JP3144340B2 - Vibrating gas density meter - Google Patents

Vibrating gas density meter

Info

Publication number
JP3144340B2
JP3144340B2 JP08624197A JP8624197A JP3144340B2 JP 3144340 B2 JP3144340 B2 JP 3144340B2 JP 08624197 A JP08624197 A JP 08624197A JP 8624197 A JP8624197 A JP 8624197A JP 3144340 B2 JP3144340 B2 JP 3144340B2
Authority
JP
Japan
Prior art keywords
cylindrical
peripheral surface
measurement fluid
outer peripheral
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08624197A
Other languages
Japanese (ja)
Other versions
JPH10281970A (en
Inventor
廣 西野
順一 鈴木
繁男 安田
隆一 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP08624197A priority Critical patent/JP3144340B2/en
Priority to EP98911066A priority patent/EP0909943A4/en
Priority to PCT/JP1998/001404 priority patent/WO1998045681A1/en
Priority to US09/194,708 priority patent/US6029501A/en
Publication of JPH10281970A publication Critical patent/JPH10281970A/en
Application granted granted Critical
Publication of JP3144340B2 publication Critical patent/JP3144340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、感度が向上され、
圧損が少ない振動式ガス密度計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a vibrating gas density meter having a small pressure loss.

【0002】[0002]

【従来の技術】図4は、従来より一般に使用されている
従来例の構成説明図で、例えば、カタログ名;「DG8
形 バイブロ ガス分析計」の4頁、発行日;1990
年7月15日、発行所;横河電機株式会社に示されてい
る。図5は図4のA−A断面図、図6,図7は図4の動
作説明図である。
2. Description of the Related Art FIG. 4 is a diagram for explaining the structure of a conventional example generally used in the prior art. For example, a catalog name: "DG8
Form 4 Vibro Gas Analyzer ”, date of issue; 1990
July 15, 2015, issued by Yokogawa Electric Corporation. FIG. 5 is a sectional view taken along line AA of FIG. 4, and FIGS. 6 and 7 are operation explanatory diagrams of FIG.

【0003】図4、図5において、1は中心ブロックで
ある。測定流体の流量が少なくて済むように設けられた
ものである。2は、中心ブロック1に内埋された、温度
補償用の測温抵抗体である。3は、測温抵抗体2を同心
円状に内蔵する内筒である。
In FIGS. 4 and 5, reference numeral 1 denotes a central block. It is provided so that the flow rate of the measurement fluid may be small. Reference numeral 2 denotes a temperature measuring resistor for temperature compensation embedded in the center block 1. Reference numeral 3 denotes an inner cylinder in which the resistance thermometer 2 is built in a concentric shape.

【0004】4は、内筒3を同心円状に内蔵する外筒で
ある。5は、内筒3と外筒4との間に、同心円状に設け
られた薄肉の円筒振動子である。6は、円筒振動子5を
励振する励振素子である。この場合は、圧電素子が使用
されている。
[0004] Reference numeral 4 denotes an outer cylinder in which the inner cylinder 3 is concentrically housed. Reference numeral 5 denotes a thin cylindrical vibrator provided concentrically between the inner cylinder 3 and the outer cylinder 4. Reference numeral 6 denotes an excitation element that excites the cylindrical vibrator 5. In this case, a piezoelectric element is used.

【0005】7は、外筒4を内蔵するケースである。8
は、外筒4の一端とケース7とを固定するスリーブであ
る。この場合は、硬質のテフロンが使用されている。
[0005] Reference numeral 7 denotes a case in which the outer cylinder 4 is built. 8
Is a sleeve for fixing one end of the outer cylinder 4 to the case 7. In this case, hard Teflon is used.

【0006】9は、内筒3とスリーブ8とをシールする
第1のOリングである。11は、スリーブ8と外筒4と
をシールする第2のOリングである。12は、外筒4の
他端とケース7とを固定する防振ゴムである。
Reference numeral 9 denotes a first O-ring for sealing the inner cylinder 3 and the sleeve 8. Reference numeral 11 denotes a second O-ring that seals the sleeve 8 and the outer cylinder 4. Reference numeral 12 denotes an anti-vibration rubber for fixing the other end of the outer cylinder 4 to the case 7.

【0007】13は、外筒4の底部14に設けられ、円
筒振動子5の内周面へ測定流体を供給するリング状の内
周面供給路である。15は、外筒4の底部14に設けら
れ、内周面供給路13の外側の円周上に、励振素子6を
避けて配置され、円筒振動子5の外周面へ測定流体を供
給する外周面供給孔である。この場合は、4個設けられ
ている。
Reference numeral 13 denotes a ring-shaped inner peripheral surface supply passage which is provided on the bottom portion 14 of the outer cylinder 4 and supplies a measurement fluid to the inner peripheral surface of the cylindrical vibrator 5. An outer periphery 15 is provided on the bottom portion 14 of the outer cylinder 4 and is arranged on the outer periphery of the inner peripheral surface supply path 13 so as to avoid the excitation element 6 and supplies the measurement fluid to the outer peripheral surface of the cylindrical vibrator 5. This is a surface supply hole. In this case, four are provided.

【0008】以上の構成において、図6,図7に示す如
く、測定ガスは内筒3に入り、内筒3の下部で折り返し
て、外筒4の底部14に入り、内周面供給路13と外周
面供給孔15とに、分流する。円筒振動子5の内外周面
を通って外筒4より抜ける。
In the above configuration, as shown in FIGS. 6 and 7, the measurement gas enters the inner cylinder 3, turns back at the lower part of the inner cylinder 3, enters the bottom 14 of the outer cylinder 4, and enters the inner peripheral surface supply path 13. And the outer peripheral surface supply hole 15. It passes through the inner and outer peripheral surfaces of the cylindrical vibrator 5 and comes out of the outer cylinder 4.

【0009】しかして、円筒振動子5の共振周波数が、
円筒周囲のガス密度によって変化することを利用して、
円筒振動子5の共振周波数を測定して測定ガス流体の密
度を測定する。
Thus, the resonance frequency of the cylindrical vibrator 5 becomes
Utilizing that it changes depending on the gas density around the cylinder,
The density of the measurement gas fluid is measured by measuring the resonance frequency of the cylindrical vibrator 5.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、この様
な装置においては、 (1)外周面供給孔15は、内周面供給路13の外側の
円周上に、4個設けられているが、より高感度な振動式
ガス密度計を開発しようとすると、4個の外周面供給孔
15の各々の間に生ずる測定流体の滞留部分が、円筒振
動子5の応答特性に悪影響を及ぼす事が判明してきた。 (2)測定管路に直接に挿入する場合を想定して、測定
ガスの入口と出口とを近接して設ける様にしたが、測定
流体の流路が折り返す事になり圧力損失が大きくなる。
圧力損失が大きくなると、密度測定に使用された測定流
体は、圧力低下により、排ガスとして大気中に放出され
る等の処分が成され、近年の地球環境の保護の動向に反
する。また、測温抵抗体2の温度検出により、有効な温
度補償を得るために、測定流体の流路が測温抵抗体2の
長さに対応して長くされているが、この長さも圧力損失
の原因になる。 (3)中心ブロック1、内筒3、円筒振動子5と外筒4
とが、同心円状に組み立てられており、構造が複雑であ
り、加工、組み立てコストが高価となる。
However, in such an apparatus, (1) four outer peripheral surface supply holes 15 are provided on the outer circumference of the inner peripheral surface supply passage 13; In an attempt to develop a more sensitive vibration type gas density meter, it has been found that the stagnation portion of the measurement fluid generated between each of the four outer peripheral surface supply holes 15 adversely affects the response characteristics of the cylindrical vibrator 5. I've been. (2) The inlet and outlet of the measurement gas are provided close to each other, assuming that they are directly inserted into the measurement pipe. However, the flow path of the measurement fluid is turned back, and the pressure loss increases.
When the pressure loss increases, the measurement fluid used for the density measurement is disposed of, for example, being discharged into the atmosphere as exhaust gas due to a decrease in pressure, which is against the trend of global environmental protection in recent years. Further, in order to obtain effective temperature compensation by detecting the temperature of the resistance temperature detector 2, the flow path of the measurement fluid is made longer corresponding to the length of the resistance temperature detector 2, but this length is also a pressure loss. Cause (3) Central block 1, inner cylinder 3, cylindrical vibrator 5, and outer cylinder 4
Are assembled concentrically, the structure is complicated, and the processing and assembly costs are high.

【0011】本発明は、これらの問題点を解決するもの
である。本発明の目的は、感度が向上され、圧損が少な
い振動式ガス密度計を提供するにある。
The present invention solves these problems. An object of the present invention is to provide a vibrating gas density meter having improved sensitivity and reduced pressure loss.

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
に、本発明は、円筒振動子と、該円筒振動子の一端が一
端側の底部に固定され該円筒振動子が同心円状に内蔵さ
れた筒体本体と、前記筒体本体の底部に設けられ前記円
筒振動子を励振する励振素子と、前記筒体本体の底部に
設けられ前記円筒振動子の内周面へ測定流体を供給する
リング状の内周面供給路と、前記筒体本体の底部に設け
られ該内周面供給路の外側の円周上に前記励振素子を避
けて配置され前記円筒振動子の外周面へ測定流体を供給
する外周面供給孔と、前記筒体本体の両端が支持され該
筒体本体が同心円状に内蔵されるケースとを具備する振
動式ガス密度計において、前記筒体本体の底部に設けら
れ円筒振動子の外周面への測定流体の供給の際に測定流
体の滞留部が発生しないような所定数が設けられた外周
面供給孔と、前記筒体本体の底部側の前記ケースに一端
が設けられ他端が前記内周面供給路と前記所定数の外周
面供給孔に連通され測定流体が導入される測定流体導入
路と、前記筒体本体の他端側の前記ケースに一端が設け
られ他端が前記筒体本体の他端側に連通し測定流体が排
出される測定流体排出路とを具備したことを特徴とする
振動式ガス密度計を構成したものである。
In order to achieve this object, the present invention provides a cylindrical vibrator and one end of the cylindrical vibrator fixed to the bottom on one end side, and the cylindrical vibrator is built in a concentric shape. A cylindrical body, an excitation element provided at the bottom of the cylindrical body to excite the cylindrical vibrator, and a ring provided at the bottom of the cylindrical body to supply a measurement fluid to the inner peripheral surface of the cylindrical vibrator Shaped internal peripheral surface supply path, and provided at the bottom of the cylindrical body main body, on the outer circumference of the internal peripheral surface supply path, arranged so as to avoid the excitation element, and the measurement fluid to the external peripheral surface of the cylindrical vibrator. A vibrating gas density meter, comprising: an outer peripheral surface supply hole for supplying; and a case in which both ends of the cylindrical body are supported and the cylindrical body is built in concentrically, a cylinder provided at the bottom of the cylindrical body. A stagnation part of the measurement fluid occurs when the measurement fluid is supplied to the outer peripheral surface of the vibrator A predetermined number of outer peripheral surface supply holes, and one end provided in the case on the bottom side of the cylindrical body, and the other end communicating with the inner peripheral surface supply passage and the predetermined number of outer peripheral surface supply holes. A measurement fluid introduction passage into which the measurement fluid is introduced, and a measurement in which one end is provided in the case on the other end side of the cylindrical body and the other end is communicated with the other end side of the cylindrical body to discharge the measurement fluid. A vibratory gas density meter comprising a fluid discharge path is provided.

【0013】[0013]

【作用】以上の構成において、測定流体は測定流体導入
路より、筒体本体に入り、内周面供給路と所定数の外周
面供給孔とに分岐し、円筒振動子の内外周面を通って、
測定流体排出路より排出される。しかして、円筒振動子
の共振周波数が、円筒周囲のガス密度によって変化する
ことを利用して、円筒振動子の共振周波数を測定して測
定ガス流体の密度を測定する事が出来る。以下、実施例
に基づき詳細に説明する。
In the above construction, the measurement fluid enters the cylinder body through the measurement fluid introduction passage, branches into the inner peripheral surface supply passage and a predetermined number of outer peripheral surface supply holes, and passes through the inner and outer peripheral surfaces of the cylindrical vibrator. hand,
It is discharged from the measurement fluid discharge path. Thus, utilizing the fact that the resonance frequency of the cylindrical vibrator changes depending on the gas density around the cylinder, the resonance frequency of the cylindrical vibrator can be measured to measure the density of the measurement gas fluid. Hereinafter, a detailed description will be given based on embodiments.

【0014】[0014]

【発明の実施の形態】図1は本発明の一実施例の要部構
成説明図、図2は図1の要部詳細説明図、図3は図2の
B−B断面図である。図において、図4と同一記号の構
成は同一機能を表わす。以下、図4と相違部分のみ説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of a main part of an embodiment of the present invention, FIG. 2 is a detailed explanatory view of a main part of FIG. 1, and FIG. 3 is a sectional view taken along the line BB of FIG. In the figure, the configuration of the same symbol as FIG. 4 represents the same function. Hereinafter, only differences from FIG. 4 will be described.

【0015】21は、円筒振動子5の一端が一端側の底
部22に固定され、円筒振動子5が同心円状に内蔵され
た筒体本体である。23は、筒体本体の底部22に設け
られ、円筒振動子5の外周面への測定流体の供給の際
に、測定流体の滞留部が発生しないような所定数が設け
られた外周面供給孔である。この場合は、8個の外周面
供給孔23が設けられている。
Reference numeral 21 denotes a cylindrical main body in which one end of the cylindrical vibrator 5 is fixed to a bottom portion 22 on one end side, and the cylindrical vibrator 5 is built in concentrically. Reference numeral 23 denotes an outer peripheral surface supply hole provided on the bottom portion 22 of the cylindrical main body and provided with a predetermined number so that a stagnant portion of the measurement fluid is not generated when the measurement fluid is supplied to the outer peripheral surface of the cylindrical vibrator 5. It is. In this case, eight outer peripheral surface supply holes 23 are provided.

【0016】24は、筒体本体の底部22側のケース7
に一端が設けられ、他端が前記内周面供給路13と所定
数の外周面供給孔23に連通され測定流体が導入される
測定流体導入路である。25は、筒体本体21の他端側
のケース7に一端が設けられ、他端が前記筒体本体21
の他端側に連通し測定流体が排出される測定流体排出路
である。
Reference numeral 24 denotes a case 7 on the bottom 22 side of the cylindrical body.
Is provided with one end, and the other end is connected to the inner peripheral surface supply passage 13 and a predetermined number of outer peripheral surface supply holes 23 to be a measurement fluid introduction passage through which a measurement fluid is introduced. 25 is provided with one end on the case 7 on the other end side of the cylindrical body 21 and the other end on the cylindrical body 21.
Is a measurement fluid discharge passage that communicates with the other end of the measurement fluid and discharges the measurement fluid.

【0017】以上の構成において、図1に示す如く、測
定流体は、測定流体導入路24より、筒体本体21に入
り、内周面供給路13と8個の外周面供給孔23とに分
岐し、円筒振動子5の内外周面を通って、測定流体排出
路25より抜ける。
In the above configuration, as shown in FIG. 1, the measurement fluid enters the cylinder main body 21 through the measurement fluid introduction passage 24 and branches into the inner peripheral surface supply passage 13 and the eight outer peripheral surface supply holes 23. Then, it passes through the inner and outer peripheral surfaces of the cylindrical vibrator 5 and exits from the measurement fluid discharge passage 25.

【0018】しかして、円筒振動子5の共振周波数が、
円筒周囲のガス密度によって変化することを利用して、
円筒振動子5の共振周波数を測定して測定ガス流体の密
度を測定する事が出来る。
Thus, the resonance frequency of the cylindrical vibrator 5 becomes
Utilizing that it changes depending on the gas density around the cylinder,
By measuring the resonance frequency of the cylindrical vibrator 5, the density of the measurement gas fluid can be measured.

【0019】この結果、 (1)外周面供給孔23が、筒体本体の底部22に設け
られ、円筒振動子5の外周面への測定流体の供給の際
に、測定流体の滞留部が発生しないような所定数が設け
られたので、測定流体のコンタミネーションをなくす事
が出来、応答特性の改善が図れ、高感度な振動式ガス密
度計が得られる。
As a result, (1) the outer peripheral surface supply hole 23 is provided in the bottom portion 22 of the cylindrical body, and when the measuring fluid is supplied to the outer peripheral surface of the cylindrical vibrator 5, a stagnation portion of the measurement fluid is generated. Since the predetermined number is set so as not to be contaminated, contamination of the measurement fluid can be eliminated, response characteristics can be improved, and a highly sensitive vibrating gas density meter can be obtained.

【0020】(2)測定管路に直接に挿入出来るよう
に、測定ガスの入口と出口とを近接して設けることを止
め、筒体本体21の一端側に測定流体導入路24が設け
られ、他端側に測定流体排出路25が設けられ、測定流
体の流路が折り返す事を廃止したので、流路抵抗が少な
くなり、圧力損失が小さくなる。更に、測定流体の滞留
部が発生しないような所定数の外周面供給孔23が設け
られたので、圧力損失が更に小さくなる。
(2) The measurement gas inlet and outlet are not provided close to each other so that they can be directly inserted into the measurement pipe, and a measurement fluid introduction passage 24 is provided at one end of the cylindrical body 21. Since the measurement fluid discharge passage 25 is provided on the other end side and the return of the flow passage of the measurement fluid is eliminated, the flow passage resistance is reduced and the pressure loss is reduced. Further, since a predetermined number of outer peripheral surface supply holes 23 are provided so as not to generate a stagnation portion of the measurement fluid, the pressure loss is further reduced.

【0021】このため、振動式ガス密度計の入出力間の
差圧が少なくても測定することが出来、測定対象の循環
系中に振動式ガス密度計を配置することが出来るので、
特別なサンプリング装置が不要になり、設置コストが低
減し得る振動式ガス密度計が得られる。
For this reason, it is possible to measure even if the differential pressure between the input and output of the vibrating gas density meter is small, and the vibrating gas density meter can be arranged in the circulating system to be measured.
This eliminates the need for a special sampling device, and provides a vibrating gas density meter that can reduce installation costs.

【0022】特に、例えば、水素冷却発電機内の水素濃
度測定等のような危険な測定流体の測定に好適な振動式
ガス密度計が得られる。
In particular, a vibrating gas density meter suitable for measuring a dangerous measuring fluid such as a hydrogen concentration measurement in a hydrogen-cooled generator can be obtained.

【0023】(3)さらに、圧力損失が小さくて、振動
式ガス密度計の入出力間の差圧が少なくても測定するこ
とが出来るため、振動式ガス密度計の出力部分の測定流
体を、低圧にする必要が無くなるので、測定済みの測定
流体を再利用出来る部分に戻す事が容易に出来るので、
排ガスとして大気中に放出処分する必要がなく、近年の
地球環境の保護の趨勢にも合致することとなり、使用コ
ストを低減出来る振動式ガス密度計が得られる。
(3) Furthermore, since the pressure loss is small and the pressure difference between the input and output of the vibrating gas density meter can be measured even if it is small, the fluid to be measured at the output portion of the vibrating gas density meter is Since there is no need to reduce the pressure, it is easy to return the measured fluid to a reusable part.
There is no need to discharge and dispose as exhaust gas to the atmosphere, which meets recent trends in the protection of the global environment, and a vibrating gas density meter that can reduce the use cost can be obtained.

【0024】特に、例えば、都市ガス工業でのLNGの
熱量調整ラインで、採取元のラインに測定後のLNGを
戻す事もできる等に好適な振動式ガス密度計が得られ
る。
Particularly, for example, a vibrating gas density meter suitable for, for example, returning the measured LNG to the sampling source line in the LNG calorific value adjustment line in the city gas industry is obtained.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明によ
れば、 (1)外周面供給孔が、筒体本体の底部に設けられ、円
筒振動子の外周面への測定流体の供給の際に、測定流体
の滞留部が発生しないような所定数が設けられたので、
測定流体のコンタミネーションをなくす事が出来、応答
特性の改善が図れ、高感度な振動式ガス密度計が得られ
る。
As described in detail above, according to the present invention, (1) an outer peripheral surface supply hole is provided at the bottom of the cylindrical body to supply the measurement fluid to the outer peripheral surface of the cylindrical vibrator. At this time, since a predetermined number is provided so that the stagnation portion of the measurement fluid does not occur,
The contamination of the measurement fluid can be eliminated, the response characteristics can be improved, and a highly sensitive vibrating gas density meter can be obtained.

【0026】(2)測定管路に直接に挿入出来るよう
に、測定ガスの入口と出口とを近接して設けることを止
め、筒体本体の一端側に測定流体導入路が設けられ、他
端側に測定流体排出路が設けられ、測定流体の流路が折
り返す事を廃止したので、流路抵抗が少なくなり、圧力
損失が小さくなる。更に、測定流体の滞留部が発生しな
いような所定数の外周面供給孔が設けられたので、圧力
損失が更に小さくなる。
(2) The inlet and outlet of the measurement gas are not provided close to each other so that they can be directly inserted into the measurement pipe, and a measurement fluid introduction path is provided at one end of the cylindrical body, and the other end is provided. Since the measurement fluid discharge path is provided on the side and the return of the flow path of the measurement fluid is eliminated, the flow path resistance is reduced and the pressure loss is reduced. Further, since a predetermined number of outer peripheral surface supply holes are provided so as not to generate a stagnation portion of the measurement fluid, pressure loss is further reduced.

【0027】このため、振動式ガス密度計の入出力間の
差圧が少なくても測定することが出来、測定対象の循環
系中に振動式ガス密度計を配置することが出来るので、
特別なサンプリング装置が不要になり、設置コストが低
減し得る振動式ガス密度計が得られる。
For this reason, it is possible to measure even if the differential pressure between the input and output of the vibrating gas density meter is small, and the vibrating gas density meter can be arranged in the circulating system to be measured.
This eliminates the need for a special sampling device, and provides a vibrating gas density meter that can reduce installation costs.

【0028】特に、例えば、水素冷却発電機内の水素濃
度測定等のような危険な測定流体の測定に好適な振動式
ガス密度計が得られる。
In particular, a vibrating gas density meter suitable for measuring a dangerous measuring fluid such as a hydrogen concentration measurement in a hydrogen-cooled generator can be obtained.

【0029】(3)さらに、圧力損失が小さくて、振動
式ガス密度計の入出力間の差圧が少なくても測定するこ
とが出来るため、振動式ガス密度計の出力部分の測定流
体を、低圧にする必要が無くなるので、測定済みの測定
流体を再利用出来る部分に戻す事が容易に出来るので、
排ガスとして大気中に放出処分する必要がなく、近年の
地球環境の保護の趨勢にも合致することとなり、使用コ
ストを低減出来る振動式ガス密度計が得られる。
(3) Further, since the pressure loss is small and the pressure can be measured even when the differential pressure between the input and output of the vibrating gas density meter is small, the fluid to be measured at the output portion of the vibrating gas density meter is Since there is no need to reduce the pressure, it is easy to return the measured fluid to a reusable part.
There is no need to discharge and dispose as exhaust gas to the atmosphere, which meets recent trends in the protection of the global environment, and a vibrating gas density meter that can reduce the use cost can be obtained.

【0030】特に、例えば、都市ガス工業でのLNGの
熱量調整ラインで、採取元のラインに測定後のLNGを
戻す事もできる等に好適な振動式ガス密度計が得られ
る。
In particular, for example, a vibration type gas density meter suitable for returning the measured LNG to the line from which the LNG was collected in the LNG calorific value adjustment line in the city gas industry can be obtained.

【0031】従って、本発明によれば、感度が向上さ
れ、圧損が少ない振動式ガス密度計を実現することが出
来る。
Therefore, according to the present invention, it is possible to realize a vibration-type gas density meter with improved sensitivity and reduced pressure loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成説明図である。FIG. 1 is an explanatory diagram of a configuration of an embodiment of the present invention.

【図2】図1の要部詳細図である。FIG. 2 is a detailed view of a main part of FIG. 1;

【図3】図2のB−B断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 2;

【図4】従来より一般に使用されている従来例の構成説
明図である。
FIG. 4 is an explanatory diagram of a configuration of a conventional example generally used in the related art.

【図5】図4のA−A断面図である。FIG. 5 is a sectional view taken along line AA of FIG. 4;

【図6】図4の動作説明図である。FIG. 6 is an operation explanatory diagram of FIG. 4;

【図7】図4の動作原理説明図である。FIG. 7 is an explanatory view of the operation principle of FIG. 4;

【符号の説明】[Explanation of symbols]

1 中心ブロック 2 測温抵抗体 5 円筒振動子 6 励振素子 7 ケース 13 内周面供給路 21 筒体本体 22 底部 23 外周面供給路 24 測定流体導入路 25 測定流体排出路 DESCRIPTION OF SYMBOLS 1 Central block 2 Resistance temperature detector 5 Cylindrical vibrator 6 Exciting element 7 Case 13 Inner peripheral surface supply path 21 Cylindrical body 22 Bottom 23 Outer peripheral surface supply path 24 Measurement fluid introduction path 25 Measurement fluid discharge path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川村 隆一 東京都武蔵野市中町2丁目9番32号 横 河電機株式会社内 (56)参考文献 特開 平4−296635(JP,A) 特開 昭64−84132(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 9/00 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Ryuichi Kawamura 2-9-132 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Corporation (56) References JP-A-4-296635 (JP, A) JP-A Sho 64-84132 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 9/00 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒振動子と、 該円筒振動子の一端が一端側の底部に固定され該円筒振
動子が同心円状に内蔵された筒体本体と、 前記筒体本体の底部に設けられ前記円筒振動子を励振す
る励振素子と、 前記筒体本体の底部に設けられ前記円筒振動子の内周面
へ測定流体を供給するリング状の内周面供給路と、 前記筒体本体の底部に設けられ該内周面供給路の外側の
円周上に前記励振素子を避けて配置され前記円筒振動子
の外周面へ測定流体を供給する外周面供給孔と、 前記筒体本体の両端が支持され該筒体本体が同心円状に
内蔵されるケースとを具備する振動式ガス密度計におい
て、 前記筒体本体の底部に設けられ円筒振動子の外周面への
測定流体の供給の際に測定流体の滞留部が発生しないよ
うな所定数が設けられた外周面供給孔と、 前記筒体本体の底部側の前記ケースに一端が設けられ他
端が前記内周面供給路と前記所定数の外周面供給孔に連
通され測定流体が導入される測定流体導入路と、 前記筒体本体の他端側の前記ケースに一端が設けられ他
端が前記筒体本体の他端側に連通し測定流体が排出され
る測定流体排出路とを具備したことを特徴とする振動式
ガス密度計。
A cylindrical vibrator; one end of the cylindrical vibrator fixed to a bottom on one end side; a cylindrical main body in which the cylindrical vibrator is concentrically housed; and a cylindrical main body provided at a bottom of the cylindrical main body. An excitation element that excites the cylindrical vibrator; a ring-shaped inner peripheral surface supply path that is provided at the bottom of the cylindrical main body and supplies a measurement fluid to the inner peripheral surface of the cylindrical vibrator; An outer peripheral surface supply hole provided on the outer circumference of the inner peripheral surface supply path so as to avoid the excitation element and supplying a measurement fluid to the outer peripheral surface of the cylindrical vibrator; and both ends of the cylindrical main body are supported. And a case in which the cylindrical body is concentrically housed, wherein the measuring fluid is provided at the bottom of the cylindrical body when the measuring fluid is supplied to the outer peripheral surface of the cylindrical vibrator. An outer peripheral surface supply hole provided with a predetermined number so that no stagnation portion is generated; A measurement fluid introduction path through which one end is provided in the case on the bottom side of the cylindrical body and the other end is communicated with the inner peripheral surface supply path and the predetermined number of outer peripheral surface supply holes and a measurement fluid is introduced; A vibrating gas, comprising: a measurement fluid discharge path through which one end is provided in the case on the other end side of the body main body and the other end communicates with the other end side of the cylindrical body main body to discharge a measurement fluid. Densitometer.
JP08624197A 1997-04-04 1997-04-04 Vibrating gas density meter Expired - Fee Related JP3144340B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP08624197A JP3144340B2 (en) 1997-04-04 1997-04-04 Vibrating gas density meter
EP98911066A EP0909943A4 (en) 1997-04-04 1998-03-27 Vibration type gas densitometer
PCT/JP1998/001404 WO1998045681A1 (en) 1997-04-04 1998-03-27 Vibration type gas densitometer
US09/194,708 US6029501A (en) 1997-04-04 1998-03-27 Vibration type gas densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08624197A JP3144340B2 (en) 1997-04-04 1997-04-04 Vibrating gas density meter

Publications (2)

Publication Number Publication Date
JPH10281970A JPH10281970A (en) 1998-10-23
JP3144340B2 true JP3144340B2 (en) 2001-03-12

Family

ID=13881319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08624197A Expired - Fee Related JP3144340B2 (en) 1997-04-04 1997-04-04 Vibrating gas density meter

Country Status (1)

Country Link
JP (1) JP3144340B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3311134B1 (en) * 2015-05-18 2021-09-15 Micro Motion, Inc. Improved spool body for a vibrating densitometer
JP6785894B2 (en) * 2019-01-21 2020-11-18 マイクロ モーション インコーポレイテッド Improved spool body for vibrating densitometer

Also Published As

Publication number Publication date
JPH10281970A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
US5524475A (en) Measuring vibration of a fluid stream to determine gas fraction
EP0430859A1 (en) Ultrasonic gas measuring device
US4232544A (en) Transducer for sensing a parameter of a fluid
US5594181A (en) Ultrasonic flow meter
EP0160673B1 (en) An apparatus for the measurement of the fraction of gas in a two-component fluid flow comprising a liquid and a gas in mixture
EP0311238A1 (en) Gas flow correction sensor
US3874221A (en) Transducers
US6732570B2 (en) Method and apparatus for measuring a fluid characteristic
RU2602733C1 (en) Detection of change of cross section area of flow-measuring fluid pipeline of vibration meter by determining rigidity of transverse mode
JPS6330721A (en) Mass flowmeter
EP0462711A1 (en) Fluid flow measurement
WO1998045681A1 (en) Vibration type gas densitometer
JP3144340B2 (en) Vibrating gas density meter
US3618360A (en) Transducers suitable for use in measuring the density of or the pressure or a pressure difference in fluids
US4007627A (en) Density transducers
US3763692A (en) Measuring of fluid density
US20030115951A1 (en) Apparatus and method for thermal isolation of thermal mass flow sensor
KR20070008440A (en) Apparatus and method for measuring fluid density
Kacker et al. Fluctuating lift coefficient for a circular cylinder in cross flows
JP2019502130A (en) Coriolis flow meter
US20020189323A1 (en) Method and apparatus for measuring a fluid characteristic
CA2511748C (en) Flow measuring method and device
JP3384533B2 (en) Vibrating gas density meter
US3381520A (en) Sonic analyser
JP3384531B2 (en) Vibrating gas density meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees