Solid electrolytic capacitors Expired - Fee Related JP3149523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10900592A JP3149523B2 (en) 1992-03-31 1992-03-31 Solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10900592A JP3149523B2 (en) 1992-03-31 1992-03-31 Solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH05283300A JPH05283300A (en) 1993-10-29
JP3149523B2 true JP3149523B2 (en) 2001-03-26

Family

ID=14499158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10900592A Expired - Fee Related JP3149523B2 (en) 1992-03-31 1992-03-31 Solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3149523B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675131B2 (en) 2007-04-05 2010-03-09 Micron Technology, Inc. Flip-chip image sensor packages and methods of fabricating the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197587A (en) * 2004-01-09 2005-07-21 Shinko Electric Ind Co Ltd Capacitor, manufacturing method thereof, substrate with built-in capacitor, and manufacturing method thereof
KR20080069734A (en) * 2007-01-24 2008-07-29 주식회사 디지털텍 Unit electrode for the stacked type of polymer-condenser and stacking method its
JP5132374B2 (en) * 2008-03-18 2013-01-30 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675131B2 (en) 2007-04-05 2010-03-09 Micron Technology, Inc. Flip-chip image sensor packages and methods of fabricating the same
US8012776B2 (en) 2007-04-05 2011-09-06 Micron Technology, Inc. Methods of manufacturing imaging device packages

Also Published As

Publication number Publication date
JPH05283300A (en) 1993-10-29

Similar Documents

Publication Publication Date Title
US7320924B2 (en) Method of producing a chip-type solid electrolytic capacitor
JP2004363526A (en) Chip type solid electrolytic capacitor, and manufacturing method thereof
JP2001085273A (en) Chip-type solid-state electrolytic capacitor
US8896984B2 (en) Solid electrolytic capacitor
US9754729B2 (en) Solid-state electrolytic capacitor with improved metallic anode and method for manufacturing the same
JP3149523B2 (en) Solid electrolytic capacitors
US3566203A (en) Chip capacitor
US11211204B2 (en) Solid electrolytic capacitor and method for manufacturing same
US7525791B2 (en) Solid electrolytic capacitor
JP3334199B2 (en) Solid electrolytic capacitors
JP3079780B2 (en) Multilayer solid electrolytic capacitor and method of manufacturing the same
JP6232587B2 (en) Solid electrolytic capacitor
JP3374405B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2697001B2 (en) Chip type solid electrolytic capacitor
JP2872743B2 (en) Solid electrolytic capacitors
JP2004281515A (en) Layered solid electrolytic capacitor
JP3237181B2 (en) Solid electrolytic capacitors
JP3396902B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3441095B2 (en) Solid electrolytic capacitors
JPH05101989A (en) Solid electrolytic capacitor
JP2003077764A (en) Multilayer solid electrolytic capacitor and its manufacturing method
JP2005057105A (en) Chip type solid electrolytic capacitor
JPH05283299A (en) Solid electrolytic capacitor
JPH05166687A (en) Capacitor
JPH06196374A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees