JP3141169B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JP3141169B2
JP3141169B2 JP03336925A JP33692591A JP3141169B2 JP 3141169 B2 JP3141169 B2 JP 3141169B2 JP 03336925 A JP03336925 A JP 03336925A JP 33692591 A JP33692591 A JP 33692591A JP 3141169 B2 JP3141169 B2 JP 3141169B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte tube
stress
sleeve
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03336925A
Other languages
Japanese (ja)
Other versions
JPH05174871A (en
Inventor
三雄 川上
禎人 清水
久光 波東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03336925A priority Critical patent/JP3141169B2/en
Publication of JPH05174871A publication Critical patent/JPH05174871A/en
Application granted granted Critical
Publication of JP3141169B2 publication Critical patent/JP3141169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はナトリウム−硫黄電池に
係り、特に昇温及び降温時における電池の破損防止、寿
命の改善に好適な陽極構造を有するナトリウム−硫黄電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery, and more particularly, to a sodium-sulfur battery having an anode structure suitable for preventing battery damage and improving the life of the battery when the temperature is raised and lowered.

【0002】[0002]

【従来の技術】ナトリウム−硫黄電池は、ナトリウムイ
オンのみを通過させる固体電解質管を介し、一方に陰極
活物質である溶融ナトリウム、他方に陽極活物質である
溶融硫黄又は多硫化ナトリウムが設けられ、約300〜
350℃で充放電が行われる二次電池である。
2. Description of the Related Art A sodium-sulfur battery is provided with molten sodium as a cathode active material and molten sulfur or sodium polysulfide as an anode active material on one side through a solid electrolyte tube that allows only sodium ions to pass through. About 300 ~
A secondary battery that is charged and discharged at 350 ° C.

【0003】上記電池が冷却されると、多孔質又は繊維
状の電子伝導材に陽極活物質である硫黄を充填した円筒
状の陽極構造体は、溶融状態の硫黄又は多硫化ナトリウ
ムが固体電解質管外周に密着したまま凝固するが、硫黄
又は多硫化ナトリウムは固体電解質管を形成している
β”−アルミナよりも熱膨張率が高く、つまり、収縮量
が大きいため固体電解質管に箍しめによる応力を発生さ
せることになる。この時、収縮力が固体電解質管全周わ
たり均一に作用するならば、固体電解質管に対する周方
向応力は圧縮となり強度上問題となることはないが、現
実には製造上の不均一、例えば、陽極構造体の偏肉、固
体電解質管と陽極容器の偏心、固体電解質管の真円度及
び陽極構造体の密度の不均一あるいは凝固速度の不均一
などによってこれらが固体電解質管に対し周方向に不均
一な外力となって作用し、局部的には引っ張り応力が発
生しこの部分の固体電解質管の破損による電池全体の破
壊を招く恐れがある。
[0003] When the battery is cooled, a cylindrical anode structure in which a porous or fibrous electron conductive material is filled with sulfur as an anode active material is formed by melting solid sulfur or sodium polysulfide into a solid electrolyte tube. Although solidified while being in close contact with the outer circumference, sulfur or sodium polysulfide has a higher coefficient of thermal expansion than β ″ -alumina forming the solid electrolyte tube, that is, a large amount of shrinkage causes stress due to pinching of the solid electrolyte tube. At this time, if the contraction force acts uniformly over the entire circumference of the solid electrolyte tube, the circumferential stress on the solid electrolyte tube is compressed, and there is no problem in strength. These non-uniformities, such as uneven thickness of the anode structure, eccentricity of the solid electrolyte tube and the anode container, roundness of the solid electrolyte tube and unevenness of the density of the anode structure or uneven solidification rate, etc. To the solid electrolyte tube in the circumferential direction becomes non-uniform external forces act locally the tensile stress is generated which may lead to destruction of the entire battery due to the damage of the solid electrolyte tube of this part.

【0004】さて、陽極構造体は一般に、多孔質電子伝
導材として炭素繊維フェルトを用いこれに硫黄を充填し
て作られ、固体電解質管と陽極容器との間に挿入され
る。これは、硫黄単体としては電子伝導性を有していな
いので、多孔質電子伝導材を陽極内に充填し、外部回路
から陽極容器に流入、あるいは、逆に流出する電子の陽
極内部への通路を設けている。この時、炭素繊維フェル
トは径方向に圧縮された状態で硫黄の固化によって保持
されている。これは、硫黄が溶融した電池作動状態にお
いて、外部端子である陽極容器と炭素繊維との接触性を
良好にし、又、陽極内の炭素繊維の充填率を高めて、電
子伝導性を良くするためである。
The anode structure is generally made by using carbon fiber felt as a porous electron conductive material and filling it with sulfur, and inserted between a solid electrolyte tube and an anode container. This is because sulfur does not have electron conductivity as a simple substance of sulfur, so the porous electron conductive material is filled in the anode, and the passage of electrons flowing into the anode container from the external circuit or flowing out from the external circuit to the inside of the anode is performed. Is provided. At this time, the carbon fiber felt is held by solidification of sulfur while being compressed in the radial direction. This is to improve the contact between the anode container as the external terminal and the carbon fiber in the operating state of the battery in which the sulfur is melted, and to improve the electron conductivity by increasing the filling rate of the carbon fiber in the anode. It is.

【0005】この陽極構造体から発生する前記外力を軽
減し、固体電解質管の低応力化のために従来は、特開昭
61−156640号公報のように陽極構造体の分割、
切り込み及び粉砕等の対策が講じられている。また他の
従来例として、表面が硫化される金属材を固体電解質管
の周囲に設けたもの(特開昭60−235369号公
報)及び固体電解質管の底部に環状支持部材を設けたも
の(特開昭62−82668号公報)が挙げられる。
[0005] In order to reduce the external force generated from the anode structure and reduce the stress of the solid electrolyte tube, a conventional method of dividing the anode structure into a structure as disclosed in JP-A-61-156640.
Measures such as cutting and crushing are taken. Further, as another conventional example, a metal material whose surface is sulfided is provided around a solid electrolyte tube (Japanese Patent Application Laid-Open No. 60-235369), and a metal material whose surface is sulfided is provided with an annular support member at the bottom of the solid electrolyte tube. JP-A-62-82668).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術において陽極構造体の分割、切り込みを施しても
初期組立て状態では分離されていた繊維も硫黄が溶融し
た時点で復元し、繊維同士の再交叉により間隙は存在し
ない状態となり応力低減効果は期待できない。さらに、
炭素繊維のない硫黄のみの陽極構造体としても、溶融・
凝固により外力が発生することが確認されていることか
ら、陽極構造体の凝固時に固体電解質管に発生する応力
を避けることは不可能であり、初期破損の防止及び寿命
の改善は望めない。
However, even if the anode structure is divided or cut in the prior art, the separated fibers in the initial assembly state are restored when the sulfur is melted, and the fibers are re-crossed. As a result, there is no gap, and the effect of reducing stress cannot be expected. further,
Even if the anode structure is made of only sulfur without carbon fiber,
Since it has been confirmed that an external force is generated by solidification, it is impossible to avoid stress generated in the solid electrolyte tube at the time of solidification of the anode structure, and prevention of initial damage and improvement of life cannot be expected.

【0007】この点を更に詳しく説明すると、陽極構造
体は、硫黄又は多硫化ナトリウムを多孔質又は繊維状の
電子伝導材に充填した、いわゆる繊維強化樹脂のごとく
の構造となっている。この陽極構造体は、平均的には約
90%以上の密度で硫黄又は多硫化ナトリウムが充填さ
れており、従って、固体化した場合の熱膨張係数は前記
硫黄又は多硫化ナトリウムの物性値に支配され、例え
ば、室温から約100℃近傍までの熱膨張係数は固体電
解質管を形成しているβ”−アルミナの約5〜10×1
0~6℃に対し約30〜200×10~6℃と大きい。つま
り、降温時には固体電解質管に対して陽極構造体の熱収
縮量が大きいため、この収縮力は全て固体電解質管に周
方向不均一圧環力となって作用することになる。この時
の固体電解質は前記した構造上の不均一あるいは陽極構
造体の密度の不均一及び温度分布によって発生する外力
により図6のように不規則に変形する。この変形によっ
て例えばA点の如く変形曲率が大なる箇所では外周側に
おいて周方向に引張応力が発生し、この発生応力が固体
電解質管の強度以上に達した場合に破損に至ることにな
る。なお、陽極構造体から発生する外力は前記した従来
技術においても皆無にすることはできず、固体電解質管
側においてもセラミックスの構造体であるため、強度増
大あるいはバラツキには限度がある。これら、高応力発
生部と低強度部材が組合さった場合は比較的初期に破損
にいたるため、従来とは異なる方法による外力の分散化
が必要となった。また特開昭60−235369号公報
に開示されている金属材は陽極活物質の利用率を高める
ために設けられるもので、本発明の前記応力に対しては
全く考慮されていない。特開昭62−82668号公報
に開示されている環状支持部材は電解質管の横ずれを防
止するものであり、やはり本発明の前記応力に対しては
全く考慮されていない。
To explain this point in more detail, the anode structure has a structure like a so-called fiber reinforced resin in which sulfur or sodium polysulfide is filled in a porous or fibrous electron conductive material. This anode structure is filled with sulfur or sodium polysulfide at a density of about 90% or more on average, and therefore, the thermal expansion coefficient when solidified depends on the physical properties of the sulfur or sodium polysulfide. For example, the coefficient of thermal expansion from room temperature to about 100 ° C. is about 5 to 10 × 1 of β ″ -alumina forming the solid electrolyte tube.
It is as large as about 30 to 200 × 10 to 6 ° C. compared to 0 to 6 ° C. That is, when the temperature is lowered, the heat shrinkage of the anode structure is larger than that of the solid electrolyte tube. Therefore, all the contraction force acts on the solid electrolyte tube as a circumferential nonuniform compressive force. At this time, the solid electrolyte is irregularly deformed as shown in FIG. 6 due to the above-mentioned structural non-uniformity or the non-uniform density of the anode structure and the external force generated by the temperature distribution. Due to this deformation, a tensile stress is generated in a circumferential direction on the outer peripheral side at a place where the deformation curvature is large, for example, at point A, and when the generated stress reaches or exceeds the strength of the solid electrolyte tube, the solid electrolyte tube is broken. It should be noted that the external force generated from the anode structure cannot be completely eliminated even in the above-mentioned conventional technology, and the solid electrolyte tube side is also a ceramic structure, so that there is a limit to the increase in strength or variation. When the high stress generating portion and the low strength member are combined, breakage occurs relatively early, so that it is necessary to disperse the external force by a method different from the conventional method. The metal material disclosed in JP-A-60-235369 is provided to increase the utilization of the anode active material, and is not considered at all for the stress of the present invention. The annular support member disclosed in Japanese Patent Application Laid-Open No. 62-82668 prevents the lateral displacement of the electrolyte tube, and does not consider the stress of the present invention at all.

【0008】本発明の目的は、係る問題点を解決するた
めに、固体電解質管に発生する応力を低減し、電池の破
損防止及び寿命の改善を図ったナトリウム−硫黄電池を
提供することにある。
[0008] An object of the present invention is to provide a sodium-sulfur battery in which the stress generated in the solid electrolyte tube is reduced to prevent the battery from being damaged and to improve the life thereof, in order to solve the above problems. .

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明は、袋状の固体電解質管の内側に陰極活物質であ
るナトリウム、この固体電解質管の外側に多孔質又は繊
維状の電子伝導材に陽極活物質である硫黄を充填した円
筒状の陽極構造体が配設されてなるナトリウム−硫黄電
池において、前記固体電解質管の外側面と陽極構造体と
の間に該陽極構造体から前記固体電解質管に加わる応力
を受けて該応力を分散させる応力分散部材が設けられた
ものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides sodium as a cathode active material inside a bag-shaped solid electrolyte tube, and a porous or fibrous electron conductive material outside the solid electrolyte tube. In a sodium-sulfur battery in which a cylindrical anode structure filled with sulfur as an anode active material is disposed, a material is disposed between the outer surface of the solid electrolyte tube and the anode structure. A stress dispersing member for dispersing the stress by receiving a stress applied to the solid electrolyte tube is provided.

【0010】[0010]

【0011】前記ナトリウム−硫黄電池において、応力
分散部材は固体電解質管の外側面に設けられたスリーブ
であるものがよい。また、スリーブは固体電解質管の外
側面にすきま嵌めされて設けられたものがよい。また、
スリーブは陽極構造体と固体電解質管との接触を確保す
る孔が設けられているものがよい。また、陽極構造体は
軸方向に複数に分割され、スリーブはその分割された個
々の陽極構造体の重ね部に設けられたフランジ付きスリ
ーブであるものがよい。また、陽極構造体は軸方向に複
数に分割され、スリーブはその分割された個々の陽極構
造体に設けられた短尺スリーブであるものがよい。
In the above-mentioned sodium-sulfur battery, the stress dispersion member is preferably a sleeve provided on the outer surface of the solid electrolyte tube. The sleeve is preferably provided with a clearance fit on the outer surface of the solid electrolyte tube. Also,
The sleeve is preferably provided with a hole for ensuring contact between the anode structure and the solid electrolyte tube. Further, the anode structure is preferably divided into a plurality of parts in the axial direction, and the sleeve is preferably a sleeve with a flange provided on the overlapped portion of the divided individual anode structures. The anode structure is preferably divided into a plurality of parts in the axial direction, and the sleeve is preferably a short sleeve provided on each of the divided anode structures.

【0012】[0012]

【作用】固体電解質管に発生する応力を低減させるには
固体電解質管を小径化するか、逆に陽極構造体の厚みを
薄くし固体電解質管を厚肉化すればよいが、何れも電池
性能(容量、効率)を低下させ好ましくない。従って、電
池性能を保ちつつ固体電解質管の応力を低減するには固
体電解質管を保護するスリ−ブ材等の応力分散部材が必
要となる。
[Function] To reduce the stress generated in the solid electrolyte tube, the diameter of the solid electrolyte tube can be reduced, or conversely, the thickness of the anode structure can be reduced to make the solid electrolyte tube thicker. (Capacity, efficiency) is not preferred. Therefore, in order to reduce the stress of the solid electrolyte tube while maintaining the battery performance, a stress dispersing member such as a sleeve material for protecting the solid electrolyte tube is required.

【0013】本発明は陽極構造体から発生する外力を固
体電解質管の外周にすきま嵌め等にて挿入したスリ−ブ
等の応力分散部材にて負担することを要旨とするため、
このスリ−ブ等は前記外力に対し容易に塑性変形しない
程度の剛性を有することが条件となる。ここで、固体電
解質管の板厚Tmmとすると、スリーブの必要剛性は目
的とする応力低減量によって異なるが、経験的に等価板
厚がT/2以上とすることが望ましい。固体電解質管の
板厚2mmの供試体で実験したところ、前記図6のA点
において、応力約100MPaを実測した。この100
MPaを50MPaにまで低下させるには陽極構造体か
らの外力の半分をスリーブで受けてやればよいことにな
り、必要板厚は1mmとなる。従って打ち抜き部あるい
は非挿入部を考慮すると等価板厚T/2以上となる。
According to the present invention, the external force generated from the anode structure is borne by a stress dispersing member such as a sleeve inserted into the outer periphery of the solid electrolyte tube by a clearance fit or the like.
The sleeve or the like must have such a rigidity that the plastic does not easily deform plastically against the external force. Here, assuming that the plate thickness of the solid electrolyte tube is Tmm, the required rigidity of the sleeve depends on the intended amount of stress reduction, but it is empirically desirable that the equivalent plate thickness be T / 2 or more. When an experiment was performed on a test sample having a plate thickness of 2 mm of the solid electrolyte tube, a stress of about 100 MPa was actually measured at point A in FIG. This 100
In order to reduce the MPa to 50 MPa, half of the external force from the anode structure has to be received by the sleeve, and the required thickness is 1 mm. Therefore, when the punched portion or the non-inserted portion is taken into consideration, the equivalent plate thickness becomes T / 2 or more.

【0014】しかしながら、ここで、固体電解質管の外
周全域をスリ−ブ等で覆うと、固体電解質管と電子伝導
材としての炭素繊維フェルトとの接触が遮断されあるい
は、局部的な接触のみとなって、電池として成立しなく
なる。そのため、固体電解質管全表面積の相当の面積は
固体電解質管と電子伝導材が接触していることが必要と
なる。そのために前記スリ−ブ等は打ち抜き板による長
尺円筒構造か、あるいは必要な長さのみスリ−ブで覆
い、その他の部分は遮蔽物無しに固体電解質管と電子伝
導材を接触させる1個あるいは複数個のリング状の短尺
スリ−ブ構造とする必要がある。
However, when the entire outer periphery of the solid electrolyte tube is covered with a sleeve or the like, the contact between the solid electrolyte tube and the carbon fiber felt as the electron conductive material is interrupted or only the local contact is made. As a result, the battery does not hold. Therefore, a substantial area of the total surface area of the solid electrolyte tube needs to be in contact with the solid electrolyte tube and the electron conductive material. For this purpose, the sleeve or the like has a long cylindrical structure made of a punched plate, or covers only a necessary length with the sleeve, and the other part is a single piece for contacting the solid electrolyte tube and the electron conductive material without a shield. It is necessary to have a plurality of ring-shaped short sleeve structures.

【0015】[0015]

【実施例】以下、本発明に係るナトリウム−硫黄電池の
実施例を図面を参照して説明する。図1に本発明の一実
施例を示す。陰極活物質である溶融ナトリウム1は固体
電解質管2の内側にあり、その上部は外部端子でもある
陰極容器3によって封じられている。陽極活物質である
硫黄は、前述したように炭素繊維フェルトに充填した状
態で陽極構造体4の内部にあり、外部端子でもある陽極
容器5に包まれている。絶縁リング6は陰極容器3と陽
極容器5の電気的絶縁体である。本発明は固体電解質管
2の外周、つまり陽極構造体4の内部に応力分散部材で
あるスリ−ブ7を設けたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a sodium-sulfur battery according to the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. Molten sodium 1, which is a cathode active material, is inside solid electrolyte tube 2, and its upper part is sealed by cathode container 3, which is also an external terminal. As described above, the sulfur as the anode active material is inside the anode structure 4 in a state of being filled in the carbon fiber felt, and is wrapped in the anode container 5 which is also an external terminal. The insulating ring 6 is an electrical insulator between the cathode container 3 and the anode container 5. In the present invention, a sleeve 7 as a stress dispersing member is provided on the outer periphery of the solid electrolyte tube 2, that is, inside the anode structure 4.

【0016】このように構成された本実施例につき以下
にその作用を説明する。スリ−ブ7は、陽極構造体4の
成形時に炭素繊維、硫黄と同時にモ−ルド成形するか、
単体で組み込むかして組み立てたものである。陽極構造
体4は陽極容器5の内径と固体電解質管2の外形との間
隙寸法より大きい素材厚みを有する炭素繊維を圧縮して
硫黄をモ−ルドし、円筒あるいはセグメント構造に成形
する。したがって、固体電解質管2とスリ−ブ7及び、
スリ−ブ7と陽極構造体4の間は最初の組立状態ではす
きま嵌めであるが、第一回目の昇温によって陽極構造体
4に充填されている硫黄が溶融すると炭素繊維は前記し
た圧縮成形状態が開放され、その復元力によって陽極容
器5とスリ−ブ7との間で張った状態で保持される。こ
の場合の復元力により固体電解質管2に発生する応力は
0.1MPa程度であり、強度的に問題となる大きさで
はない。これに対し降温時については、ナトリウム−硫
黄電池の作動温度約300〜350℃から硫黄の融点約
120℃までの範囲は液相であるが、その後の冷却によ
って固化し、それにつれて陽極構造体4の強度も増大し
つつ収縮する。従来構造であればこの収縮力は全て固体
電解質管2のみで受けていたが、本発明によりスリ−ブ
7でも受け持つことになる。
The operation of the thus constructed embodiment will be described below. The sleeve 7 may be molded at the same time as carbon fiber and sulfur when the anode structure 4 is molded,
It is either assembled by itself or assembled. The anode structure 4 compresses a carbon fiber having a material thickness larger than the gap between the inner diameter of the anode container 5 and the outer shape of the solid electrolyte tube 2 to mold sulfur, and forms a cylindrical or segment structure. Therefore, the solid electrolyte tube 2 and the sleeve 7 and
The gap between the sleeve 7 and the anode structure 4 is a clearance fit in the initial assembly state. However, when the sulfur filled in the anode structure 4 is melted by the first heating, the carbon fibers are compressed as described above. The state is released, and is maintained in a stretched state between the anode container 5 and the sleeve 7 by the restoring force. In this case, the stress generated in the solid electrolyte tube 2 due to the restoring force is about 0.1 MPa, which is not a magnitude that causes a problem in strength. On the other hand, when the temperature is lowered, the range from the operating temperature of the sodium-sulfur battery of about 300 to 350 ° C. to the melting point of sulfur of about 120 ° C. is the liquid phase, but it is solidified by the subsequent cooling and accordingly the anode structure 4 Shrink while increasing in strength. In the case of the conventional structure, all of the contraction force is received only by the solid electrolyte tube 2, but the present invention also takes over the contraction force by the sleeve 7.

【0017】図2はスリ−ブ7の構造の一例として、抜
き孔8を設けた長尺スリ−ブについて詳細に示したもの
である。スリ−ブ7は陽極構造体4の熱変形時の外力に
よって塑性変形を起こさない耐力を保持させることが必
要であり、さらに、接触部を確保するために打ち抜き孔
8を設けた。
FIG. 2 shows in detail a long sleeve provided with a hole 8 as an example of the structure of the sleeve 7. It is necessary that the sleeve 7 has a strength that does not cause plastic deformation due to an external force at the time of thermal deformation of the anode structure 4, and a punched hole 8 is provided to secure a contact portion.

【0018】図3は本発明の他の実施例としてフランジ
付短尺スリ−ブ構造を示したものである。本実施例によ
れば、軸方向に二個以上の陽極構造体4に分割し、その
重ね部にフランジ付スリ−ブ9を設けたものであり、こ
れによって陽極構造体4より発生する外力は分散させら
れ、また、フランジ付スリ−ブ9以外のところは、固体
電解質管2と陽極構造体4が接触するようになってお
り、電池性能が確保される。
FIG. 3 shows a short sleeve structure with a flange as another embodiment of the present invention. According to the present embodiment, the anode structure 4 is divided into two or more anode structures 4 in the axial direction, and a sleeve 9 with a flange is provided at the overlapping portion, whereby an external force generated from the anode structure 4 is reduced. The solid electrolyte tube 2 and the anode structure 4 are in contact with each other except for the sleeve 9 with the flange, so that the battery performance is ensured.

【0019】図4は本発明の他の実施例としてストレ−
トの短尺スリ−ブ10を複数個、固体電解質管2にそっ
て配した構造を示したものであり、その機能は図3と同
じである。
FIG. 4 shows a storage device as another embodiment of the present invention.
3 shows a structure in which a plurality of short sleeves 10 are arranged along the solid electrolyte tube 2, and the function thereof is the same as that of FIG.

【0020】図5に温度と固体電解質管に発生する応力
の関係を従来構造と本発明について示す。つまり、降温
になるに従い陽極構造体が硬化し、それに伴って強度も
増大するため、拘束応力が発生する。この応力が固体電
解質管の強度を超えた場合に破損に至るが、本発明によ
って固体電解質管の応力が低減され、電池の破損防止及
び寿命の改善が図れる。ここで、図3のように固体電解
質管2と陽極構造体4が完全に円周方向に接触している
部分は直接固体電解質管2に外力が作用するが、隣接す
るスリ−ブが外力を負担するので応力は低減する。
FIG. 5 shows the relationship between the temperature and the stress generated in the solid electrolyte tube for the conventional structure and the present invention. In other words, the anode structure is hardened as the temperature decreases, and the strength also increases with the hardening, so that restraint stress is generated. If the stress exceeds the strength of the solid electrolyte tube, the solid electrolyte tube may be damaged. However, according to the present invention, the stress of the solid electrolyte tube is reduced, so that the battery can be prevented from being damaged and the life can be improved. Here, as shown in FIG. 3, an external force acts directly on the solid electrolyte tube 2 in a portion where the solid electrolyte tube 2 and the anode structure 4 are completely in contact with each other in the circumferential direction, but an adjacent sleeve applies the external force. The stress is reduced because of the burden.

【0021】以上、打ち抜き孔のある長尺及び短尺のス
リ−ブ構造の実施例について示したが、スリ−ブ長につ
いては固体電解質管を保護したい部分に限って設定して
もよい。なお、陽極構造体を構成している硫黄あるいは
多硫化ナトリウムは腐食性が強く、さらに、作動温度が
約300〜350℃であることから上記各スリ−ブを形
成する材質はセラミックス又はステンレス(SUS)等
の耐食性を有したものであることが必要である。
Although the embodiments of the long and short sleeve structures having punched holes have been described above, the sleeve length may be set only for the portion where the solid electrolyte tube is desired to be protected. Sulfur or sodium polysulfide forming the anode structure is highly corrosive and has an operating temperature of about 300 to 350 ° C., so that the material for forming each of the sleeves is ceramic or stainless steel (SUS). ) Must have corrosion resistance.

【0022】上述したように、本実施例によれば昇温及
び降温時の陽極構造体の熱変形による外力を固体電解質
管の外周に配設した応力分散部材で分担させることによ
り固体電解質管に発生する応力を低減することが可能と
なり、昇降温時の固体電解質管の破損を防止することが
できる。
As described above, according to the present embodiment, the external force caused by the thermal deformation of the anode structure at the time of raising and lowering the temperature is shared by the stress dispersing member disposed on the outer periphery of the solid electrolyte tube, so that the solid electrolyte tube can be used. The generated stress can be reduced, and breakage of the solid electrolyte tube during temperature rise / fall can be prevented.

【0023】[0023]

【発明の効果】本発明によれば、従来、固体電解質管の
みで受けていた陽極構造体の熱変形による外力を固体電
解質管の外周に配設した応力分散部材で分担させること
により、固体電解質管に発生する応力を低減することが
可能となり、これによって昇降温時の破損を防止するこ
とができ、信頼性の高いナトリウム−硫黄電池が実現で
きる。
According to the present invention, the external force caused by the thermal deformation of the anode structure, which has been conventionally received only by the solid electrolyte tube, is shared by the stress dispersing member disposed on the outer periphery of the solid electrolyte tube. It is possible to reduce the stress generated in the tube, thereby preventing damage at the time of temperature rise and fall, and realizing a highly reliable sodium-sulfur battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1に関する組立て状態図である。FIG. 2 is an assembled state diagram relating to FIG. 1;

【図3】本発明の他の一実施例を示す部分断面図であ
る。
FIG. 3 is a partial cross-sectional view showing another embodiment of the present invention.

【図4】本発明の他の一実施例を示す部分断面図であ
る。
FIG. 4 is a partial sectional view showing another embodiment of the present invention.

【図5】従来と本発明の固体電解質管の応力状態図であ
る。
FIG. 5 is a stress state diagram of a conventional solid electrolyte tube of the present invention.

【図6】従来例の欠点を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a defect of a conventional example.

【符号の説明】[Explanation of symbols]

2 固体電解質管 4 陽極構造体 7 スリ−ブ(応力分散部材) 8 打ち抜き孔 9 フランジ付スリ−ブ 10 短尺スリ−ブ 2 solid electrolyte tube 4 anode structure 7 sleeve (stress dispersing member) 8 punched hole 9 flanged sleeve 10 short sleeve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 平3−77369(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-U 3-77369 (JP, U) (58) Fields surveyed (Int. Cl. 7 , DB name) H01M 10/39

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 袋状の固体電解質管の内側に陰極活物質
であるナトリウム、この固体電解質管の外側に多孔質又
は繊維状の電子伝導材に陽極活物質である硫黄を充填し
た円筒状の陽極構造体が配設されてなるナトリウム−硫
黄電池において、前記固体電解質管の外側面と陽極構造
体との間に該陽極構造体から前記固体電解質管に加わる
応力を受けて該応力を分散させる応力分散部材が設けら
、該応力分散部材は固体電解質管の外側面に設けられ
たスリーブであり、該スリーブは軸方向に複数に分割さ
れた個々の陽極構造体の重ね部に設けられたフランジ付
きスリーブであることを特徴とするナトリウム−硫黄電
池。
1. A cylindrical solid electrolyte tube in which sodium as a cathode active material is filled inside a bag-shaped solid electrolyte tube, and a porous or fibrous electronic conductive material is filled with sulfur as an anode active material outside the solid electrolyte tube. In a sodium-sulfur battery provided with an anode structure, a stress applied to the solid electrolyte tube from the anode structure between the outer surface of the solid electrolyte tube and the anode structure disperses the stress. A stress distribution member is provided , and the stress distribution member is provided on an outer surface of the solid electrolyte tube.
The sleeve is divided into a plurality in the axial direction.
With flanges provided at the overlap of individual anode structures
A sodium-sulfur battery, wherein the battery is a sleeve .
【請求項2】 袋状の固体電解質管の内側に陰極活物質
であるナトリウム、この固体電解質管の外側に多孔質又
は繊維状の電子伝導材に陽極活物質である硫黄を充填し
た円筒状の陽極構造体が配設されてなるナトリウム−硫
黄電池において、前記固体電解質管の外側面と陽極構造
体との間に該陽極構造体から前記固体電解質管に加わる
応力を受けて該応力を分散させる応力分散部材が設けら
れ、該応力分散部材は固体電解質管の外側面に設けられ
たスリーブあり、該スリーブは軸方向に複数に分割され
た個々の陽極構造体に設けられた短尺スリーブである
とを特徴とするナトリウム−硫黄電池。
2. A cathode active material is provided inside a bag-shaped solid electrolyte tube.
Is a porous or porous material outside the solid electrolyte tube.
Fills a fibrous electron conductive material with sulfur, which is the anode active material.
Sodium-sulfur containing a cylindrical anode structure
In the yellow battery, the outer surface of the solid electrolyte tube and the anode structure
Between the anode structure and the solid electrolyte tube
A stress dispersing member for dispersing the stress upon receiving the stress is provided.
The stress dispersion member is provided on an outer surface of the solid electrolyte tube.
The sleeve is divided into several parts in the axial direction.
And a short sleeve provided on each anode structure .
【請求項3】 請求項1又は2において、前記スリーブ
の等価板厚を前記固体電解質管の板厚の1/2以上とす
ことを特徴とするナトリウム−硫黄電池。
3. The sleeve according to claim 1, wherein
Of the solid electrolyte tube is equal to or more than 1 / of the plate thickness of the solid electrolyte tube.
Sulfur battery - sodium, characterized in that that.
【請求項4】 請求項3において、前記スリーブは固体
電解質管の外側面にすきま嵌めされて設けられたもので
あることを特徴とするナトリウム−硫黄電池。
4. The sodium-sulfur battery according to claim 3, wherein the sleeve is provided with a clearance fit on the outer surface of the solid electrolyte tube.
【請求項5】 請求項3又は4において、前記スリーブ
は陽極構造体と固体電解質管との接触を確保する孔が設
けられていることを特徴とするナトリウム−硫黄電池。
5. The sodium-sulfur battery according to claim 3, wherein the sleeve is provided with a hole for ensuring contact between the anode structure and the solid electrolyte tube.
JP03336925A 1991-12-19 1991-12-19 Sodium-sulfur battery Expired - Fee Related JP3141169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03336925A JP3141169B2 (en) 1991-12-19 1991-12-19 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03336925A JP3141169B2 (en) 1991-12-19 1991-12-19 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH05174871A JPH05174871A (en) 1993-07-13
JP3141169B2 true JP3141169B2 (en) 2001-03-05

Family

ID=18303901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03336925A Expired - Fee Related JP3141169B2 (en) 1991-12-19 1991-12-19 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP3141169B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960002923A (en) * 1994-06-08 1996-01-26 조규향 Core tube for sodium-sulfur battery or sodium-nickel chloride battery and its manufacturing method

Also Published As

Publication number Publication date
JPH05174871A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
WO2013009148A2 (en) Cylindrical rechargeable battery
US20030143460A1 (en) Battery
JP3141169B2 (en) Sodium-sulfur battery
JPH10189027A (en) Electro-chemical cell with mechanical impact resistance
JP3424937B2 (en) Insulator
US5331249A (en) Discharge tube
JP2011187375A (en) Lightning arrester for power transmission
US4562303A (en) Disc-type insulator with a cast-in electrode and process for its manufacture
US6548204B1 (en) Sealed battery
US3651380A (en) Gas discharge over voltage arrester filled with a noble gas
US4055710A (en) Electrochemical cells having solid electrolyte of tubular form
EP0262979B1 (en) Discharge tube assembly for high-pressure discharge lamp
US4750186A (en) Sealed gas laser
JP2869609B2 (en) Sodium-sulfur battery and manufacturing method
JP3312366B2 (en) Sodium-sulfur battery
JPH04171666A (en) Lead-acid battery
EP0361357B1 (en) Discharge lamp
JP2002151308A (en) Lighting arrester
JPH07296657A (en) Insulator type lighting arrester
JP3430591B2 (en) surge absorber
GB2203286A (en) Surge arrester
WO1991017554A1 (en) Surge arrester
GB1586073A (en) Metal-to-ceramic seal
KR20240108470A (en) airtight terminal
RU2087998C1 (en) Metal-ceramic assembly of sulfur-sodium storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees