JP3147656B2 - On / off control circuit for semiconductor device - Google Patents

On / off control circuit for semiconductor device

Info

Publication number
JP3147656B2
JP3147656B2 JP09039794A JP9039794A JP3147656B2 JP 3147656 B2 JP3147656 B2 JP 3147656B2 JP 09039794 A JP09039794 A JP 09039794A JP 9039794 A JP9039794 A JP 9039794A JP 3147656 B2 JP3147656 B2 JP 3147656B2
Authority
JP
Japan
Prior art keywords
current
command
pulse
potential
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09039794A
Other languages
Japanese (ja)
Other versions
JPH07297698A (en
Inventor
直樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP09039794A priority Critical patent/JP3147656B2/en
Publication of JPH07297698A publication Critical patent/JPH07297698A/en
Application granted granted Critical
Publication of JP3147656B2 publication Critical patent/JP3147656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Thyristor Switches And Gates (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体素子,とくに負荷
用の電源電圧を受けて動作する電力用半導体素子を駆動
するに際し高電位側に接続された半導体素子を低電位側
からオンオフ指令により動作させるためのオンオフ制御
回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the operation of a semiconductor device, particularly a power semiconductor device which operates by receiving a power supply voltage for a load, by operating a semiconductor device connected to a high potential side from an on / off command from a low potential side. The present invention relates to an on / off control circuit for controlling the on / off control.

【0002】[0002]

【従来の技術】例えば電動機の駆動用の電力装置では交
流電圧を整流した数百Vの直流電圧を電源とするインバ
ータ装置を用いる場合が多く、この装置の回路は周知の
ように同じ電力用半導体素子を高圧側と低圧側に配して
交互にオンオフさせるいわゆるトーテムポール接続回路
を単位とする2相や3相構成とするのが通例であるが、
これに所期のインバータ作用を営ませるには各電力用半
導体素子に対しそれぞれオンオフ指令を与えて正しい順
序で動作させる必要がある。
2. Description of the Related Art In many cases, for example, a power device for driving an electric motor uses an inverter device which uses a DC voltage of several hundred V obtained by rectifying an AC voltage as a power source. Usually, a two-phase or three-phase configuration is used in which a so-called totem-pole connection circuit in which elements are arranged on a high voltage side and a low voltage side and turned on and off alternately is used as a unit.
In order to achieve the desired inverter function, it is necessary to give ON / OFF commands to the respective power semiconductor elements to operate them in the correct order.

【0003】このオンオフ指令は駆動制御回路等から発
せられるもちろん数V程度の低圧の信号であり、低圧側
の電力用半導体素子にはそのままで与えることができる
が、高圧側の電力用半導体素子に対してはその基準電位
のレベルを上げないと与えることができない。このた
め、従来からフォトカプラを用いてこのオンオフ信号を
高圧側に伝達することが広く行なわれて来たが、コスト
がかなり高く付くだけでなく、最近のように電力用半導
体素子とともにその制御回路を同じチップに組み込もう
とするとフォトカプラが集積化上の隘路になって来た。
The on / off command is, of course, a low voltage signal of about several volts which is issued from a drive control circuit or the like, and can be given as it is to the low voltage side power semiconductor element, but to the high voltage side power semiconductor element. On the other hand, it cannot be given unless the level of the reference potential is raised. For this reason, the transmission of the on / off signal to the high voltage side using a photocoupler has been widely performed. However, not only is the cost significantly increased, but also recently, the power semiconductor element and its control circuit have been used together with the power semiconductor element. When trying to incorporate them into the same chip, photocouplers became a bottleneck in integration.

【0004】この問題を解決する手段として、オンオフ
指令をいわゆるレベルシフト回路を介して高圧側の電力
用半導体素子に伝達する技術が知られており、以下に図
6と図7を参照してこの従来技術を説明する。図6はそ
の回路図,図7はその動作を示す関連信号の波形図であ
る。図6には電力インバータ装置を構成する1相分であ
る前述のトーテムポール接続の1アーム分の回路を示
す。
As a means for solving this problem, there is known a technique of transmitting an on / off command to a high-voltage side power semiconductor element via a so-called level shift circuit. Referring to FIGS. The prior art will be described. FIG. 6 is a circuit diagram thereof, and FIG. 7 is a waveform diagram of related signals indicating the operation. FIG. 6 shows a circuit for one arm of the above-described totem pole connection, which is one phase constituting the power inverter device.

【0005】図6の右側が1アームの主回路であり、図
示の例では npn形の絶縁ゲートバイポーラトランジスタ
である半導体素子1と2が直流の電源電圧Vと接地電位
Eの間に直列にないしはトーテムポール接続され、両者
の相互接続点からインバータ装置の負荷に対する出力端
子Toが導出されている。これら半導体素子1と2には周
知のようにダイオード1aと2aがそれぞれ並列に組み込ま
れており、インバータ装置の動作上で転流ダイオードと
しての役目を果たす。半導体素子1と2に対応して駆動
回路3がそれらの絶縁ゲートを駆動するためにそれぞれ
設けられ、図の高電位側HSと低電位側LSの回路に対して
それぞれ設けられた図の左側のふつうは数V程度の低圧
の制御電源4から給電される。
The right side of FIG. 6 shows a one-arm main circuit. In the example shown in the figure, semiconductor elements 1 and 2 which are npn-type insulated gate bipolar transistors are connected in series between a DC power supply voltage V and a ground potential E. An output terminal To for the load of the inverter device is derived from the interconnection point of the totem pole connection. As is well known, diodes 1a and 2a are respectively incorporated in these semiconductor elements 1 and 2 in parallel, and function as commutation diodes in the operation of the inverter device. Drive circuits 3 are provided corresponding to the semiconductor elements 1 and 2 to drive their insulated gates. Usually, power is supplied from a low-voltage control power supply 4 of about several volts.

【0006】半導体素子1と2に対するオンオフ指令S1
とS2は図7(b) と(a) に示すように例えばハイとローの
論理状態でそれぞれオンとオフとを指定し、両素子1と
2を交互にオンオフさせるために図のように互いにほぼ
逆位相の波形で発生される。低圧側の半導体素子2に対
するオンオフ指令S2は駆動回路3に図6のようにそのま
ま与えることでよいが、高圧側の半導体素子1に対する
オンオフ指令S1の方は高電位側HSに伝達する必要があ
る。このために低電位側LSにパルス発生回路21を設け
て、オンオフ指令S1のローからハイへの立ち上がりに応
じて図7(c) に示すオンパルスPnを, ハイからローへの
立ち下がりに応じ図7(d) のオフパルスPfをそれぞれ対
応するトランジスタ22のゲートに出力させる。
On / off command S1 for semiconductor elements 1 and 2
And S2, as shown in FIGS. 7 (b) and 7 (a), specify ON and OFF, for example, in a high and low logic state, respectively, and mutually turn on and off both elements 1 and 2 as shown in FIG. It is generated with waveforms of almost opposite phases. The on / off command S2 for the low voltage side semiconductor element 2 may be given to the drive circuit 3 as it is as shown in FIG. 6, but the on / off command S1 for the high voltage side semiconductor element 1 needs to be transmitted to the high potential side HS. . For this purpose, a pulse generating circuit 21 is provided on the low-potential side LS, and the on-pulse Pn shown in FIG. 7C is generated according to the rise of the on-off command S1 from low to high, and the pulse is generated according to the fall from high to low. The 7 (d) off pulse Pf is output to the gate of the corresponding transistor 22.

【0007】両トランジスタ22はいずれも高電位側HSか
ら高電圧を受けかつ抵抗23を介して接地Eに接続されて
おり、オンパルスPnやオフパルスPfによりオンして抵抗
23によって設定された電流が流れると、高電位側HSの対
応する検出抵抗31にそれぞれ図7(e) と(f) に示すよう
に負パルス状のオン指令Snとオフ指令Sfが発生する。各
検出抵抗31に並列に接続されたツェナーダイオード32は
これらの指令SnとSfのパルス高を常に一定に保つための
ものである。
Both transistors 22 receive a high voltage from the high potential side HS and are connected to the ground E via a resistor 23, and are turned on by an on-pulse Pn and an off-pulse Pf.
When the current set by 23 flows, a negative pulse-like ON command Sn and OFF command Sf are generated in the corresponding detection resistor 31 on the high potential side HS as shown in FIGS. 7 (e) and 7 (f), respectively. The Zener diode 32 connected in parallel to each detection resistor 31 is for keeping the pulse height of these commands Sn and Sf constant at all times.

【0008】以上で半導体素子1用の低電位側LSのオン
オフ指令S1に対応する高電位側HSのオン指令Snとオフ指
令Sfがパルスの形で得られたが、これらを駆動回路3に
適合した波形にするためにこれらからインバータ41によ
り図7(g) のセット指令Ssと図7(h) のリセット指令Sr
をそれぞれ作り、これらのパルス指令によりフリップフ
ロップ42をセット・リセット動作させ、そのQ出力を図
7(i) に示すオンオフ指令SIH として駆動回路3に与え
させる。この高電位側HSのオンオフ指令SIH は図7(b)
の低電位側LSのオンオフ指令S1と同じ波形である。
The ON command Sn and the OFF command Sf on the high potential side HS corresponding to the ON / OFF command S1 on the low potential side LS for the semiconductor element 1 are obtained in the form of pulses. From these, the set command Ss shown in FIG. 7G and the reset command Sr shown in FIG.
And the flip-flop 42 is set / reset by these pulse commands, and its Q output is given to the drive circuit 3 as an on / off command SIH shown in FIG. 7 (i). The on / off command SIH of the high potential side HS is shown in FIG.
This is the same waveform as the on / off command S1 of the low potential side LS.

【0009】[0009]

【発明が解決しようとする課題】上述の従来技術によれ
ばフォトカプラのかわりにレベルシフト回路を利用して
低電位側LSのオンオフ指令S1を高電位側HSに伝達するこ
とができ、かつオンオフ指令S1をオンパルスSnとオフパ
ルスSfに分割してトランジスタ22を短時間内だけ動作さ
せることにより指令の伝達に要する消費電力をごく僅か
で済ませることができる。しかし、フォトカプラで絶縁
されていた高電位側HSと低電位側LSの間の電位差をレベ
ルシフト回路に負担させるのでトランジスタ22に高耐圧
をもたせる必要があり、このためレベルシフト回路を集
積回路等に組み込む際に非常に広いチップ面積を要する
問題がある。
According to the above-mentioned prior art, the on / off command S1 of the low potential side LS can be transmitted to the high potential side HS by using the level shift circuit instead of the photocoupler, and the on / off state can be achieved. By dividing the command S1 into an on-pulse Sn and an off-pulse Sf and operating the transistor 22 only for a short time, the power consumption required for transmitting the command can be very small. However, the potential difference between the high potential side HS and the low potential side LS, which was insulated by the photocoupler, is borne by the level shift circuit, so that the transistor 22 must have a high withstand voltage. However, there is a problem that a very large chip area is required for assembling the semiconductor device.

【0010】トランジスタ22には電源電圧Vのふつう2
倍程度の耐圧が元々必要であるが、半導体素子1と2に
より電動機等の誘導性の負荷を駆動する際に負荷電流の
高速遮断時に生じるスパイク電圧が出力端子Toに掛かっ
たり電源電圧Vに重なったりするため、それに対する余
裕も見ておかねばならない。このために電源電圧Vが20
0Vの時は600V, 400Vの時は 1200V程度の耐圧がトランジ
スタ22に必要になる。また、電力消費を節減するためオ
ンオフ指令S1をオンパルスSnとオフパルスSfに分けて伝
達するには、2個のレベルシフト回路, 従って2個のト
ランジスタ22が2個必要である。さらに、実際には負荷
を2相や3相で駆動するので2〜3個のアーム, 従って
4〜6個のトランジスタ22が必要となり、集積回路用の
チップの面積のかなりの部分がこれに占領されてしまう
のが実情である。
The transistor 22 has a power supply voltage V
Although a withstand voltage of about twice is originally required, when driving an inductive load such as an electric motor with the semiconductor elements 1 and 2, a spike voltage generated when the load current is rapidly cut off is applied to the output terminal To or overlaps with the power supply voltage V. You have to look at the room for it. Therefore, when the power supply voltage V is 20
The transistor 22 requires a withstand voltage of about 600 V at 0 V and about 1200 V at 400 V. Further, in order to transmit the ON / OFF command S1 separately to the ON pulse Sn and the OFF pulse Sf in order to save power consumption, two level shift circuits, and thus two transistors 22, are required. Further, since the load is actually driven in two or three phases, two to three arms, and thus four to six transistors 22, are required, and a considerable part of the area of the chip for the integrated circuit is occupied by this. The fact is that it is done.

【0011】かかる問題点に鑑みて本発明の目的は、電
力消費をできるだけ低く抑えながら集積回路に組み込む
際に必要なチップ面積を従来よりも節約できる半導体素
子のオンオフ制御回路を提供することにある。
In view of the above problems, an object of the present invention is to provide a semiconductor element on / off control circuit capable of saving a chip area required for assembling into an integrated circuit while keeping power consumption as low as possible. .

【0012】[0012]

【課題を解決するための手段】上記目的は本発明のオン
オフ制御回路によれば、高圧側でオンオフ動作させるべ
き半導体素子ごとに高電位側と低電位側との間に設けら
れた単一の電流路と,オンオフ指令に応じてこの電流路
に流す電流を低電位側で制御するスイッチング手段と,
電流路に電流が流れる状態を高電位側で検出する電流検
出手段と, この電流検出手段による検出信号を半導体素
子を駆動するための高電位側のオンオフ指令に変換する
変換手段とを用い、スイッチング手段により低電位側の
オンオフ指令の指定状態に応じて電流路への電流の流し
方を異ならせ、変換手段に電流に応じて変化する検出信
号からオンとオフの指定状態を区別させながら検出信号
を高電位側のオンオフ指令に変換させることによって達
成される。
According to the on / off control circuit of the present invention, the above object is achieved by providing a single semiconductor device provided between the high potential side and the low potential side for each semiconductor element to be turned on / off on the high voltage side. A current path, and switching means for controlling the current flowing through the current path on the low potential side in accordance with the on / off command,
Switching is performed by using current detection means for detecting the state of current flowing in the current path on the high potential side, and conversion means for converting a detection signal from the current detection means into a high potential side ON / OFF command for driving the semiconductor element. Means to make the current flow to the current path different according to the specified state of the on / off command on the low potential side, and to allow the conversion means to distinguish the specified state of on and off from the detection signal that changes according to the current while detecting the detection signal. Is converted into a high-potential-side ON / OFF command.

【0013】なお、本発明は上記の構成中にいう半導体
素子が絶縁ゲートバイポーラトランジスタや電界効果ト
ランジスタのほか, ゲートターンオフ可能な絶縁ゲート
制御サイリスタ等の場合にも適用できる。また、これら
に通常のようにハイやローの論理状態によりオンやオフ
の状態を指定するオンオフ指令を与える場合のほか、オ
ンオフ指令をオン指令とオフ指令に分けてそれぞれ例え
ばパルスの形で与える場合にも本発明は容易に適用でき
る。
The present invention can be applied to a case where the semiconductor element in the above configuration is an insulated gate control thyristor capable of turning off a gate, in addition to an insulated gate bipolar transistor and a field effect transistor. In addition to the case where an ON / OFF command for specifying the ON / OFF state based on the logic state of high or low is given to these as usual, the case where the ON / OFF command is divided into an ON command and an OFF command and given, for example, in the form of a pulse, respectively. Also, the present invention can be easily applied.

【0014】本発明においても電力消費を減少させるた
めにスイッチング手段により従来と同様にパルス電流を
電流路に流すのが有利であるが、本発明では従来とは異
なり前記構成にいうように高圧側の半導体素子ごとに電
流路を1個だけ用いるので、それへの電流の流し方を低
電位側のオンオフ指令のオンまたはオフの指定状態に応
じて異ならせる必要がある。
In the present invention, in order to reduce the power consumption, it is advantageous to supply a pulse current to the current path by the switching means in the same manner as in the prior art. Since only one current path is used for each of the semiconductor elements, it is necessary to make the flow of current therethrough different depending on the ON / OFF designation state of the ON / OFF command on the low potential side.

【0015】このための本発明の有利な一実施態様で
は、スイッチング手段により電流路に低電位側のオンオ
フ指令の指定状態の変化の方向に応じて電流値の異なる
パルス電流を流すことによりいわば2値信号を低電位側
から電流路を介して高電位側に伝達し、電流検出手段に
よるこのパルス電流の検出信号を変換手段によりそれに
含まれているパルスの電流値を反映した波高値の差から
オン指定状態とオフ指定状態を区別しながら高電圧側の
オンオフ指令に変換する。なお、この場合の変換手段に
はしきい値動作回路要素,例えば動作しきい値が異なる
インバータを2個組み込んでパルスの波高値の差を弁別
させるのがよい。
In an advantageous embodiment of the present invention for this purpose, the switching means applies a pulse current having a different current value to the current path in accordance with the direction of change of the specified state of the low-potential-side ON / OFF command. The value signal is transmitted from the low potential side to the high potential side via the current path, and the detection signal of this pulse current by the current detection means is converted by the conversion means from the difference between the peak values reflecting the current value of the pulse contained therein. The signal is converted into a high voltage side ON / OFF command while distinguishing between the ON designated state and the OFF designated state. In this case, it is preferable to incorporate a threshold operation circuit element, for example, two inverters having different operation thresholds, into the conversion means in order to discriminate the difference between the pulse peak values.

【0016】上記のための別の実施態様では、スイッチ
ング手段により低電位側のオンオフ指令がとる一方の論
理状態に応じて電流路にパルス電流を一定周期で繰り返
して流し、電流検出手段による検出信号を変換手段によ
りその反復パルスの継続状態からオンとオフの指定状態
を区別しながら高電圧側のオンオフ指令に変換する。こ
の場合の変換手段には、パルス電流の反復周期よりも長
いパルス幅のパルスを発生するいわゆるリトリガラブル
なワンショット回路を組み込み、検出信号中のパルスに
よりその動作を反復トリガしながらその出力を高電位側
のオンオフ指令として取り出すのが有利である。
In another embodiment for the above, according to one of the logic states of the low potential side ON / OFF command by the switching means, a pulse current is repeatedly and periodically passed through the current path, and the detection signal by the current detection means is provided. Is converted into a high voltage side ON / OFF command while distinguishing the ON / OFF designated state from the continuous state of the repetitive pulse by the converting means. In this case, the conversion means incorporates a so-called retriggerable one-shot circuit that generates a pulse having a pulse width longer than the repetition period of the pulse current. It is advantageously taken as an on / off command on the side.

【0017】上と同様に電力消費を抑制しながら電流路
への電流の流し方を低電位側のオンオフ指令のオンまた
はオフの指定状態に応じて異ならせる別の手段では、電
力用インバータ装置では低圧側と高圧側の半導体素子を
交互にオンオフさせることを利用して、スイッチング手
段により低電位側のオンオフ指令がオフの指定状態のと
きにのみ電流路に電流を流し、電流検出手段による検出
信号を変換手段によりその電流の通流時の状態をオフの
指定状態として高電位側のオンオフ指令に変換する。こ
の実施態様では電流路に電流が流れている間中は低圧側
の半導体素子がほぼオンしており、高電位側と低電位側
の間に半導体素子の順方向電圧に等しいごく僅かな電位
差しか掛からないので電力消費が少なくて済む。
Another means for making the manner in which the current flows into the current path according to the on / off designation of the low-potential-side on / off command while suppressing power consumption in the same manner as described above is the power inverter device. Utilizing the fact that the low-voltage side and high-voltage side semiconductor elements are turned on and off alternately, a current flows through the current path only when the low-potential-side on / off command is in the off state by the switching means, and a detection signal by the current detection means Is converted into a high-potential-side ON / OFF command by setting the state when the current flows as a designated OFF state. In this embodiment, the semiconductor element on the low voltage side is substantially on while the current is flowing through the current path, and a very small potential difference equal to the forward voltage of the semiconductor element is applied between the high potential side and the low potential side. Since it is not used, power consumption can be reduced.

【0018】[0018]

【作用】本発明はオンオフ指令を低電圧側から高電圧側
に伝達するレベルシフト回路の電流路を前項の構成にい
うよう高圧側の半導体素子ごとに単一とし、従ってこの
電流路に電流を流すための図6のトランジスタ22に当た
るスイッチング手段内のトランジスタも1個だけで済ま
せることにより、高耐圧を要するトランジスタの個数を
従来の半分に減少させるものである。しかし、この単一
の電流路を介してオンオフ指令のオンとオフの2個の指
定状態を伝達する必要があるため、本発明では電流路の
時間的な使い分けが可能な点に着目してその電流の流し
方を前項の構成にいうように低電位側のオンオフ指令に
よるオンやオフの指定状態に応じて異ならせる。この電
流制御は低電位側でスイッチング手段に行わせ、高電位
側の変換手段に電流検出手段による検出信号が電流に応
じて変化する様子からオンとオフの指定状態を区別しな
がらオンオフ指令を再生させる。
According to the present invention, the current path of the level shift circuit for transmitting the ON / OFF command from the low voltage side to the high voltage side is made single for each of the high voltage side semiconductor elements as described in the configuration of the preceding paragraph. By using only one transistor in the switching means corresponding to the transistor 22 of FIG. 6 for flowing, the number of transistors requiring a high withstand voltage is reduced to half of the conventional one. However, since it is necessary to transmit the two designated states of the ON / OFF command through this single current path, the present invention focuses on the point that the current paths can be used in time, and the current path can be selectively used. As described in the configuration described in the preceding section, the way in which the current flows is made different depending on the on / off designation state by the on / off command on the low potential side. This current control is performed by the switching means on the low potential side, and the high potential side converting means reproduces the on / off command while distinguishing the on / off designation state from the state where the detection signal by the current detecting means changes according to the current. Let it.

【0019】さらに、本発明ではレベルシフト回路の電
力消費をできるだけ削減する必要があり、このための一
手段として従来と同様に電流路に流す電流をパルス状に
して電力の消費時間を短縮することができる。また、こ
のための別の手段としては、高圧側と低圧側の半導体素
子が交互にオンオフする場合に高圧側の半導体素子に対
するオンオフ指令がオフ指定状態のときだけ電流路に電
流を流すことにより、電流が流れる時間内に高電位側と
低電位側の間に掛かる電位差をごく僅かにして電力消費
のレベルを下げることができる。
Further, in the present invention, it is necessary to reduce the power consumption of the level shift circuit as much as possible. As a means for this, as in the prior art, the current flowing in the current path is pulsed to reduce the power consumption time. Can be. Further, as another means for this purpose, when the high-voltage side and the low-voltage side semiconductor elements are turned on and off alternately, the current flows through the current path only when the on-off command for the high-voltage side semiconductor elements is in the off designation state. The level of power consumption can be reduced by minimizing the potential difference between the high potential side and the low potential side during the time when the current flows.

【0020】[0020]

【実施例】以下、図を参照しながら本発明の実施例を説
明する。図1は本発明によるオンオフ制御回路の実施例
の回路図と関連する信号の波形図,図2は異なる実施例
の回路図,図3は図2の関連信号の波形図,図4はさら
に異なる実施例の回路図,図5は図4の関連信号の波形
図であり、これらの図6や図7に対応する部分には同じ
符号が付されているので重複部分の説明は適宜省略する
こととする。なお、これら実施例ではオンオフ制御すべ
き半導体素子をすべて絶縁ゲートバイポーラトランジス
タとするが、本発明回路はもちろんこれに限らず種々な
半導体素子のオンオフ制御にも適用できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of an embodiment of an on / off control circuit according to the present invention and waveform diagrams of related signals, FIG. 2 is a circuit diagram of a different embodiment, FIG. 3 is a waveform diagram of related signals of FIG. 2, and FIG. FIG. 5 is a circuit diagram of the embodiment, and FIG. 5 is a waveform diagram of related signals in FIG. 4. The same reference numerals are given to the portions corresponding to FIG. 6 and FIG. And In these embodiments, all the semiconductor elements to be on / off controlled are insulated gate bipolar transistors. However, the circuit of the present invention is not limited to this and can be applied to on / off control of various semiconductor elements.

【0021】以下に説明する実施例では半導体素子1と
2を含む主回路は図1(a) のように前に説明した図6と
同じであり、各半導体素子1や2に対し駆動回路3とそ
れに給電する制御電源4とを設け, かつハイとローが交
替するオンオフ指令S1とS2をそれぞれ図1(c) と図1
(b) に示すよう互いに逆位相の波形で与える点も同じで
ある。しかし、本発明回路では高圧側の半導体素子1に
対するオンオフ指令S1の低電位側LSから高電位側HSへの
伝達路として図のように単一の電流路10を用いる点が従
来の回路と異なる。
In the embodiment described below, the main circuit including the semiconductor elements 1 and 2 is the same as that of FIG. 1 described above as shown in FIG. And a control power supply 4 for supplying power thereto, and ON / OFF commands S1 and S2 for switching between high and low are respectively shown in FIG. 1 (c) and FIG.
The same applies to the points given by waveforms of opposite phases as shown in (b). However, the circuit of the present invention differs from the conventional circuit in that a single current path 10 is used as a transmission path from the low potential side LS to the high potential side HS of the ON / OFF command S1 for the high-voltage side semiconductor element 1 as shown in the figure. .

【0022】本発明ではこの電流路10に流す電流を低電
位側LSのスイッチング手段20によりオンオフ指令SIのオ
ンやオフの指定状態に応じ流し方を異ならせるよう制御
し、高電位側HSの電流検出手段30によりこの電流を検出
してその流れ方に応じて変化する検出信号Sdを作り、変
換手段40によりこの検出信号Sdをオン指定状態とオフ指
定状態とを区別しながら高圧側の半導体素子1を駆動す
るための高電位側HSのオンオフ指令S1L に変換して駆動
回路3に与える。
In the present invention, the current flowing through the current path 10 is controlled by the switching means 20 of the low potential side LS so as to flow differently according to the ON / OFF designation state of the on / off command SI, and the current of the high potential side HS is controlled. The detection means 30 detects this current and generates a detection signal Sd that changes according to the flow of the current.The conversion means 40 distinguishes the detection signal Sd from the on-designation state and the off-designation state while distinguishing between the ON designation state and the OFF designation state. 1 is converted into an ON / OFF command S1L on the high potential side HS for driving the driving circuit 1 and is supplied to the driving circuit 3.

【0023】この図1(a) の実施例ではスイッチング手
段20により電流路10にパルス電流をオンオフ指令S1のハ
イやローの状態変化方向に応じて異なる電流値で流すの
で、まずそのパルス発生回路21にオンオフ指令S1のハイ
とローの状態が変化するつど共通パルスPcを図1(d) に
示すよう発生させ、かつそのハイからローへの変化に応
じてオフパルスPfを図1(e) に示すように発生させる。
このためには、例えばこのスイッチング手段20に2個の
ワンショット回路を設けてその一方をオンオフ指令SIの
立ち上がり時, 他方を立ち下がり時にそれぞれ動作さ
せ、両方の出力をオアゲートを介して共通パルスPcとし
て取り出し、他方の出力をオフパルスPfとして取り出す
ことでよい。なお、場合によってはオフパルスPfのかわ
りに図6のオンパルスPnを発生させてもよい。
In the embodiment shown in FIG. 1A, the switching means 20 causes the pulse current to flow through the current path 10 with different current values in accordance with the high or low state change direction of the on / off command S1. In FIG. 21, a common pulse Pc is generated as shown in FIG. 1 (d) each time the high and low states of the on / off command S1 change, and an off pulse Pf is generated as shown in FIG. 1 (e) in accordance with the change from high to low. Generate as shown.
For this purpose, for example, two one-shot circuits are provided in the switching means 20 and one of them is operated when the on / off command SI rises and the other is when the on / off command SI rises, and both outputs are connected to the common pulse Pc via the OR gate. And the other output may be taken out as the off-pulse Pf. In some cases, the on-pulse Pn in FIG. 6 may be generated instead of the off-pulse Pf.

【0024】このほか、スイッチング手段20には2個の
トランジスタ22と24が組み込まれており、トランジスタ
22の方は電流路10に挿入される高耐圧トランジスタであ
ってその接地側に2個の抵抗23aと23bが直列接続さ
れ、その内の一方の抵抗23bと並列にトランジスタ24が
接続され、前者に共通パルスPc, 後者にオフパルスPfが
それぞれ与えられる。従って、トランジスタ22は共通パ
ルスPcとオフパルスPfが同時に発生したときは抵抗23a
だけをソース抵抗として電流路10に大きなパルス電流を
流し、オフパルスPfだけが発生したときは抵抗23aと23
bをソース抵抗として小さなパルス電流を流す。トラン
ジスタ22はいわゆるソースフォロワ接続のトランジスタ
として動作し、電流路10に流すべき大小のパルス電流を
そのソース抵抗による設定どおりの一定値に正確に制御
する。なお、これらの大小のパルス電流の電流値比は2
以上に設定するのが望ましい。
In addition, two transistors 22 and 24 are incorporated in the switching means 20.
Reference numeral 22 denotes a high-withstand-voltage transistor inserted into the current path 10, in which two resistors 23a and 23b are connected in series on the ground side, and a transistor 24 is connected in parallel with one of the resistors 23b. Are supplied with a common pulse Pc, and the latter with an off-pulse Pf. Therefore, when the common pulse Pc and the off-pulse Pf are simultaneously generated, the transistor 22 is connected to the resistor 23a.
A large pulse current flows through the current path 10 using only the source resistance as the source resistance, and when only the off pulse Pf is generated, the resistances 23a and 23
A small pulse current is passed using b as a source resistance. The transistor 22 operates as a so-called source-follower-connected transistor, and accurately controls the large and small pulse currents to be passed through the current path 10 to a constant value as set by the source resistance. Note that the current value ratio of these large and small pulse currents is 2
It is desirable to set above.

【0025】高電位側HSの電流検出手段30は前の図6の
場合と同様に電流路10に挿入された検出用の抵抗31と,
それと並列に接続されたツェナーダイオード33とからな
り、電流路10内に流れる上述の大小のパルス電流を検出
した検出信号Sdを図1(f) に示すように大小の負パルス
を含む波形で発する。この波形からもわかるように、こ
の実施例のツェナーダイオード33は従来のように検出信
号Sd中のパルス波形の一定化用ではなく、変換手段40に
対する過電圧保護用に従来よりもツェナー降伏電圧の高
いものが用いられる。パルスの波形はトランジスタ22側
の前述のソースフォロワ動作によって一定化される。
The current detecting means 30 on the high potential side HS includes a detecting resistor 31 inserted into the current path 10 as in the case of FIG.
A zener diode 33 is connected in parallel with this, and a detection signal Sd for detecting the above-mentioned large and small pulse currents flowing in the current path 10 is generated with a waveform including large and small negative pulses as shown in FIG. . As can be seen from this waveform, the Zener diode 33 of this embodiment is not used for stabilizing the pulse waveform in the detection signal Sd as in the conventional case, but is used for protecting the conversion unit 40 from overvoltage, so that the Zener breakdown voltage is higher than the conventional case. Things are used. The pulse waveform is stabilized by the above-described source follower operation on the transistor 22 side.

【0026】高電位側HSの変換手段40はこの検出信号Sd
を動作しきい値が互いに異なるその一対のインバータ41
cと41fに受ける。しきい値はインバータ41cの方が低
く、これにより図1(g) に示す共通パルスScが図1(d)
の共通パルスPcと同じ波形で作られる。また、しきい値
が高い方のインバータ41fにより図1(h) に示すオフパ
ルスSfが図1(e) のオフパルスPfと同じ波形で作られ
る。これらのいわば再生パルスScとSfを受ける再生回路
43は、それらによりオンオフ信号S1によるオンとオフの
指定状態を区別しながら図1(i) に示す高電位側HSのオ
ンオフ信号S1H を図1(b) と同じ波形で再生するもので
ある。
The conversion means 40 on the high potential side HS outputs the detection signal Sd
The pair of inverters 41 whose operating thresholds are different from each other
Received at c and 41f. The threshold value of the inverter 41c is lower than that of the inverter 41c, so that the common pulse Sc shown in FIG.
Is formed with the same waveform as the common pulse Pc. The inverter 41f having the higher threshold generates the off pulse Sf shown in FIG. 1H with the same waveform as the off pulse Pf shown in FIG. 1E. A reproduction circuit that receives these so-called reproduction pulses Sc and Sf
43 reproduces the on / off signal S1H on the high potential side HS shown in FIG. 1 (i) with the same waveform as that of FIG. 1 (b) while distinguishing the on / off designation state by the on / off signal S1.

【0027】この再生に際しては、容易にわかるようオ
ン動作が共通パルスScのハイとオフパルスSfのローによ
り, オフ動作が両パルスのともにハイによってそれぞれ
指定されているから、再生回路43には例えばこれら指定
状態でそれぞれ出力をハイにする2個の論理ゲートと1
個のフリップフロップとを設け、フリップフロップを一
方の論理ゲートの出力でセットし他方の論理ゲートの出
力でリセットしながらそのQ出力をオンオフ信号S1H と
して取り出せばよい。
At the time of this reproduction, the ON operation is specified by the high of the common pulse Sc and the low of the OFF pulse Sf, and the OFF operation is specified by the high of both the pulses. Two logic gates, one for each output high in the specified state, and one
A plurality of flip-flops may be provided, and the flip-flop may be set as the output of one logic gate and reset with the output of the other logic gate, and the Q output thereof may be taken out as the on / off signal S1H.

【0028】以上からわかるように、この図1の実施例
では単一の電流路10に低電位側LSのスイッチング手段20
によりオンオフ指令S1の論理状態の変化方向に応じ電流
値の異なるパルス電流を流し、高電位側HSの電流検出手
段30によりこのパルス電流の検出信号Sdを作り、変換手
段40によりこの検出信号Sd中のパルス電流の電流値を反
映したパルスの波高値の差異からオンとオフの指定状態
を正確に区別しながら高電位側HSにオンオフ信号S1H を
再生できる。また、電流路10に電流をパルスの形でごく
短時間内しか流さないから電力消費はごく僅かで済む。
As can be seen from the above, in the embodiment of FIG. 1, the switching means 20 of the low potential side LS is connected to the single current path 10.
A pulse current having a different current value flows in accordance with the direction of change of the logic state of the on / off command S1.The current detection means 30 on the high potential side HS generates a detection signal Sd of this pulse current, and the conversion means 40 generates the detection signal Sd. The on / off signal S1H can be reproduced on the high potential side HS while accurately discriminating the designated state of on / off from the difference between the peak values of the pulse reflecting the current value of the pulse current. Further, since the current flows through the current path 10 in a pulse form only for a very short time, power consumption is very small.

【0029】次の図2に示す実施例では電流路10にパル
ス電流を流すのは前実施例と同じであるが、オンオフ指
令S1が一方の論理状態をとる時間だけ反復パルス電流を
流す点が異なる。このため、スイッチング手段20にはパ
ルス発生回路25を組み込んで図3(b) のオンオフ指令S1
の状態がこの例ではハイの時間内に限って図3(c) に示
すように反復パルスPrを発生させる。その反復周期はオ
ンオフ指令SIの周期の例えば10〜数十分の1の範囲内に
設定される。この反復パルスPrを受けるトランジスタ22
は電流路10に反復パルス電流を抵抗23により設定された
電流値で流し、かつ前述のソースフォロワ動作によって
その値を一定に保つ。
In the next embodiment shown in FIG. 2, the flow of the pulse current through the current path 10 is the same as that of the previous embodiment, except that the ON / OFF command S1 flows the repetitive pulse current only during the time when one of the logic states is taken. different. For this reason, a pulse generating circuit 25 is incorporated in the switching means 20 so that the on / off command S1 shown in FIG.
In this example, the repetitive pulse Pr is generated as shown in FIG. The repetition period is set within a range of, for example, one tenth to several tenths of the period of the on / off command SI. Transistor 22 receiving this repetitive pulse Pr
Flows a repetitive pulse current through the current path 10 at a current value set by the resistor 23, and keeps the value constant by the above-described source follower operation.

【0030】高電位側LSの電流検出手段30は抵抗31とツ
ェナーダイオード32からなり、検出信号Sdを図3(d) に
示すように上述の反復パルスPrに対応する複数の負パル
スを含む波形で発生する。この実施例ではツェナーダイ
オード32によって負パルスの波高値を一定化することが
できる。変換手段40はこの検出信号Sdを受けてそれに含
まれる反復パルスの継続と中断の状態からオンオフ指令
SIによるオンとオフの指定状態を弁別しながら高電位側
HSのオンオフ指令S1H を作る。このため、図の実施例で
は変換手段40としてリトリガラブルなワンショット回路
44を用い、その発生パルスの幅を電流路10に流れるパル
ス電流の反復周期より若干長いめに設定しておき、検出
信号Sd中のパルスによりその動作を反復してトリガしな
がらその出力を図3(e) に示すオンオフ指令S1H として
取り出す。以上の説明からわかるように、この図2の実
施例では電流路10に反復パルス電流を流すので電力消費
は前実施例より若干増えるが、回路構成をかなり簡単化
できる。
The current detecting means 30 on the high potential side LS comprises a resistor 31 and a Zener diode 32. As shown in FIG. 3D, the detection signal Sd has a waveform including a plurality of negative pulses corresponding to the repetitive pulse Pr described above. Occurs in In this embodiment, the peak value of the negative pulse can be made constant by the Zener diode 32. The conversion means 40 receives the detection signal Sd and issues an ON / OFF command from the continuation and interruption of the repetitive pulse included in the detection signal Sd.
High potential side while discriminating between ON and OFF designated states by SI
Create HS on / off command S1H. For this reason, in the embodiment of the drawing, a retriggerable one-shot circuit is used as the conversion means 40.
44, the width of the generated pulse is set slightly longer than the repetition period of the pulse current flowing through the current path 10, and the output is output while repeatedly triggering the operation by the pulse in the detection signal Sd. It is taken out as the on / off command S1H shown in 3 (e). As can be understood from the above description, in the embodiment of FIG. 2, the repetitive pulse current is applied to the current path 10, so that the power consumption is slightly increased as compared with the previous embodiment, but the circuit configuration can be considerably simplified.

【0031】図4に示す実施例では高圧側の半導体素子
1と低圧側の半導体素子2が交互にオンオフ動作するこ
とを利用して、電流路10にこれまでの実施例のようにパ
ルス電流を流すかわりにオンオフ指令S1がオフ指定状態
の時間内に持続電流を流す。すなわち、図4の実施例の
スイッチング回路20ではインバータ26によりオンオフ指
令S1を反転した図5(c) の補指令S1I をトランジスタ22
に与えることにより、電流路10に電流iを図5(d) に示
すようにオンオフ指令S1がオフ指定状態, 図の例では図
5(b) のようにローである時間内に持続して流す。
In the embodiment shown in FIG. 4, a pulse current is supplied to the current path 10 as in the previous embodiments by utilizing the fact that the semiconductor element 1 on the high voltage side and the semiconductor element 2 on the low voltage side alternately turn on and off. Instead of flowing, a continuous current flows during the time when the ON / OFF command S1 is in the OFF designated state. That is, in the switching circuit 20 of the embodiment shown in FIG. 4, the auxiliary command S1I shown in FIG.
5D, the current i is continuously supplied to the current path 10 during the time when the ON / OFF command S1 is designated as OFF as shown in FIG. 5D, and in the example shown in FIG. Shed.

【0032】この電流iの通流中は低圧側の半導体素子
2がオンしているので高電位側HSの基準電位である出力
端子Toは接地点Eとほぼ同じ電位であり、従って電流路
10の上下端間には制御電源4の電圧程度しか掛からない
ため持続電流であっても電力消費は僅かで済む。なお、
電流iが流れ始める当初に半導体素子1と2がともにオ
フ状態になるため図5(d) のようにピーク電流ipが生じ
るが2〜3μS程度のごく短時間なので電流消費に大き
な影響はない。高電位側HSの電流検出手段30は図2の実
施例と同構成であり、その検出信号Sdは図5(e) に示す
ようにオンオフ指令S1と相似な波形をもつ。従って、変
換手段40には単なる増幅回路45を用いて検出信号Sdを所
望のレベルまで増幅すれば、電流路に電流が通流する状
態をオフ指定状態とする高電位側HSのオンオフ指令S1H
が得られる。
While the current i is flowing, the output terminal To, which is the reference potential on the high potential side HS, is substantially the same potential as the ground point E because the low voltage side semiconductor element 2 is on.
Since only about the voltage of the control power supply 4 is applied between the upper and lower ends of the power supply 10, power consumption is small even with a continuous current. In addition,
Since the semiconductor elements 1 and 2 are both turned off at the beginning of the flow of the current i, a peak current ip is generated as shown in FIG. 5 (d), but the current consumption is not so great because it is a short time of about 2 to 3 μS. The current detecting means 30 on the high potential side HS has the same configuration as the embodiment of FIG. 2, and the detection signal Sd has a waveform similar to the on / off command S1 as shown in FIG. 5 (e). Therefore, if the detection signal Sd is amplified to a desired level using the simple amplification circuit 45 for the conversion means 40, the on / off command S1H of the high potential side HS that sets the state in which the current flows in the current path to the off designation state
Is obtained.

【0033】このように、図4の実施例では電流消費を
抑えながら回路構成を図2の実施例よりさらに簡単化で
き、かつ制御回路の動作の信頼性も図1や図2の実施例
より高めることができる。すなわち、制御回路へのノイ
ズの混入によって図1(a) の再生回路43内のフリップフ
ロップが誤ってセットないしリセットされた場合や、図
2のワンショット回路44の反復トリガが切れた場合には
高電位側HSのオンオフ指令S1H の波形が乱れるので、最
悪の場合は半導体素子1と2が同時にオンして電源電圧
Vを短絡するおそれがあるが、図4の実施例では電流路
10に持続電流を流すのでノイズの悪影響を受けるおそれ
はほぼ皆無になる。
As described above, in the embodiment of FIG. 4, the circuit configuration can be further simplified as compared with the embodiment of FIG. 2 while suppressing the current consumption, and the reliability of the operation of the control circuit is higher than that of the embodiment of FIGS. Can be enhanced. That is, when the flip-flop in the reproduction circuit 43 shown in FIG. 1A is set or reset by mistake due to the contamination of the control circuit, or when the repetitive trigger of the one-shot circuit 44 shown in FIG. Since the waveform of the ON / OFF command S1H on the high potential side HS is disturbed, in the worst case, the semiconductor elements 1 and 2 may be turned on at the same time to short-circuit the power supply voltage V. However, in the embodiment of FIG.
Since a continuous current flows through 10, there is almost no risk of adverse effects of noise.

【0034】[0034]

【発明の効果】本発明ではオンオフ指令を低電圧側から
高電圧側に伝達する電流路を高圧側の半導体素子ごとに
単一としても、それを時間的に使い分ければオンとオフ
の指令状態を伝達できる点に着目して、以上に説明した
とおり低電位側のスイッチング手段により電流路の電流
の流し方を低電位側のオンオフ指令によるオンやオフの
指定状態に応じて異ならせ、高電位側の電流検出手段に
よりこの電流を検出して検出信号を作り、変換手段によ
りこの検出信号が電流の流れ方に応じて変化する様子か
らオンとオフの指定状態を互いに区別しながら高電位側
でオンオフ指令を再生するようにしたので、電流路に流
す電流を制御する高耐圧のトランジスタが1個だけで済
み、その所要個数を従来の半分に減少させて半導体装置
にオンオフ制御回路を組み込む際に必要なチップ面積を
節約することができる。
According to the present invention, even if a single current path for transmitting the on / off command from the low voltage side to the high voltage side is provided for each of the high-voltage side semiconductor elements, the ON / OFF command state can be obtained by selectively using them in time. Focusing on the point that the potential can be transmitted, as described above, the way of flowing the current in the current path is changed by the low-potential side switching means according to the ON / OFF designation state by the low-potential side ON / OFF command, and the high-potential side This current is detected by the current detection means on the side to generate a detection signal, and the conversion means changes the detection signal according to the flow of the current. Since the on / off command is reproduced, only one high-breakdown-voltage transistor for controlling the current flowing in the current path is required. It is possible to save the chip area necessary for incorporating.

【0035】なお、オンオフ指令のオンとオフの指定状
態が変化する方向に応じて電流値の異なるパルス電流を
電流路に流し、この電流値を反映した検出信号中のパル
スの波高値の差異からオンやオフの指定状態を弁別しな
がらオンオフ指令を再生する本発明の態様,さらにこの
弁別にインバータ等のしきい値動作回路要素を用いる実
施態様は、電流路にパルス電流をごく短時間だけ流して
制御回路の電力消費を減少させる効果を有する。また、
オンオフ指令の一方の論理状態に応じ電流路に反復パル
ス電流を流し、検出信号中の反復パルスの継続状態から
オンとオフの指定状態を区別する態様,さらにはこの反
復パルスにより繰り返してトリガされるワンショット回
路によりオンオフ指令を再生する態様は、消費電力を減
少させるとともに回路構成を簡単化できる効果を有す
る。
It is to be noted that a pulse current having a different current value is supplied to the current path in accordance with the direction in which the designated state of the on / off command changes between on and off, and the difference between the peak values of the pulses in the detection signal reflecting this current value is determined. The embodiment of the present invention in which the ON / OFF command is reproduced while discriminating the designated state of ON or OFF, and the embodiment in which a threshold operation circuit element such as an inverter is used for discriminating the ON or OFF state, allows the pulse current to flow in the current path for a very short time. This has the effect of reducing the power consumption of the control circuit. Also,
A mode in which a repetitive pulse current is caused to flow in a current path according to one of the logical states of the ON / OFF command to distinguish an ON / OFF designated state from a continuous state of the repetitive pulse in the detection signal, and further, triggered repeatedly by the repetitive pulse The mode of reproducing the on / off command by the one-shot circuit has an effect of reducing power consumption and simplifying a circuit configuration.

【0036】さらに、低圧側と高圧側の半導体素子が交
互にオンオフすることを利用して、低電位側のオンオフ
指令がオフ指定状態のときにのみ電流路に電流を流し、
この電流の通流時をオフ指定状態としてオンオフ指令を
再生する態様は、電力消費を抑制しながら回路構成をさ
らに簡単化し,かつオンオフ制御回路の動作信頼性を一
層高め得る効果を有する。
Further, by utilizing the fact that the low-voltage side and high-voltage side semiconductor elements are turned on and off alternately, a current flows through the current path only when the low-potential side on-off command is in the off-designating state.
The mode of reproducing the on / off command with the current flowing time being designated as the off state has the effects of further simplifying the circuit configuration while suppressing power consumption and further improving the operational reliability of the on / off control circuit.

【0037】上述のような特長を備える本発明のオンオ
フ制御回路は、電動機等を駆動する電力インバータ装置
の2相や3相構成のアーム内に組み込む電力用半導体素
子の制御回路を単一の半導体チップに組み込み、あるい
は半導体素子用のチップ内に組み込む場合に適用してと
くに効果が高く、この種の集積回路のチップサイズを大
幅に縮小して経済性を高める上で著効を奏するものであ
る。
The on / off control circuit of the present invention having the above-described features is a single semiconductor control circuit for a power semiconductor element incorporated in a two-phase or three-phase arm of a power inverter device for driving a motor or the like. It is particularly effective when incorporated into a chip or when incorporated into a chip for a semiconductor device, and is extremely effective in significantly reducing the chip size of this type of integrated circuit and improving economic efficiency. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例回路図とその関連信号の波形を
示し、同図(a) はその回路図、同図(b) は低圧側の半導
体素子用のオンオフ指令の波形図、同図(c) は高圧側の
半導体素子に対する低電位側のオンオフ指令の波形図、
同図(d) はスイッチング手段内の共通パルスの波形図、
同図(e) はスイッチング手段内のオフパルスの波形図、
同図(f) は電流検出手段による検出信号の波形図、同図
(g) は変換手段内の共通パルスの波形図、同図(h) は変
換手段内のオフパルスの波形図、同図(i)は高圧側の半
導体素子に対する高電位側のオンオフ信号の波形図であ
る。
FIGS. 1A and 1B show a circuit diagram of an embodiment of the present invention and waveforms of related signals. FIG. 1A is a circuit diagram thereof, and FIG. 1B is a waveform diagram of an ON / OFF command for a low voltage side semiconductor device. Figure (c) is a waveform diagram of a low potential side on / off command for the high voltage side semiconductor element,
(D) is a waveform diagram of a common pulse in the switching means,
(E) is a waveform diagram of the off pulse in the switching means,
(F) is a waveform diagram of a detection signal by the current detection means, and FIG.
(g) is a waveform diagram of a common pulse in the converter, FIG. (h) is a waveform diagram of an off-pulse in the converter, and (i) is a waveform diagram of a high-potential-side on / off signal for the high-voltage side semiconductor element. It is.

【図2】本発明の異なる実施例の回路図である。FIG. 2 is a circuit diagram of another embodiment of the present invention.

【図3】図2の関連信号の波形を示し、同図(a) は低圧
側の半導体素子用のオンオフ指令の波形図、同図(b) は
高圧側の半導体素子に対する低電位側のオンオフ指令の
波形図、同図(c) はスイッチング手段内の反復パルスの
波形図、同図(d) は電流検出手段による検出信号の波形
図、同図(e) は高圧側の半導体素子に対する高電位側の
オンオフ信号の波形図である。
3A and 3B show waveforms of related signals in FIG. 2; FIG. 3A is a waveform diagram of an on / off command for a low voltage side semiconductor element; FIG. 3B is a low potential side on / off state for a high voltage side semiconductor element; (C) is a waveform diagram of a repetitive pulse in the switching means, (d) is a waveform diagram of a detection signal by the current detection means, and (e) is a waveform diagram of the high voltage side semiconductor element. FIG. 7 is a waveform diagram of an on / off signal on the potential side.

【図4】本発明のさらに異なる実施例の回路図である。FIG. 4 is a circuit diagram of still another embodiment of the present invention.

【図5】図4の関連信号の波形を示し、同図(a) は低圧
側の半導体素子用のオンオフ指令の波形図、同図(b) は
高圧側の半導体素子に対する低電位側のオンオフ指令の
波形図、同図(c) はスイッチング内のオンオフ指令の補
信号の波形図、同図(d)は電流路に流れる電流の波形
図、同図(e) は電流検出手段による検出信号および高圧
側の半導体素子に対する高電位側のオンオフ信号の波形
図である。
5A and 5B show waveforms of related signals in FIG. 4; FIG. 5A is a waveform diagram of an on / off command for a low voltage side semiconductor element, and FIG. 5B is a low potential side on / off state for a high voltage side semiconductor element; (C) is a waveform diagram of the complementary signal of the ON / OFF command in switching, (d) is a waveform diagram of the current flowing in the current path, and (e) is a detection signal by the current detecting means. FIG. 4 is a waveform diagram of a high-potential-side on / off signal for a high-voltage-side semiconductor element.

【図6】従来のオンオフ制御回路の回路図である。FIG. 6 is a circuit diagram of a conventional on / off control circuit.

【図7】図6の関連信号の波形を示し、同図(a) は低圧
側の半導体素子用のオンオフ指令の波形図、同図(b) は
高圧側の半導体素子に対する低電位側のオンオフ指令の
波形図、同図(c) はオンパルスの波形図、同図(d) はオ
フパルスの波形図、同図(e) はオン指令の波形図、同図
(f) はオフ指令の波形図、同図(g) はセット指令の波形
図、同図(h) はリセット指令の波形図、同図(i) は高圧
側の半導体素子に対する高電位側のオンオフ信号の波形
図である。
7A and 7B show waveforms of related signals in FIG. 6; FIG. 7A is a waveform diagram of an ON / OFF command for a low voltage side semiconductor element; FIG. 7B is a low potential side ON / OFF for a high voltage side semiconductor element; (C) Waveform diagram of ON pulse, (d) Waveform diagram of OFF pulse, (e) Waveform diagram of ON command, same diagram
(f) is a waveform diagram of an OFF command, FIG. (g) is a waveform diagram of a set command, FIG. (h) is a waveform diagram of a reset command, and FIG. It is a waveform diagram of an on-off signal.

【符号の説明】[Explanation of symbols]

1 高圧側の半導体素子 2 低圧側の半導体素子 3 半導体素子に対する駆動回路 4 制御回路の電源 10 電流路 20 スイッチング手段 22 高耐圧のトランジスタ 30 電流検出手段 40 変換手段 41c,41f 動作しきい値が異なるインバータ 43 変換手段の再生回路 44 変換手段のリトリガラブルワンショット回路 45 変換手段の増幅回路 HS 高電位側 i 電流路を流れる電流 LS 低電位側 Pc 低電位側の共通パルス Pf 低電位側のオフパルス Pr 反復パルス Sc 高電位側の共通パルス Sd 電流検出手段による検出信号 Sf 高電位側のオフパルス S1 半導体素子1用の低電圧側のオンオフ指令 S1H 半導体素子1用の高電圧側のオンオフ指令 S2 半導体素子2用の低電圧側のオンオフ指令 DESCRIPTION OF SYMBOLS 1 High voltage side semiconductor element 2 Low voltage side semiconductor element 3 Drive circuit for semiconductor element 4 Power supply of control circuit 10 Current path 20 Switching means 22 High breakdown voltage transistor 30 Current detection means 40 Conversion means 41c, 41f Operating thresholds are different Inverter 43 Regeneration circuit of conversion means 44 Retriggerable one-shot circuit of conversion means 45 Amplifier circuit of conversion means HS High potential side i Current flowing through current path LS Low potential side Pc Low potential side common pulse Pf Low potential side off pulse Pr Repetitive pulse Sc High-potential common pulse Sd Detection signal by current detection means Sf High-potential side off pulse S1 Low-voltage on / off command for semiconductor device 1 S1H High-voltage on / off command for semiconductor device 1 S2 Semiconductor device 2 ON / OFF command for low voltage side

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H03K 17/00 - 17/70 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H03K 17/00-17/70

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高電位側の半導体素子を低電位側のオンオ
フ指令に応じて動作させる制御回路であって、オンオフ
動作させるべき半導体素子ごとに高電位側と低電位側の
間に設けられた単一の電流路と、オンオフ指令に応じて
電流路に流す電流を低電位側で制御するスイッチング手
段と、電流路の電流を高電位側で検出する電流検出手段
と、この電流検出手段による検出信号を半導体素子を駆
動するための高電位側のオンオフ指令に変換する変換手
段とを備えてなり、低電位側のオンオフ指令による指定
状態に応じてスイッチング手段により電流路中の電流の
流し方を異ならせ、変換手段によりこの電流に応じて変
化する検出信号からオン指定状態とオフ指定状態とを区
別しながら検出信号を高電位側のオンオフ指令に変換す
るようにしたことを特徴とする半導体素子のオンオフ制
御回路。
A control circuit for operating a high-potential-side semiconductor element in response to a low-potential-side on / off command, provided between the high-potential side and the low-potential side for each semiconductor element to be turned on / off. A single current path, switching means for controlling the current flowing in the current path in accordance with the ON / OFF command on the low potential side, current detection means for detecting the current in the current path on the high potential side, and detection by the current detection means Conversion means for converting the signal into a high-potential-side on / off command for driving the semiconductor element, and switching the current in the current path by the switching means according to a designated state by the low-potential-side on / off command. The detection signal is converted into a high-potential on / off command while distinguishing between an on-designation state and an off-designation state from a detection signal that changes according to the current by the conversion means. Off control circuit of a semiconductor device characterized.
【請求項2】請求項1に記載の制御回路において、スイ
ッチング手段により電流路内にパルス電流を流すように
したことを特徴とする半導体素子のオンオフ制御回路。
2. The control circuit according to claim 1, wherein a pulse current is caused to flow in the current path by the switching means.
【請求項3】請求項2に記載の制御回路において、スイ
ッチング手段により低電位側のオンオフ指令の状態変化
の方向に応じて電流値の異なるパルス電流を電流路に流
し、変換手段にパルス電流の電流値を反映した検出信号
中のパルスの波高値の差からオン指定とオフ指定の状態
を区別させるようにしたことを特徴とする半導体素子の
オンオフ制御回路。
3. The control circuit according to claim 2, wherein the switching means causes a pulse current having a different current value to flow through the current path in accordance with the direction of the state change of the on / off command on the low potential side, and the pulse current of the pulse current is supplied to the conversion means. An on / off control circuit for a semiconductor element, characterized in that an on-designation and an off-designation are distinguished from a difference between peak values of a pulse in a detection signal reflecting a current value.
【請求項4】請求項3に記載の制御回路において、変換
手段にしきい値動作回路要素を組み込んで検出信号中の
パルスの波高値の差を弁別させるようにしたことを特徴
とする半導体素子のオンオフ制御回路。
4. The control circuit according to claim 3, wherein a threshold operation circuit element is incorporated in the conversion means so as to discriminate the difference between the peak values of the pulses in the detection signal. ON / OFF control circuit.
【請求項5】請求項2に記載の制御回路において、スイ
ッチング手段により低電位側のオンオフ指令の一方の論
理状態に応じて電流路にパルス電流を一定の周期で繰り
返して流し、変換手段に検出信号中の反復パルスの継続
状態からオン指定状態とオフ指定状態を区別させるよう
にしたことを特徴とする半導体素子のオンオフ制御回
路。
5. The control circuit according to claim 2, wherein the switching means repeatedly supplies a pulse current to the current path in a constant cycle in accordance with one of the logical states of the low-potential-side ON / OFF command, and detects the pulse current in the conversion means. An on / off control circuit for a semiconductor device, characterized in that an on designated state and an off designated state are distinguished from a continuous state of a repetitive pulse in a signal.
【請求項6】請求項5に記載の制御回路において、変換
手段にパルス電流の反復周期よりも長いパルス幅のパル
スを発生するワンショット回路を組み込んで検出信号中
のパルスによりその動作を反復トリガしながらその出力
を高電位側のオンオフ指令として取り出すようにしたこ
とを特徴とする半導体素子のオンオフ制御回路。
6. The control circuit according to claim 5, wherein a one-shot circuit for generating a pulse having a pulse width longer than the repetition period of the pulse current is incorporated in the conversion means, and the operation is repeatedly triggered by a pulse in the detection signal. And outputting the output as a high-potential-side ON / OFF command.
【請求項7】請求項1に記載の制御回路において、低圧
側と高圧側の半導体素子のオンオフを交互に操作するよ
うにし、スイッチング手段により低電位側のオンオフ指
令がオフ指定状態のときに電流路に電流を流し、変換手
段により検出信号をその電流の通流時の状態をオフ指定
状態として高電位側のオンオフ指令に変換するようにし
たことを特徴とする半導体素子のオンオフ制御回路。
7. The control circuit according to claim 1, wherein the on / off of the low-voltage side and high-voltage side semiconductor elements is alternately operated, and the current is supplied when the low-potential-side on / off command is set to an off state by the switching means. An on / off control circuit for a semiconductor element, wherein a current is caused to flow in a path, and a detection signal is converted into a high-potential-side on / off command by a conversion means by setting a state when the current flows as an off designation state.
JP09039794A 1994-04-28 1994-04-28 On / off control circuit for semiconductor device Expired - Fee Related JP3147656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09039794A JP3147656B2 (en) 1994-04-28 1994-04-28 On / off control circuit for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09039794A JP3147656B2 (en) 1994-04-28 1994-04-28 On / off control circuit for semiconductor device

Publications (2)

Publication Number Publication Date
JPH07297698A JPH07297698A (en) 1995-11-10
JP3147656B2 true JP3147656B2 (en) 2001-03-19

Family

ID=13997458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09039794A Expired - Fee Related JP3147656B2 (en) 1994-04-28 1994-04-28 On / off control circuit for semiconductor device

Country Status (1)

Country Link
JP (1) JP3147656B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141078A (en) * 1997-07-16 1999-02-12 Wako Giken:Kk Method and device for shortening dead time of semiconductor device and pwm inverter
JP3773863B2 (en) 2001-07-19 2006-05-10 三菱電機株式会社 Semiconductor device
EP1594164B1 (en) 2003-02-14 2012-05-09 Hitachi, Ltd. Integrated circuit for driving semiconductor device
JP4094984B2 (en) * 2003-04-24 2008-06-04 三菱電機株式会社 Semiconductor device
JP3915815B2 (en) * 2005-03-23 2007-05-16 サンケン電気株式会社 Level shift circuit and power supply device
JP4531075B2 (en) * 2007-05-16 2010-08-25 株式会社日立製作所 Semiconductor circuit
JP5359918B2 (en) * 2010-02-16 2013-12-04 三菱電機株式会社 Semiconductor device
JP5067463B2 (en) * 2010-09-24 2012-11-07 富士電機株式会社 Drive circuit

Also Published As

Publication number Publication date
JPH07297698A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
US5514981A (en) Reset dominant level-shift circuit for noise immunity
US5200879A (en) Drive circuit for voltage driven type semiconductor device
KR100323867B1 (en) Power circuit with resistors connected in series with a bootstrap diode for a monostable gate drive
JP3037760B2 (en) Half bridge drive
US6326831B1 (en) Level shift circuit
US6054890A (en) Electronic switching circuit with reduction of switching transients
US4890009A (en) Monolithic integrated circuit device
JP2717542B2 (en) Circuit and method for controlling a MOS transistor bridge
US20110074485A1 (en) Semiconductor circuit
GB2244400A (en) Circuit providing dv/dt immunity
US5168182A (en) 0-100% duty cycle, transformer isolated fet driver
JP2892815B2 (en) IGBT drive circuit
JP3147656B2 (en) On / off control circuit for semiconductor device
JPH0947015A (en) Drive circuit for self-extinguishing semiconductor element
JPH11356035A (en) Gate driving device for voltage-driven self-arc-extinguishing element
US5886563A (en) Interlocked half-bridge circuit
US5535115A (en) Output circuit of PWM inverter wherein floating time is reduced
EP0921624B1 (en) Device for driving self arc-extinguishing type power element
CA1276993C (en) Transistor fault tolerance method and apparatus
EP0980141B1 (en) Control circuit for a semiconductor component
JPH10337046A (en) Power conversion device
US4456836A (en) Gate circuit for gate turn-off thyristor
US4739190A (en) Monolithically integratable high efficiency switching circuit
JP2002153043A (en) Gate-driving device for voltage-driving semiconductor element
Bayerer et al. Low impedance gate drive for full control of voltage controlled power devices

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees