JP3147290B2 - Processing method of unidirectional silicon steel sheet - Google Patents

Processing method of unidirectional silicon steel sheet

Info

Publication number
JP3147290B2
JP3147290B2 JP18709696A JP18709696A JP3147290B2 JP 3147290 B2 JP3147290 B2 JP 3147290B2 JP 18709696 A JP18709696 A JP 18709696A JP 18709696 A JP18709696 A JP 18709696A JP 3147290 B2 JP3147290 B2 JP 3147290B2
Authority
JP
Japan
Prior art keywords
strain
steel sheet
silicon steel
processing
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18709696A
Other languages
Japanese (ja)
Other versions
JPH1032132A (en
Inventor
雅之 坂口
稔彦 田中
Original Assignee
川鉄電設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川鉄電設株式会社 filed Critical 川鉄電設株式会社
Priority to JP18709696A priority Critical patent/JP3147290B2/en
Publication of JPH1032132A publication Critical patent/JPH1032132A/en
Application granted granted Critical
Publication of JP3147290B2 publication Critical patent/JP3147290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小型変圧器の鉄芯
等に用いられて好適な方向性珪素鋼板の加工方法に関
し、とくに面折れの発生、電磁特性の劣化等の加工工程
のトラブルを解消した方向性珪素鋼板の加工方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a grain-oriented silicon steel sheet suitable for use as an iron core of a small transformer, and more particularly to a method for processing a trouble such as occurrence of surface breakage and deterioration of electromagnetic characteristics. The present invention relates to a method for processing a grain-oriented silicon steel sheet that has been eliminated.

【0002】[0002]

【従来の技術】変圧器の鉄芯として用いられる電磁鋼板
には、方向性珪素鋼板と無方向性珪素鋼板とがあり、用
途により使い分けられている。従来、小型トランスには
厳しい電磁特性が要求されない場合が多く、コスト面か
ら無方向性珪素鋼板が主として用いられてきた。しか
し、最近は、小型トランスにも、性能の向上や小型化軽
量化の要求が強く、磁気特性の優れた方向性珪素鋼板が
用いられるようになってきた。
2. Description of the Related Art A magnetic steel sheet used as an iron core of a transformer includes a directional silicon steel sheet and a non-oriented silicon steel sheet. Conventionally, small transformers often do not require strict electromagnetic characteristics, and non-oriented silicon steel sheets have been mainly used in terms of cost. However, recently, there has been a strong demand for small transformers to be improved in performance and to be reduced in size and weight, and oriented silicon steel sheets having excellent magnetic properties have been used.

【0003】巻き鉄芯とする場合には、鋼板は曲げ加工
を施されるが、小型トランスでは曲げ半径が必然的に小
さくなる。小型トランスに方向性珪素鋼板を用いると、
曲げ加工する際に面折れが発生する頻度が多くなる。面
折れが発生すると、その後のトランス製作工程に支障が
生じ、さらに、電磁特性も劣化し、問題となっていた。
[0003] In the case of a wound iron core, the steel plate is subjected to bending, but in the case of a small transformer, the bending radius is necessarily small. When a directional silicon steel sheet is used for a small transformer,
The frequency of occurrence of surface breakage during bending increases. When the surface breaks, the subsequent transformer manufacturing process is hindered, and the electromagnetic characteristics are also deteriorated, which is a problem.

【0004】一方、EI型トランス等の積み鉄芯とする
場合には、鋼板は打ち抜き加工を施されるが、一般的
に、打ち抜き加工前に鋼板をレベラーに通し、形状矯正
および/または張力制御を行っている。しかし、方向性
珪素鋼板の場合には、レベラーを通した際に、鋼板に面
折れが発生し、抜き打ち加工が行えなくなるという問題
があった。
On the other hand, in the case of using an iron core such as an EI type transformer, the steel sheet is punched. Generally, the steel sheet is passed through a leveler before the punching processing to correct the shape and / or control the tension. It is carried out. However, in the case of a directional silicon steel sheet, when the steel sheet passes through a leveler, there is a problem that the steel sheet is broken and punching cannot be performed.

【0005】珪素鋼板の折れについては、例えば、特開
平6-179977号公報に、鋼板中の窒化物の析出形態を制御
し鋼板の折れを改善する方法が提案されている。しか
し、この技術では、鋼板を緩やかに繰り返し曲げた場合
に発生する折れは改善できても、急速に曲げた場合に発
生する面折れについては全く改善できない。
[0005] Regarding the bending of a silicon steel sheet, for example, Japanese Patent Application Laid-Open No. 6-179977 proposes a method of improving the bending of a steel sheet by controlling the precipitation form of nitrides in the steel sheet. However, this technique can improve the bending that occurs when the steel sheet is bent slowly and repeatedly, but cannot improve the surface bending that occurs when the steel sheet is bent rapidly.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題点
を有利に解決し、歪速度0.01/sec以上の高速加工した場
合でも面折れ発生を防止できる方向性珪素鋼板の加工方
法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and proposes a method for processing a grain-oriented silicon steel sheet which can prevent the occurrence of surface breakage even at a high speed processing at a strain rate of 0.01 / sec or more. The purpose is to:

【0007】[0007]

【課題を解決するための手段】本発明者らは、方向性珪
素鋼板を高速加工する際に発生する面折れについて詳細
に調査した結果、発生する面折れは、従来言われている
ような粗大析出物起因の界面割れではなく、双晶変形起
因であることを突き止めた。双晶変形とは、結晶が応力
を受けて変形するとき、原子が双晶面を境界として鏡面
対称に配列を変えることにより起こる変形で、転位の発
生、移動によるすべり変形とは変形様式が異なる変形で
ある。
Means for Solving the Problems The present inventors have conducted a detailed investigation on the surface breaks occurring when high-speed processing of grain-oriented silicon steel sheets. It was found that the problem was not due to interfacial cracking due to precipitates but to twinning deformation. Twin deformation is a deformation that occurs when the crystal is deformed under stress by changing the arrangement of the atoms in mirror symmetry with the twin plane as a boundary, and the deformation mode is different from the slip deformation due to the generation and movement of dislocations It is a deformation.

【0008】さらに、本発明者らは、高速曲げ加工に際
しすべり変形が起きずに双晶変形が起きる原因につい
て、詳細に調査した結果、微細析出物等によりすべり変
形を起こす転位の発生、移動が抑制されている場合であ
り、すべり変形の代わりに双晶変形が生じ易くなるため
であることを見いだした。そこで、本発明者らは、転位
の易動度を高め、双晶変形を抑制するためには、予め軽
度の塑性歪を予備歪として製品加工前に材料に付与させ
ることが効果的であることを知見した。
Further, the present inventors have investigated in detail the cause of twin deformation without slip deformation during high-speed bending, and as a result, the generation and movement of dislocations that cause slip deformation due to fine precipitates and the like have been found. It has been found that this is the case where the deformation is suppressed and twin deformation is more likely to occur instead of slip deformation. In order to increase the mobility of dislocations and to suppress twinning deformation, the present inventors have found that it is effective to impart a slight plastic strain to the material before product processing as preliminary strain in advance. Was found.

【0009】つぎに、本発明の基礎となった実験結果に
ついて説明する。板厚0.20mmの方向性珪素鋼板製品板か
ら300 ×280mm の試験片を採取し、予備歪加工を行っ
た。予備歪加工は、直径の異なる丸棒に試験片を巻き付
けて歪量を変化させ、丸棒に巻き付けたのち、開放し、
開放後の曲げ曲率を測定し付与した塑性歪量とした。同
一条件の繰り返し数は10枚とした。なお、予備歪を付与
しない試験片も準備した。ついで、半数の試験片につい
て、予備歪とは逆方向に曲率を持つように、0.5secで20
mmφに曲げ加工した。曲げ加工後、面折れの有無を調査
し、面折れ発生率を求めた。残りの試験片については、
平坦化し、窒素雰囲気中で850 ℃×1hrの歪取り焼鈍を
実施し、鉄損W17/50 を測定し、予備歪加工無試験片に
対する鉄損の低下率をもとめ、鉄損劣化率とした。その
結果を図1に示す。
Next, the experimental results on which the present invention is based will be described. A 300 × 280 mm test piece was sampled from a directional silicon steel sheet product sheet having a sheet thickness of 0.20 mm, and pre-strained. Pre-strain processing is to change the amount of strain by wrapping a test piece around a round bar with a different diameter, wrapping it around a round bar, then releasing,
The flexural curvature after opening was measured and defined as the applied plastic strain. The number of repetitions of the same condition was set to 10. A test piece to which no preliminary strain was applied was also prepared. Then, for half of the test pieces, a curve
It was bent to mmφ. After the bending, the presence or absence of surface breaks was investigated, and the occurrence of surface breaks was determined. For the remaining specimens,
After flattening, performing a strain relief annealing at 850 ° C. for 1 hour in a nitrogen atmosphere, measuring the iron loss W 17/50 , determining the rate of decrease in iron loss with respect to the pre-strained untested specimen, and determining the iron loss deterioration rate. . The result is shown in FIG.

【0010】図1から、予備歪を付与することにより、
面折れの発生率は減少し、とくに塑性歪量が0.0002以上
の塑性歪を付与した場合に面折れ発生率が著しく減少し
0となることがわかる。塑性歪量が0.01を超えると鉄損
劣化率が10%以上となり、鉄損の劣化度合いが大きくな
る。さらに、本発明者らは、予備歪を付与する際の歪速
度の影響について検討した。板厚0.20mmの方向性珪素鋼
板製品板から300 ×280mm の試験片を採取し、直径60mm
φの丸棒に、試験片を巻き付けるときの時間、すなわち
歪速度を変化して巻き付け、塑性歪0.0033の予備歪を付
与し、予備歪加工による面折れの有無を調査し、面折れ
発生率を求めた。同一条件の繰り返し数は10枚とした。
その結果を図2に示す。
From FIG. 1, by applying a preliminary strain,
It can be seen that the incidence of surface breaks decreases, and particularly when plastic strain with a plastic strain amount of 0.0002 or more is applied, the occurrence of surface breaks decreases significantly to zero. If the amount of plastic strain exceeds 0.01, the iron loss deterioration rate becomes 10% or more, and the degree of iron loss deterioration increases. Furthermore, the present inventors have studied the effect of the strain rate when applying the preliminary strain. A 300 × 280 mm test piece was sampled from a 0.20 mm thick directional silicon steel product sheet, and the diameter was 60 mm.
The time when winding the test piece around the φ round bar, that is, changing the strain rate and winding, applying a pre-strain of 0.0033 plastic strain, investigating the presence or absence of surface breakage due to pre-strain processing, I asked. The number of repetitions of the same condition was set to 10.
The result is shown in FIG.

【0011】図2から、予備歪を付与する歪速度が0.01
/secを超えると面折れ発生率が高くなることがわかる。
本発明は、上記知見をもとに構成されたものである。す
なわち、本発明は、一方向性珪素鋼板に曲げ加工、打ち
抜き加工等の製品加工を施す一方向性珪素鋼板の加工方
法であって、該一方向性珪素鋼板に、予め予備歪を0.01
/sec以下の歪速度で付与したのち、該製品加工を施すこ
とを特徴とする面折れ発生を防止した一方向性珪素鋼板
の加工方法であり、前記予備歪は、0.0002〜0.01の塑性
歪であることが好ましい。
FIG. 2 shows that the strain rate at which the preliminary strain is applied is 0.01
It can be seen that when the rate exceeds / sec, the occurrence of surface breakage increases.
The present invention has been made based on the above findings. That is, the present invention is a method for processing a unidirectional silicon steel sheet, in which a product processing such as bending and punching is performed on the unidirectional silicon steel sheet.
/ sec or less is applied at a strain rate or less, is a method for processing a unidirectional silicon steel sheet that prevents the occurrence of surface breaks characterized by performing the product processing, the preliminary strain is a plastic strain of 0.0002 to 0.01. Preferably, there is.

【0012】[0012]

【発明の実施の形態】方向性珪素鋼板を変圧器等の鉄芯
に加工する際に、製品加工として、巻き鉄芯においては
曲げ加工、積み鉄芯においては打ち抜き加工が施され
る。本発明では、これらの製品加工を施す前に、予め軽
度の塑性歪を予備歪として、鋼板に付与する。この予備
歪を与えることにより、製品加工に際し、方向性珪素鋼
板に厳しい変形を加えてもすべり変形が生じ双晶が発生
しないため、面折れの発生を防止できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When a grain-oriented silicon steel sheet is processed into an iron core such as a transformer, a bending process is performed on a wound iron core and a punching process is performed on a stacked iron core. In the present invention, a mild plastic strain is preliminarily applied to a steel sheet as a pre-strain before processing these products. By giving this preliminary strain, slip deformation occurs even when severe deformation is applied to the grain-oriented silicon steel sheet during product processing, and twins do not occur, so that the occurrence of surface breakage can be prevented.

【0013】予備歪を付加する際の歪速度は、0.01/sec
以下とする。歪速度が0.01/secを超えると、方向性珪素
鋼板では双晶が発生する可能性が高くなり、予備歪付与
がすべり変形のための転位密度の増加に結びつかないた
め、予備歪付与の効果が減少する。付加する予備歪は、
0.0002以上0.01以下の塑性歪とするのが好ましい。予備
歪が0.0002未満では、面折れ発生を防止する効果が若干
少ない。また、予備歪が0.01を超える塑性歪では、歪取
り焼鈍を施しても付与した歪の開放が不十分となり、製
品の電磁特性がやや劣化する。
The strain rate at the time of adding the preliminary strain is 0.01 / sec.
The following is assumed. When the strain rate exceeds 0.01 / sec, the possibility of twinning increases in the grain-oriented silicon steel sheet, and the effect of pre-straining is reduced because pre-straining does not lead to an increase in dislocation density due to slip deformation. Decrease. The preliminary distortion to be added is
Preferably, the plastic strain is 0.0002 or more and 0.01 or less. If the preliminary strain is less than 0.0002, the effect of preventing the occurrence of surface breakage is slightly reduced. Further, in the case of a plastic strain having a preliminary strain of more than 0.01, release of the applied strain becomes insufficient even after the strain relief annealing, and the electromagnetic properties of the product are slightly deteriorated.

【0014】予備歪付与の方法は、曲げあるいは引張加
工等いずれでもよく、とくに限定しないが、コイルの場
合を想定し、曲げロールを通過させることにより連続的
に歪を付与するのが好ましい。本発明は、製品加工が、
2R/t<300 (R:曲げ曲率半径、t:板厚) を満足する
曲げ加工の場合にとくに好適である。2R/tが300 未満の
ような厳しい曲げ加工を必要とする場合には、とくに面
折れの発生頻度が高く、予備歪を製品加工前に付与する
ことで、面折れの発生は防止できる。
The method of applying the pre-strain may be any method such as bending or tensioning, and is not particularly limited. However, it is preferable that the strain is continuously applied by passing through a bending roll, assuming the case of a coil. In the present invention, the product processing is
It is particularly suitable for a bending process that satisfies 2R / t <300 (R: radius of curvature, t: plate thickness). When severe bending such as 2R / t of less than 300 is required, the occurrence of surface breakage can be prevented by applying a pre-strain before processing the product, especially since the frequency of surface breakage is high.

【0015】[0015]

【実施例】【Example】

(実施例1)0.20mm厚、55mm幅の方向性珪素鋼製品鋼帯
を、図3に示す本発明の実施に好適な加工装置により巻
き鉄芯を作製した。ペイオフリール7に巻かれたコイル
2からペイオフされた鋼帯1を、テンションパッド3を
介し、2個の曲げロール4aからなる予備歪付与装置4
により、予備歪を付与したのち、巻き取りリール5に巻
き取り巻き鉄芯6とした。曲げロール4aのロール径お
よび鋼帯送り速度をかえて表1に示す予備歪量および歪
速度とした。作製した巻き鉄芯を巻解いて長手方向10cm
あたりの面折れ発生本数を調査した。また、巻き鉄芯に
850 ℃×1hrの歪取り焼鈍を施し鉄損値を測定した。そ
れらの結果を表1に示す。
Example 1 A directional silicon steel product steel strip having a thickness of 0.20 mm and a width of 55 mm was formed into a wound iron core by a processing apparatus suitable for carrying out the present invention shown in FIG. The steel strip 1 paid off from the coil 2 wound on the payoff reel 7 is passed through a tension pad 3 to a preliminary strain applying device 4 comprising two bending rolls 4a.
After pre-straining was performed, the take-up reel 5 was used as the take-up core 5. The pre-strain amount and the strain rate shown in Table 1 were changed by changing the roll diameter of the bending roll 4a and the feeding speed of the steel strip. Unwind the wound iron core and make it 10cm in the longitudinal direction.
The number of breaks per unit was investigated. In addition, to wound iron core
An iron loss value was measured by performing a strain relief annealing at 850 ° C. for 1 hour. Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】さらに、同一寸法の方向性珪素鋼製品鋼帯
を、図4に示す加工装置により予備歪を付与せずに巻き
鉄芯を作製し、比較例とした。実施例と同様に長手方向
10cmあたりの面折れ発生本数および歪取り焼鈍後の鉄損
値を調査し、表1に示す。本発明範囲の本発明例は、比
較例に比べ面折れ本数も低く、面折れの発生を防止で
き、また、鉄損値の劣化も少ない。
Further, a rolled iron core was produced from a directional silicon steel product steel strip having the same dimensions by using a processing apparatus shown in FIG. Longitudinal direction as in the example
The number of surface breaks per 10 cm and the iron loss value after strain relief annealing were investigated. The examples of the present invention within the scope of the present invention have a lower number of surface breaks as compared with the comparative example, can prevent the occurrence of surface breaks, and have less deterioration of iron loss values.

【0018】(実施例2)0.20mm厚、55mm幅の方向性珪
素鋼製品鋼帯に予備歪をとして、曲げロールで0.005 の
塑性歪を歪速度0.005/sec で付与したのち、レベラーに
より形状矯正を行い、打ち抜き加工を施し、E型積み鉄
芯を製作した。予備歪を付与することによりレベラー矯
正時に面折れの発生はなかった。一方、予備歪無しの従
来例では、レベラー矯正時にも面折れの発生し、抜き打
ち加工が困難となった。
(Example 2) As a preliminary strain is applied to a directional silicon steel product steel strip having a thickness of 0.20 mm and a width of 55 mm, a plastic strain of 0.005 is applied by a bending roll at a strain rate of 0.005 / sec, and the shape is corrected by a leveler. Then, punching was performed to produce an E-shaped iron core. By applying the preliminary strain, there was no occurrence of surface breakage during leveler correction. On the other hand, in the conventional example having no preliminary strain, the surface was broken at the time of leveler correction, and punching was difficult.

【0019】[0019]

【発明の効果】本発明によれば、方向性珪素鋼板を高速
加工した場合でも面折れ発生を防止でき、しかも磁気特
性の劣化も少ない。また、本発明によれば、製作工程に
おけるトラブルの発生を防止して製作能率を向上でき、
方向性珪素鋼板を小型トランス用材料として有利に適用
できるという著しい効果を奏する。
According to the present invention, even when a grain-oriented silicon steel sheet is processed at high speed, the occurrence of surface breakage can be prevented, and the deterioration of the magnetic characteristics is also small. Further, according to the present invention, it is possible to improve the production efficiency by preventing the occurrence of trouble in the production process,
A remarkable effect is obtained that the grain-oriented silicon steel sheet can be advantageously applied as a material for a small transformer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】面折れ発生率、鉄損劣化率と予備歪加工で付与
された塑性歪量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the occurrence rate of surface breakage, the iron loss deterioration rate, and the amount of plastic strain applied in preliminary strain processing.

【図2】面折れ発生率と予備歪付与時の歪速度の関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the occurrence rate of surface breaking and the strain rate at the time of applying preliminary strain.

【図3】本発明の実施に好適な巻き鉄芯加工装置の概略
側面図である。
FIG. 3 is a schematic side view of a wound iron core processing apparatus suitable for carrying out the present invention.

【図4】従来の巻き鉄芯加工装置の概略側面図である。FIG. 4 is a schematic side view of a conventional wound iron core processing apparatus.

【符号の説明】[Explanation of symbols]

1 鋼帯 2 コイル 3 テンションパッド 4 予備歪付与装置 4a 曲げロール 5 巻き取りリール 6 鉄芯 7 ペイオフリール DESCRIPTION OF SYMBOLS 1 Steel strip 2 Coil 3 Tension pad 4 Prestraining device 4a Bending roll 5 Take-up reel 6 Iron core 7 Payoff reel

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 41/00 - 41/12 H01F 1/00 - 1/117 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01F 41/00-41/12 H01F 1/00-1/117

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一方向性珪素鋼板に曲げ加工、打ち抜き
加工等の製品加工を施す一方向性珪素鋼板の加工方法で
あって、該一方向性珪素鋼板に、予め予備歪を0.01/sec
以下の歪速度で付与したのち、該製品加工を施すことを
特徴とする面折れ発生を防止した一方向性珪素鋼板の加
工方法。
1. A method for processing a unidirectional silicon steel sheet, wherein a product processing such as bending and punching is performed on the unidirectional silicon steel sheet, wherein a preliminary strain of 0.01% / sec.
A method for processing a unidirectional silicon steel sheet in which surface breakage is prevented, wherein the processing is performed after the application at the following strain rate.
【請求項2】 前記予備歪が、0.0002〜0.01の塑性歪で
あることを特徴とする請求項1記載の一方向性珪素鋼板
の加工方法。
2. The method according to claim 1, wherein the preliminary strain is a plastic strain of 0.0002 to 0.01.
JP18709696A 1996-07-17 1996-07-17 Processing method of unidirectional silicon steel sheet Expired - Fee Related JP3147290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18709696A JP3147290B2 (en) 1996-07-17 1996-07-17 Processing method of unidirectional silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18709696A JP3147290B2 (en) 1996-07-17 1996-07-17 Processing method of unidirectional silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH1032132A JPH1032132A (en) 1998-02-03
JP3147290B2 true JP3147290B2 (en) 2001-03-19

Family

ID=16200042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18709696A Expired - Fee Related JP3147290B2 (en) 1996-07-17 1996-07-17 Processing method of unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JP3147290B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4134787A1 (en) * 1991-10-22 1993-04-29 Sicom Ges Fuer Sensor Und Vors Elongated element
FR2698881B1 (en) * 1992-12-04 1995-01-13 Accumulateurs Fixes Hydrurable material for negative electrode of nickel-hydride accumulator.
EP3570305A4 (en) * 2017-01-10 2020-08-19 Nippon Steel Corporation Wound core and method for manufacturing same

Also Published As

Publication number Publication date
JPH1032132A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
RU2537059C2 (en) Regular grain-oriented steel sheet and method of its manufacturing
EP2770075B1 (en) Grain-oriented electrical steel sheet and method of producing the same
EP2602339B1 (en) Grain-oriented electrical steel sheet, and method for producing same
EP1577405B1 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
JP4120121B2 (en) Method for producing grain-oriented electrical steel sheet
JP3147290B2 (en) Processing method of unidirectional silicon steel sheet
CN112912186B (en) Non-oriented magnetic steel sheet and method for manufacturing laminated iron core using same
JP6614398B1 (en) Oriented electrical steel sheet
KR100779580B1 (en) Manufacturing method of grain-oriented electrical steel sheet having low core loss and high magnetic flux density
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
KR960005227B1 (en) Method of magnetic domain microscopic
JP7286889B1 (en) Steel hoop material and manufacturing method thereof
JP5779948B2 (en) Method for producing grain-oriented electrical steel sheet
WO2023167303A1 (en) Method for producing grain-oriented electromagnetic steel sheet
EP4343009A1 (en) Wound core and wound core manufacturing method
EP4335938A1 (en) Method for producing grain-oriented electromagnetic steel sheet
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics
JP2001323322A (en) Final finish annealing method for grain oriented silicon steel strip
JPH02232319A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
EP4060062A1 (en) Method for manufacturing non-oriented electrical steel
KR100340644B1 (en) Method for manufacturing ultra thin silicon steel sheet
EP0423623A1 (en) Process for preparing wound core having low core loss
JP3360236B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
EP4060059A1 (en) Method for producing non-oriented electrical steel sheet
JP3635848B2 (en) Method for producing grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees