JP3147589B2 - Wind tunnel test equipment - Google Patents

Wind tunnel test equipment

Info

Publication number
JP3147589B2
JP3147589B2 JP12935093A JP12935093A JP3147589B2 JP 3147589 B2 JP3147589 B2 JP 3147589B2 JP 12935093 A JP12935093 A JP 12935093A JP 12935093 A JP12935093 A JP 12935093A JP 3147589 B2 JP3147589 B2 JP 3147589B2
Authority
JP
Japan
Prior art keywords
vehicle
measured
wind tunnel
wind
aerodynamic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12935093A
Other languages
Japanese (ja)
Other versions
JPH06341920A (en
Inventor
政次 石場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12935093A priority Critical patent/JP3147589B2/en
Publication of JPH06341920A publication Critical patent/JPH06341920A/en
Application granted granted Critical
Publication of JP3147589B2 publication Critical patent/JP3147589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、車両に風を作用させ空
気力等を測定する風洞実験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind tunnel test apparatus for measuring wind force and the like by applying wind to a vehicle.

【0002】[0002]

【従来の技術】一般に、走行中の自動車が空気から受け
る力(以下、空気力と呼ぶ)は、速度の2乗に比例して
大きくなる。そのため高速走行中は、エンジンの出力の
大部分が空気抵抗に打ち勝つために使われ、燃料が多量
に消費される。空気力を左右する最大の要因は車体の形
状であり、車体の凹凸形状により空気の流れの速さや向
きが変わり、それに応じて空気力も変化する。従って、
自動車の性能、経済性を向上させるため、製品化前に自
動車の形状に基づく空気力を評価することがますます重
要となっている。
2. Description of the Related Art In general, the force that a moving vehicle receives from the air (hereinafter referred to as aerodynamic force) increases in proportion to the square of the speed. Therefore, during high-speed running, most of the output of the engine is used to overcome air resistance, and a large amount of fuel is consumed. The biggest factor that affects the aerodynamic force is the shape of the vehicle body, and the unevenness of the vehicle body changes the speed and direction of the air flow, and the aerodynamic force changes accordingly. Therefore,
In order to improve the performance and economy of vehicles, it is increasingly important to evaluate the aerodynamic force based on the shape of the vehicle before commercialization.

【0003】空気力の評価をする方法として、従来から
風洞実験装置が利用されている。通常、風洞実験装置内
で被測定車両に一定量の風を作用させると、図2のよう
に被測定車両表面に正圧部28、負圧部29が形成され
て、空気力が発生し、被測定車両11が上下方向に変位
する。更に、被測定車両11が上下方向に変位する(車
両姿勢が変わる)と、正圧部28と負圧部29の分布が
変化して空気力が変化し、被測定車両11が変位する。
以後、この現象が一定周期で繰り返され、微小な上下振
動として被測定車両11に現れる。なお、この微小な上
下振動の現象は、実際の走行時に車両の形状によっては
発生する場合がある。そのため、この現象を製品化前
に、望ましくは設計段階で改善するため風洞実験装置で
模擬的に評価する必要がある。
[0003] As a method of evaluating aerodynamic force, a wind tunnel experimental device has been conventionally used. Normally, when a certain amount of wind acts on the vehicle to be measured in the wind tunnel experimental device, a positive pressure portion 28 and a negative pressure portion 29 are formed on the surface of the vehicle to be measured as shown in FIG. The measured vehicle 11 is displaced in the vertical direction. Further, when the measured vehicle 11 is displaced in the vertical direction (the vehicle attitude is changed), the distribution of the positive pressure portion 28 and the negative pressure portion 29 is changed, the aerodynamic force is changed, and the measured vehicle 11 is displaced.
Thereafter, this phenomenon is repeated at a constant cycle, and appears on the measured vehicle 11 as minute vertical vibration. Note that the phenomenon of the minute vertical vibration may occur depending on the shape of the vehicle during actual traveling. Therefore, it is necessary to simulate this phenomenon with a wind tunnel experimental device before commercializing the product, preferably at the design stage.

【0004】次に、従来の風洞実験装置の一例を図5に
示す。被測定車両11は、可動式のベルト状床面33に
乗せられ、タイヤサポートロッド30、バックサポート
ロッド31及び吊り線32等で風洞実験装置に固定支持
された状態で評価される。風洞実験装置の稼働時は、実
際の走行状態を再現するため、ベルト状床面33を動か
し、被測定車両11のタイヤを回転させる。そして、被
測定車両11に風(矢印W)を作用させると、被測定車
両に空気力が発生し、被測定車両11は上下方向に変位
する。なお、空気力は、被測定車両11に空気力が発生
し、ケーブル32が被測定車両11に引っ張られる時の
歪みを荷重計測器34で検出することで測定される
FIG. 5 shows an example of a conventional wind tunnel experimental apparatus. The vehicle 11 to be measured is put on a movable belt-like floor surface 33, and is evaluated while being fixedly supported by a wind tunnel experimental device with a tire support rod 30, a back support rod 31, a suspension line 32, and the like. During operation of the wind tunnel test apparatus, the belt-like floor surface 33 is moved and the tires of the measured vehicle 11 are rotated in order to reproduce the actual running state. When a wind (arrow W) acts on the measured vehicle 11, an aerodynamic force is generated in the measured vehicle, and the measured vehicle 11 is vertically displaced. The aerodynamic force is measured by detecting, with the load measuring device 34, a distortion when the aerodynamic force is generated in the measured vehicle 11 and the cable 32 is pulled by the measured vehicle 11 .

【0005】[0005]

【発明が解決しようとする課題】前述の風洞実験装置で
被測定車両11に風を作用させた時の「空気力−時間」
特性及び「変位量−時間」特性の一例を図6に示す。こ
れによると、被測定車両11に風を無風から一定量(t
=T)になるまで作用させると、空気力は非作用時の基
準値Sから上昇する。その後、風量を一定にすると、空
気力は一定の大きさとなり、変化を示さない。変位量
は、被測定車両11を固定支持しているので、基準値S
から変化しない。
The "aerodynamic force-time" when a wind is applied to the vehicle 11 to be measured by the wind tunnel test apparatus described above.
FIG. 6 shows an example of the characteristic and the “displacement-time” characteristic. According to this, the wind to the measured vehicle 11 is changed from no wind to a certain amount (t).
= T), the aerodynamic force rises from the non-operating reference value S. Thereafter, when the air volume is made constant, the aerodynamic force becomes a constant magnitude and does not change. Since the displacement amount supports the measured vehicle 11 fixedly, the reference value S
Does not change from.

【0006】しかしながら、実際の走行時では、前述の
ように車両姿勢が変化するごとに空気力が変化する現象
が発生する場合があるのにもかかわらず、被測定車両1
1はタイヤサポートロッド30や吊り線32等で固定支
持されているため、その動きが封じ込められ、被測定車
両11は変位せず、空気力がある大きさから変化しなく
なる。従って、従来の風洞実験装置では前記現象を発見
することができず、実際の走行状態に近い形で被測定車
両11の空気力や変位量等が評価できないという問題が
ある。
[0006] However, during actual running, although the phenomenon that the aerodynamic force changes every time the vehicle attitude changes as described above, the vehicle 1 to be measured may not work.
Since 1 is fixedly supported by the tire support rod 30, the suspension line 32, and the like, its movement is confined, the measured vehicle 11 is not displaced, and the aerodynamic force does not change from a certain level. Therefore, there is a problem that the above-mentioned phenomenon cannot be discovered by the conventional wind tunnel experiment apparatus, and the aerodynamic force, the displacement amount, and the like of the measured vehicle 11 cannot be evaluated in a form close to the actual running state.

【0007】そこで本発明は、被測定車両を遊動可能に
支持することによって、被測定車両に作用する空気力や
上下方向等の変位量を実際の走行状態に近い形で測定で
きるようにすることを目的とする。
Accordingly, the present invention is to allow a measured vehicle to be freely movable so that the amount of displacement in the vertical direction or the like acting on the measured vehicle can be measured in a form close to the actual running state. With the goal.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
本発明の風洞実験装置は、被測定車両のタイヤが接触す
る床面が可動式であり、前記床面により前記タイヤを回
転させるとともに、前記被測定車両に風を作用させ空気
特性を測定する風洞実験装置において、一端が前記被測
定車両に接続され、かつ、この被測定車両の変位により
伸縮する弾性を有する支持部材と、この支持部材の他端
に接続され、かつ、前記被測定車両の変位により伸縮す
る前記支持部材の引っ張り量を、前記被測定車両が受け
ている空気力の大きさに変換する荷重計測器と、前記被
測定車両の変位量を測定する変位計測器とを備えたこと
を特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a wind tunnel test apparatus according to the present invention is designed so that a tire of a vehicle to be measured comes into contact with the tire.
The floor surface is movable , and the tire rotates with the floor surface.
Causes the rotation, in the pre-Symbol wind tunnel testing apparatus for measuring the air properties by the action of the wind to be measured vehicle, measuring said object end
Connected to a fixed vehicle, and the displacement of this measured vehicle
A support member having elasticity to expand and contract, and the other end of the support member
And expands and contracts due to the displacement of the measured vehicle.
The measured vehicle receives the amount of tension of the support member
A load measuring device for converting the aerodynamic force into
A displacement measuring device for measuring a displacement amount of the measuring vehicle .

【0009】[0009]

【作用】本発明の風洞実験装置は、被測定車両が設置さ
れた床面が可動式で、被測定車両のタイヤを回転させ
る。そして、風を被測定車両の前方より作用させると、
被測定車両の表面に正圧部、負圧部が形成されて圧力差
が発生し、被測定車両に空気力が発生する。その時、被
測定車両の変位により支持部材が伸縮し、支持部材に作
用する引っ張り量が、荷重計測器により空気力の大きさ
に変換される。また、空気力が被測定車両に作用する
と、支持部材が伸縮するために被測定車両が上下方向ま
たは水平方向に変位する。この変位量が変位計測器によ
り測定される
According to the wind tunnel test apparatus of the present invention, the floor on which the vehicle to be measured is installed is movable, and the tire of the vehicle to be measured is rotated. And when the wind acts from the front of the vehicle to be measured,
A positive pressure portion and a negative pressure portion are formed on the surface of the vehicle to be measured, and a pressure difference is generated, so that aerodynamic force is generated in the vehicle to be measured. Time of its, the
The support member expands and contracts due to the displacement of the measuring vehicle,
The amount of tension to be used depends on the aerodynamic force
Is converted to Also, the aerodynamic force acts on the measured vehicle
And the vehicle to be measured moves up and down
Or displaced horizontally. This displacement is measured by the displacement measuring instrument.
Measured .

【0010】[0010]

【実施例】次に、本発明の実施例について図1から図4
に基づいて説明する。本実施例における風洞実験装置及
び被測定車両11(以下、車両11と呼ぶ)の大きさ、
種類(モデル、実車)等は特に限定するものではない。
1 to 4 show an embodiment of the present invention.
It will be described based on. The size of the wind tunnel experimental device and the vehicle under measurement 11 (hereinafter referred to as vehicle 11) in the present embodiment,
The type (model, actual vehicle) and the like are not particularly limited.

【0011】本実施例の風洞実験装置の全体図を図3に
示す。風洞実験装置は、大別して、送風機を有する風生
成部40と、風の通り道である回流路41及び車両11
の空気力等を測定する測定部10から構成されている。
風は、風生成部40で生成され回流路41を通り、送風
口19から測定部10に設置されている車両11に作用
する。そして、吸入口20で吸入される。
FIG. 3 shows an overall view of the wind tunnel experimental apparatus of this embodiment. The wind tunnel experimental device is roughly divided into a wind generator 40 having a blower, a circuit 41 which is a wind path, and a vehicle 11.
It comprises a measuring unit 10 for measuring the aerodynamic force or the like.
The wind is generated by the wind generation unit 40, passes through the circulation channel 41, and acts on the vehicle 11 installed in the measurement unit 10 from the air outlet 19. Then, it is sucked through the suction port 20.

【0012】次に、風洞実験装置の測定部10の構造を
図1に基づいて説明する。図1は測定部10の側面図で
ある。測定部10において、車両11が設置されている
床面は、無限軌道状のムービングベルト12で形成され
ている。ムービングベルト12は、アクチュエータ18
が矢印G方向に回転することにより、矢印F方向(車両
11が模擬的に進行方向に進むよう)に回転する。
Next, the structure of the measuring section 10 of the wind tunnel experimental apparatus will be described with reference to FIG. FIG. 1 is a side view of the measuring unit 10. In the measuring section 10, the floor on which the vehicle 11 is installed is formed by a moving belt 12 having an endless track shape. The moving belt 12 includes an actuator 18
Rotates in the direction of arrow G, so that it rotates in the direction of arrow F (so that the vehicle 11 simulates in the traveling direction).

【0013】ムービングベルト12を回転させると、車
両11のタイヤ27が回転し、模擬的に車両11が走行
している状態が作り出される。更に、この状態で車両1
1に風を矢印13の方向から作用させると、車両11の
表面及び車両床下における風の流れが、実際の走行状態
に近い形で再現できる。なお、車両11がムービングベ
ルト12の回転により、吸入口20側に移動しないよう
にするため、測定部10の固定床面24の一部26と車
両11の間は、ケーブル25で接続されている。
When the moving belt 12 is rotated, the tires 27 of the vehicle 11 are rotated, thereby creating a state in which the vehicle 11 is running in a simulated manner. Further, in this state, the vehicle 1
When the wind acts on 1 in the direction of arrow 13, the flow of the wind on the surface of the vehicle 11 and under the floor of the vehicle can be reproduced in a form close to the actual running state. In order to prevent the vehicle 11 from moving toward the suction port 20 due to the rotation of the moving belt 12, a cable 25 is connected between a part 26 of the fixed floor surface 24 of the measurement unit 10 and the vehicle 11. .

【0014】風洞実験装置の測定部10の天井21に
は、空力測定装置としての荷重計測器14と変位計測器
15が設置されている。荷重計測器14と車両11は、
支持部材としてのバネ16及び吊り線17を介して接続
されている。吊り線17は、その一端が車両11のルー
フ11aに固定され、他端がバネ16に接続され、更
に、バネ16は荷重計測器14に接続されている。な
お、吊り線17は、車両の荷重を正確に荷重計測器14
に伝達するため、車両11と荷重計測器14の間でバネ
16の伸縮により、常に張設されている。また、バネ1
6は、吊り線17を車両11に張設する時、通常状態
(バネ16に力が加わっていない時の伸び)より、ある
程度引き伸ばされた状態で吊り線17に接続されてい
る。
A load measuring device 14 and a displacement measuring device 15 as aerodynamic measuring devices are installed on a ceiling 21 of the measuring section 10 of the wind tunnel experimental device. The load measuring device 14 and the vehicle 11
They are connected via a spring 16 as a support member and a suspension line 17. The suspension line 17 has one end fixed to the roof 11 a of the vehicle 11, the other end connected to a spring 16, and the spring 16 connected to a load measuring device 14. In addition, the suspension line 17 accurately measures the load of the vehicle with the load measuring device 14.
, Is always stretched between the vehicle 11 and the load measuring device 14 by expansion and contraction of a spring 16. Also, spring 1
6 is connected to the suspension line 17 in a state where the suspension line 17 is stretched to some extent from the normal state (extension when no force is applied to the spring 16) when the suspension line 17 is stretched on the vehicle 11.

【0015】また、変位計測器15は、固定基準面であ
る測定部10の天井21に設置されており、車両11の
上下方向の変位量を測定するためレーザー光線を利用し
ている。レーザー光線は、レーザー照射口15aから、
車両11に設置され図示しない反射板までの光路を往復
する。なお、車両11の空気力と変位量等の値は、車両
11の停止時(風洞実験装置の非稼働時)の値を基準値
とし、本実施例では、図4の特性図における点Sを基準
値としている。
The displacement measuring device 15 is installed on the ceiling 21 of the measuring section 10 which is a fixed reference plane, and uses a laser beam to measure the amount of vertical displacement of the vehicle 11. The laser beam is emitted from the laser irradiation port 15a.
It is installed in the vehicle 11 and reciprocates on an optical path to a reflector (not shown). The values of the aerodynamic force and the displacement amount of the vehicle 11 are based on the values when the vehicle 11 is stopped (when the wind tunnel experimental device is not operating). In the present embodiment, the point S in the characteristic diagram of FIG. It is a reference value.

【0016】次に本実施例における風洞実験装置の測定
部10で、車両11の空気力及び車両上下方向の変位量
の測定方法について、図1から図4に基づいて説明す
る。図1に示すように、車両11を測定部10のムービ
ングベルト12上に設置し、吊り線17及びケーブル2
5で遊動可能に支持する。そして、風洞実験装置の非稼
働時に、変位計測器15及び荷重計測器14の基準値を
設定する。以後、これを基準値として、風13を作用さ
せた時の空気力及び変位量の時間変化を測定する。な
お、基準値は、車両11を変更するごとに、または風洞
実験装置を稼働させるごとに再設定させてもよい。
Next, a method for measuring the aerodynamic force of the vehicle 11 and the amount of displacement of the vehicle 11 in the vertical direction by the measuring unit 10 of the wind tunnel experimental apparatus according to the present embodiment will be described with reference to FIGS. As shown in FIG. 1, the vehicle 11 is set on the moving belt 12 of the measuring unit 10,
At 5, it is movably supported. Then, when the wind tunnel experimental device is not operating, the reference values of the displacement measuring device 15 and the load measuring device 14 are set. Thereafter, using this as a reference value, the time change of the aerodynamic force and displacement amount when the wind 13 is applied is measured. The reference value may be reset each time the vehicle 11 is changed or each time the wind tunnel experimental device is operated.

【0017】基準値の設定を終えたら、風洞実験装置を
稼働させて、ムービングベルト12を回転させ、車両1
1のタイヤ27を回転させる。そして、一定量の風を送
風口19から矢印13の方向に送風し、車両11の前方
より作用させる。その時、車両11のボデー表面には、
例えば図2のような、基準の圧力より高い正圧部28と
低い負圧部29が形成され、両者間に圧力差が生じるの
で、車両11には空気力が発生する。空気力は、図1に
示すように車両11のボデーを上方へ押し上げようとす
る揚力22と、下方へ押し下げようとする逆揚力23か
ら成り、車両の形状、風を作用させた経過時間等によっ
て、その大きさ、方向が変化する。従って、車両11の
ボデーは、空気力の発生を受けて、上下方向に変位す
る。
After the setting of the reference value is completed, the wind tunnel experiment apparatus is operated, and the moving belt 12 is rotated.
One tire 27 is rotated. Then, a certain amount of wind is blown from the blow port 19 in the direction of the arrow 13 and acts from the front of the vehicle 11. At that time, on the body surface of the vehicle 11,
For example, as shown in FIG. 2, a positive pressure portion 28 and a negative pressure portion 29 which are higher than the reference pressure are formed, and a pressure difference is generated between the two, so that pneumatic force is generated in the vehicle 11. The aerodynamic force is composed of a lift 22 that pushes the body of the vehicle 11 upward and a reverse lift 23 that pushes the body downward, as shown in FIG. , Its size and direction change. Therefore, the body of the vehicle 11 is displaced in the up-down direction by the generation of the aerodynamic force.

【0018】前述のように車両11が空気力によって上
下方向に変位すると、ルーフ11aに接続された吊り線
17が車両11の動きに応じて引っ張られる。吊り線1
7の引っ張り量は、荷重計測器14で車両11が受けて
いる空気力の大きさに変換される。また、車両11の変
位量は、変位計測器15が車両11に向けて照射するレ
ーザー光線の光路の往復距離の変化を検出することで測
定される。
As described above, when the vehicle 11 is vertically displaced by air force, the suspension line 17 connected to the roof 11a is pulled in accordance with the movement of the vehicle 11. Suspension line 1
7 is converted into the magnitude of the aerodynamic force received by the vehicle 11 by the load measuring device 14. Further, the displacement amount of the vehicle 11 is measured by detecting the change in the reciprocating distance of the optical path of the laser beam irradiated to the vehicle 11 by the displacement measuring device 15.

【0019】以上の測定方法により、車両11の空気力
及び変位量の経時変化が、図4の「空気力−時間」特性
及び「変位量−時間」特性の一例のように測定される。
図4は、あるボデー形状の被測定車両11に、風を無風
(t=0)から一定量(t=T)になるまで作用させ、
その後、一定量の風を作用させて得られた特性である。
これによると、前記被測定車両11は、一定量の風を作
用させた時(t=T以後)、空気力及び変位量が脈動し
ているため、微小な上下振動を発生する形状であること
がわかる。
According to the above-described measuring method, the temporal changes in the aerodynamic force and the displacement amount of the vehicle 11 are measured as an example of the "aerodynamic force-time" characteristic and the "displacement amount-time" characteristic in FIG.
FIG. 4 shows that a wind is applied to a measured vehicle 11 having a certain body shape from no wind (t = 0) to a certain amount (t = T).
Thereafter, the characteristic is obtained by applying a certain amount of wind.
According to this, the measured vehicle 11 has a shape that generates a small vertical vibration because the aerodynamic force and the displacement amount are pulsating when a certain amount of wind is applied (after t = T). I understand.

【0020】本実施例では、支持部材をバネ16及び吊
り線17としたが、それに限定するものではなく、代わ
りに弾性を有する線部材で荷重計測器14と車両11間
を接続してもよい。また、吊り線17を車両11のルー
フ11aと、その鉛直上方にある荷重計測器14との間
に接続し、車両11の上下方向の空気力や変位量等を測
定したが、他にも車両11側面、前部または後部等から
風洞実験装置にかけて吊り線17を水平方向に張設し
て、車両11の水平方向にどれだけ空気力が発生し、ま
た、どれだけ変位したかを測定してもよく、吊り線17
の接続位置、方向、張設の方法、本数等を限定しない。
In the present embodiment, the spring 16 and the suspension line 17 are used as the supporting members. However, the present invention is not limited to this. Alternatively, the load measuring device 14 and the vehicle 11 may be connected by an elastic line member. . The suspension line 17 was connected between the roof 11a of the vehicle 11 and the load measuring device 14 vertically above the roof 11a, and the vertical aerodynamic force and displacement of the vehicle 11 were measured. A suspension line 17 is stretched in a horizontal direction from the side surface, the front or the rear of the vehicle 11 to the wind tunnel test apparatus, and how much air force is generated in the horizontal direction of the vehicle 11 and how much displacement is measured is measured. Good, hanging line 17
There are no limitations on the connection position, direction, stretching method, number, etc.

【0021】支持部材の他の構成例として、図1の水平
方向に張設されたケーブル25を吊り線及びバネから成
る支持部材とし、固定床面24の一部26を荷重計測器
として、車両11の前後方向の空気力を測定することも
可能である。但し、吊り線17等の支持部材は、風13
に影響を及ぼさないことを前提とし、荷重計測器、変位
計測器は、実施例の構成に限定するものではない。
As another example of the structure of the support member, a vehicle is shown in which the cable 25 extended in the horizontal direction in FIG. 1 is used as a support member composed of a suspension line and a spring, and a part 26 of the fixed floor surface 24 is used as a load measuring device. It is also possible to measure the front-back aerodynamic force of 11. However, the supporting members such as the suspension lines 17
The load measuring device and the displacement measuring device are not limited to the configuration of the embodiment, on the premise that the load measuring device does not affect the measurement.

【0022】[0022]

【発明の効果】本発明における風洞実験装置では、被測
定車両が風洞実験装置に遊動可能に支持されているの
で、空気力による被測定車両の動きが実際の走行状態に
近い形で再現でき、その状態で刻々変化する空気力や変
位量等を測定できる。
According to the wind tunnel test apparatus of the present invention, since the vehicle to be measured is supported by the wind tunnel test apparatus so as to be freely movable, the movement of the vehicle to be measured by aerodynamic force can be reproduced in a form close to the actual running state. It is possible to measure the aerodynamic force and the amount of displacement that change every moment in that state.

【0023】また、測定した結果を利用して、被測定車
両の風による微小な上下振動を設計段階で予測し、改善
することが可能となる。
Further, it is possible to predict and improve a minute vertical vibration due to the wind of the vehicle to be measured at the design stage by using the measured result.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における風洞実験装置の測定部
の側面図。
FIG. 1 is a side view of a measurement unit of a wind tunnel experimental device according to an embodiment of the present invention.

【図2】被測定車両に風を作用させた時の圧力分布図。FIG. 2 is a pressure distribution diagram when wind is applied to a vehicle to be measured.

【図3】本発明の実施例における風洞実験装置の全体
図。
FIG. 3 is an overall view of a wind tunnel experimental apparatus according to an embodiment of the present invention.

【図4】本発明の実施例の風洞実験装置における「空気
力−時間」特性、「変位量−時間」特性の一例を示す特
性図。
FIG. 4 is a characteristic diagram showing an example of an “air force-time” characteristic and a “displacement-time” characteristic in the wind tunnel experimental apparatus according to the embodiment of the present invention.

【図5】従来の風洞実験装置の測定部の概略図。FIG. 5 is a schematic diagram of a measurement unit of a conventional wind tunnel experimental device.

【図6】従来の風洞実験装置における「空気力−時間」
特性、「変位量−時間」特性の一例を示す特性図。
FIG. 6 “Aerodynamic force-time” in a conventional wind tunnel experimental device
FIG. 9 is a characteristic diagram showing an example of a characteristic, “displacement amount-time” characteristic.

【符号の説明】[Explanation of symbols]

10 ・・・ 風洞実験装置の測定部 11 ・・・ 被測定車両 12 ・・・ ムービングベルト 13 ・・・ 風の方向 14 ・・・ 荷重計測器 15 ・・・ 変位計測器 16 ・・・ バネ(支持部材) 17 ・・・ 吊り線(支持部材) Reference Signs List 10 Measurement part of wind tunnel experiment device 11 Measurement vehicle 12 Moving belt 13 Wind direction 14 Load measurement device 15 Displacement measurement device 16 Spring ( Supporting member) 17 Suspension line (supporting member)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定車両のタイヤが接触する床面が可
動式であり、前記床面により前記タイヤを回転させると
ともに、前記被測定車両に風を作用させ空気特性を測定
する風洞実験装置において 一端が前記被測定車両に接続され、かつ、この被測定車
両の変位により伸縮する弾性を有する支持部材と、この
支持部材の他端に接続され、かつ、前記被測定車両の変
位により伸縮する前記支持部材の引っ張り量を、前記被
測定車両が受けている空気力の大きさに変換する荷重計
測器と、前記被測定車両の変位量を測定する変位計測器
とを 備えたことを特徴とする風洞実験装置。
1. A floor surface with which a tire of a vehicle to be measured contacts is movable , and when the tire is rotated by the floor surface,
Both pre SL in wind tunnel testing apparatus for measuring the air properties by the action of the wind to be measured vehicle, one end of which is connected to the measured vehicle, and the measured wheel
An elastic support member that expands and contracts due to both displacements,
Connected to the other end of the support member, and
The amount of tension of the support member that expands and contracts with
Load cell that converts the amount of aerodynamic force received by the measuring vehicle
Measuring instrument and a displacement measuring instrument for measuring a displacement amount of the measured vehicle
Wind Tunnel Experiment apparatus characterized by comprising and.
JP12935093A 1993-05-31 1993-05-31 Wind tunnel test equipment Expired - Fee Related JP3147589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12935093A JP3147589B2 (en) 1993-05-31 1993-05-31 Wind tunnel test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12935093A JP3147589B2 (en) 1993-05-31 1993-05-31 Wind tunnel test equipment

Publications (2)

Publication Number Publication Date
JPH06341920A JPH06341920A (en) 1994-12-13
JP3147589B2 true JP3147589B2 (en) 2001-03-19

Family

ID=15007435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12935093A Expired - Fee Related JP3147589B2 (en) 1993-05-31 1993-05-31 Wind tunnel test equipment

Country Status (1)

Country Link
JP (1) JP3147589B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980020717A (en) * 1996-09-11 1998-06-25 박병재 Driving characteristic test device of automobile
KR100427251B1 (en) * 1997-11-19 2004-07-12 현대자동차주식회사 Simulation system for wind tunnel test of wheel
JP4256900B2 (en) 2007-09-20 2009-04-22 三菱重工業株式会社 Measuring unit of wind tunnel test apparatus and wind tunnel test apparatus using the same
US8607626B2 (en) 2008-03-03 2013-12-17 Mts Systems Corporation Restraint system for restraining a test article in a selected vertical position relative to a movable belt
DE102008014716A1 (en) 2008-03-18 2009-09-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Aerodynamic test stand
CN103487227B (en) * 2013-07-15 2016-05-18 中国商用飞机有限责任公司 The carrying of sprayer unit and mobile device
JP6747089B2 (en) * 2016-06-21 2020-08-26 横浜ゴム株式会社 Wind tunnel test method for automobile and method for manufacturing tire model for wind tunnel test

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
武藤真理、中村安広,「おもしろ自動車空力学」,三栄書房,1985年6月

Also Published As

Publication number Publication date
JPH06341920A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
JP3147589B2 (en) Wind tunnel test equipment
CN109307580B (en) A kind of synchronization gas bullet-wind Tunnel Measuring Pressure Tests device considering aerodynamic interference effect
CN103454056B (en) Fuel tank noise testing simulation brake test table
CN208013317U (en) Bow net detects model configuration
CN110221192B (en) New energy automobile integrated circuit chip test system and test method thereof
JP3842725B2 (en) Wind tunnel testing equipment
CN112014060A (en) Large-scale low-speed wind tunnel flutter test full-mode supporting device
CN113125176B (en) Single electromagnet test bench automatic check out system
JP2006170639A (en) Wind tunnel test system
CN115541266B (en) Automobile wheel wear resistance detector
CN104406765B (en) Test method for dynamic lift of automobile wiper and test device thereof
CN111751122B (en) Vehicle body attitude control system for road simulation test
KR100218780B1 (en) Windtunnel tester
CN111504843A (en) Catalyst coating falling rate detection device and method
CN208621289U (en) A kind of low-speed wind tunnel car model detection device
JP2993312B2 (en) Roll characteristic test equipment for vehicles
CN219573800U (en) Distortion testing machine
CN218211908U (en) Rack frock of car leaf spring simulation loading
CN210923094U (en) Adjustable motor vehicle check out test set cylinder
CN212228645U (en) Catalyst coating falling rate detection device
CN212059375U (en) Brake performance testing device of electric vehicle
JP3239740B2 (en) Air input measurement device for vehicles
CN218917530U (en) Electric automobile energy consumption testing arrangement
CN217331594U (en) Aircraft landing gear wheel brake response test device
CN110805811A (en) 5G mobile communication signal all-round test equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees