JP3140320U - Screw conveyor cooling structure - Google Patents

Screw conveyor cooling structure Download PDF

Info

Publication number
JP3140320U
JP3140320U JP2008000043U JP2008000043U JP3140320U JP 3140320 U JP3140320 U JP 3140320U JP 2008000043 U JP2008000043 U JP 2008000043U JP 2008000043 U JP2008000043 U JP 2008000043U JP 3140320 U JP3140320 U JP 3140320U
Authority
JP
Japan
Prior art keywords
screw shaft
screw
cooling
air
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008000043U
Other languages
Japanese (ja)
Inventor
剛 東山
直樹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2008000043U priority Critical patent/JP3140320U/en
Application granted granted Critical
Publication of JP3140320U publication Critical patent/JP3140320U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

【課題】 焼却炉や溶融設備等に適用されて腐食性ガス中のダストを排出する際に用いられるスクリュコンベヤの冷却構造であって、腐食性ガスとの接触に伴う低温腐食が起こらない様に冷却する。
【解決手段】 スクリュ軸2と、これの外周に設けられたスクリュ羽根3とを備えたスクリュコンベヤ50に於て、前記スクリュ軸2を内管4と外管5を備えた二重管構造にして、内管4には冷却水Wを流通させる水路6を形成すると共に、スクリュ軸2の内管4と外管5との間には空気層7を形成し、所謂水路6の外側の全周に亘って空気層7を形成する。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a cooling structure for a screw conveyor which is applied to an incinerator or a melting facility and used for discharging dust in a corrosive gas so that low temperature corrosion due to contact with the corrosive gas does not occur. Cooling.
In a screw conveyor 50 including a screw shaft 2 and a screw blade 3 provided on the outer periphery of the screw shaft 2, the screw shaft 2 has a double tube structure including an inner tube 4 and an outer tube 5. In addition, a water channel 6 through which the cooling water W is circulated is formed in the inner tube 4, and an air layer 7 is formed between the inner tube 4 and the outer tube 5 of the screw shaft 2. An air layer 7 is formed over the circumference.
[Selection] Figure 1

Description

本考案は、例えば焼却炉や溶融設備等に適用されて腐食性ガス中のダストを排出する際に用いられるスクリュコンベヤに係り、とりわけその冷却構造の改良に関する。   The present invention relates to a screw conveyor that is applied to, for example, an incinerator, a melting facility, or the like and discharges dust in a corrosive gas, and more particularly, to an improvement in its cooling structure.

一般に、焼却炉や溶融設備等に設置されるダスト排出装置としては、高温の腐食性ガスやダストからの熱的な保護とダストの冷却とを兼ねて冷却構造を備えたスクリュコンベヤが採用されている。
而して、この種のスクリュコンベヤの冷却構造としては、例えば特許文献1〜10の如く、空気や水等の冷却媒体を用いて冷却するものが知られている。
In general, as a dust discharge device installed in incinerators, melting facilities, etc., a screw conveyor equipped with a cooling structure that combines thermal protection from high temperature corrosive gas and dust and cooling of dust is adopted. Yes.
Thus, as a cooling structure of this type of screw conveyor, a cooling structure using a cooling medium such as air or water is known as disclosed in Patent Documents 1 to 10, for example.

実公平7−21447号公報Japanese Utility Model Publication No. 7-21447 特開平7−27320号公報Japanese Patent Laid-Open No. 7-27320 特許第2613736号公報Japanese Patent No. 2613736 特開平7−27321号公報JP-A-7-27321 特開平8−166116号公報JP-A-8-166116 特開平9−250730号公報JP-A-9-250730 特開2001−310813号公報JP 2001-310813 A 特開2002−210738号公報Japanese Patent Laid-Open No. 2002-210738 特開2007−168911号公報JP 2007-168911 A 特開2000−327126号公報JP 2000-327126 A

然しながら、冷却媒体として空気を用いた場合には、スクリュ軸の冷却効果が充分でなく、短期間で損耗される惧れがあった。
他方、冷却媒体として水を用いた場合には、スクリュ軸の表面温度を充分に下げる事ができるものの、逆に腐食性ガスとの接触に伴う低温腐食が進行する惧れがあった。
ところで、特許文献10のものは、スクリュ軸の中心に冷却水路が形成されると共に、その周りに複数に分割された気体流路が形成されているが、これらが丁度蓮根の穴の様に構成されているので、冷却水に依り直接スクリュ軸の表面温度が低下する箇所が部分的に発生し、この為、やはり腐食性ガスとの接触に伴う低温腐食が進行する惧れがあった。
要するに、従来の何れのものも、腐食性ガスとの接触に伴う低温腐食が起こらない様に冷却する事ができず、この様なものの出現が望まれていた。
However, when air is used as the cooling medium, the cooling effect of the screw shaft is not sufficient, and there is a risk that it will be worn out in a short period of time.
On the other hand, when water is used as the cooling medium, the surface temperature of the screw shaft can be lowered sufficiently, but conversely, there is a possibility that low-temperature corrosion accompanying contact with the corrosive gas proceeds.
By the way, although the thing of patent document 10 has the cooling water channel formed in the center of a screw axis | shaft, and the gas flow path divided | segmented into plurality around it is formed, these are comprised just like a lotus root hole. Therefore, a portion where the surface temperature of the screw shaft directly decreases due to the cooling water partially occurs, and therefore, there is a possibility that the low temperature corrosion accompanying the contact with the corrosive gas may proceed.
In short, none of the conventional ones can be cooled so as not to cause low-temperature corrosion due to contact with corrosive gas, and the appearance of such a thing has been desired.

本考案は、叙上の問題点に鑑み、これを解消する為に創案されたもので、その課題とする処は、腐食性ガスとの接触に伴う低温腐食が起こらない様に冷却できるスクリュコンベヤの冷却構造を提供するにある。   The present invention was devised in view of the problems described above, and the problem is that a screw conveyor that can be cooled so that low-temperature corrosion due to contact with corrosive gas does not occur. In providing a cooling structure.

本考案のスクリュコンベヤの冷却構造は、基本的には、スクリュ軸と、スクリュ軸の外周に設けられたスクリュ羽根とを備えたスクリュコンベヤに於て、前記スクリュ軸を内管と外管を備えた二重管構造にして、内管には冷却水を流通させる水路を形成すると共に、スクリュ軸の内管と外管との間には空気層を形成した事に特徴が存する。   The cooling structure of the screw conveyor according to the present invention basically includes a screw shaft provided with a screw shaft and screw blades provided on the outer periphery of the screw shaft. The screw shaft includes an inner tube and an outer tube. The double pipe structure is characterized in that a water channel for circulating cooling water is formed in the inner pipe, and an air layer is formed between the inner pipe and the outer pipe of the screw shaft.

水路には、冷却水が通流されるので、スクリュ軸が冷却水に依り冷却される。この時、水路の外側には、空気層が形成されているので、スクリュ軸の表面温度が低温腐食温度域(120〜130℃)にはならない様に冷却される。空気層は、水路の外側の全周に亘って形成されているので、スクリュ軸の表面は、全周に亘って均等に冷却される。   Since the cooling water flows through the water channel, the screw shaft is cooled by the cooling water. At this time, since an air layer is formed outside the water channel, the screw shaft is cooled so that the surface temperature of the screw shaft does not fall within the low temperature corrosion temperature range (120 to 130 ° C.). Since the air layer is formed over the entire outer periphery of the water channel, the surface of the screw shaft is uniformly cooled over the entire periphery.

水路は、両端部に対して中間部が膨径されているのが好ましい。この様にすれば、水路の中間部で冷却水の流速を遅くする事ができ、良好な冷却効果を得る事ができる。   It is preferable that the middle part of the water channel has an enlarged diameter with respect to both ends. If it does in this way, the flow rate of cooling water can be made slow in the intermediate part of a water channel, and a good cooling effect can be acquired.

空気層は、その空気が外部との間で循環する様にされているのが好ましい。この様にすれば、空気層の温度を一定に保つ事ができ、冷却効果の均一化を図る事ができる。   The air layer is preferably configured such that the air circulates between the air layer and the outside. In this way, the temperature of the air layer can be kept constant, and the cooling effect can be made uniform.

本考案に依れば、次の様な優れた効果を奏する事ができる。
(1) 水路の外側の全周に亘って空気層を形成したので、水と空気を併用して冷却する事ができ、これに依って高温・腐食雰囲気環境下に於ける鋼材の表面温度を低温腐食温度域(120〜130℃)とならない範囲で低下させる事が可能になる。
(2) 前記(1)に依り鋼材に対する高温化に於ける強度低下や低温腐食の発生を防止できる。
(3) 鋼材の使用温度をより適正な温度範囲とする事に依ってより安価な材料の選定が可能となる。
(4) 冷却水は、施設内設備から分岐流用が可能であると共に、冷却空気が必要であっても、施設内設備から分岐流用したり、或は汎用性の高い機器に依る対応が可能となるので、冷却に要する設備費やランニングコストが過大なものとならない。
According to the present invention, the following excellent effects can be achieved.
(1) Since an air layer is formed over the entire circumference of the water channel, it can be cooled by using water and air together, and this can be used to reduce the surface temperature of the steel material in a high temperature / corrosive atmosphere environment. It is possible to lower the temperature within a range that does not fall within the low temperature corrosion temperature range (120 to 130 ° C.).
(2) According to the above (1), it is possible to prevent a decrease in strength and a low temperature corrosion when the steel is heated to a high temperature.
(3) By setting the working temperature of the steel material to a more appropriate temperature range, it becomes possible to select a cheaper material.
(4) The cooling water can be diverted from the facilities in the facility, and even if cooling air is required, it can be diverted from the facilities in the facility or can be handled by highly versatile equipment. Therefore, the equipment cost and running cost required for cooling are not excessive.

以下、本考案の実施の形態を、図面に基づいて説明する。
図1は、本考案のスクリュコンベヤの冷却構造を示す縦断面図。図2は、図1の2−2線断面図。図3は、図1の3−3線断面図。図4は、図1の4−4線断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a cooling structure of a screw conveyor according to the present invention. 2 is a cross-sectional view taken along line 2-2 of FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 4 is a cross-sectional view taken along line 4-4 of FIG.

冷却構造1は、スクリュ軸2、スクリュ羽根3、内管4、外管5、水路6、空気層7とからその主要部が構成されて居り、スクリュコンベヤ50に適用される。   The cooling structure 1 is composed of a screw shaft 2, a screw blade 3, an inner tube 4, an outer tube 5, a water channel 6, and an air layer 7, and is applied to a screw conveyor 50.

スクリュコンベヤ50は、焼却炉や溶融設備等に適用され、この例では、廃熱ボイラに設置されるダスト排出装置として用いられている。   The screw conveyor 50 is applied to an incinerator, a melting facility, or the like, and in this example, is used as a dust discharge device installed in a waste heat boiler.

而して、スクリュコンベヤ50は、廃熱ボイラの下部に形成されたケーシング51と、これの上部全範に形成されて落下して来たダストを受け入れる為のダスト入口52と、ケーシング51の下部一側に形成されてダストを排出する為のダスト出口(図示せず)と、ケーシング51に両端が貫通して設けられたスクリュ軸2と、ケーシング51の外側に設けられてスクリュ軸2の両端を回転可能に支持する軸受53と、ケーシング51とスクリュ軸2との間に設けられてシールを行なう為のシール手段54と、ケーシング51の外側に設けられてスクリュ軸2を回転させる為の回転駆動手段(図1では、スクリュ軸2の一側に設けられたチェーンスプロケットのみを示している)55と、スクリュ軸2の外周に設けられてダストをダスト出口側に搬送する螺旋状のスクリュ羽根3とから構成されている。ケーシング51の内側には、適宜の耐火材56が内張りされている。   Thus, the screw conveyor 50 includes a casing 51 formed in the lower portion of the waste heat boiler, a dust inlet 52 for receiving the dust that has fallen and formed in the entire upper portion of the casing 51, and a lower portion of the casing 51. A dust outlet (not shown) that is formed on one side for discharging dust, a screw shaft 2 that is provided through both ends of the casing 51, and both ends of the screw shaft 2 that are provided outside the casing 51. , A bearing means 53 that rotatably supports the sealing member 54, a sealing means 54 that is provided between the casing 51 and the screw shaft 2, and a rotation that is provided outside the casing 51 and rotates the screw shaft 2. Driving means (only a chain sprocket provided on one side of the screw shaft 2 is shown in FIG. 1) 55 and dust provided on the outer periphery of the screw shaft 2 to remove dust And a spiral screw blade 3 for conveying the. An appropriate refractory material 56 is lined inside the casing 51.

スクリュ軸2は、鋼等の金属製で、内管4と外管5を備えた二重管構造にしてあり、更に、内管4には、内管4と外管5の空隙を適正に保つために内管4に適数の支板8が固定されている。
而して、内管4の内側には、水路6が形成されていると共に、内管4と外管5との間には、空気層(つまり空気室)7が形成されている。
The screw shaft 2 is made of a metal such as steel and has a double tube structure including an inner tube 4 and an outer tube 5. Further, the inner tube 4 has an appropriate gap between the inner tube 4 and the outer tube 5. An appropriate number of support plates 8 are fixed to the inner tube 4 in order to maintain.
Thus, a water channel 6 is formed inside the inner tube 4, and an air layer (that is, an air chamber) 7 is formed between the inner tube 4 and the outer tube 5.

水路6は、冷却水Wが循環する様にされて居り、その水入口9と水出口10には、スクリュ軸2の両側に設けられたロータリジョイント11,12を介してポンプ等の水供給源(図示せず)が接続されている。
而して、水路6は、両端部に対して中間部が膨径されている。つまり、内管4の両端部を小径に、中間部を大径に、これらの間をテーパ状にする事に依りこの様にされている。
The water channel 6 is configured such that the cooling water W circulates, and a water supply source such as a pump is provided at the water inlet 9 and the water outlet 10 via rotary joints 11 and 12 provided on both sides of the screw shaft 2. (Not shown) is connected.
Thus, the middle portion of the water channel 6 is expanded with respect to both end portions. That is, this is done by making both end portions of the inner tube 4 have a small diameter, a middle portion having a large diameter, and a taper between them.

空気層7は、この例では、空気Aが外部との間で循環する様にされて居り、その空気入口13には、ロータリジョイント14を介してコンプレッサ等の空気供給源(図示せず)が接続されていると共に、その空気出口15は、大気中つまりケーシング51の外部に開放されている。空気出口15近傍のスクリュ軸2には、排出される空気Aを軸直角方向に案内する為の仕切板16が設けられている。   In this example, the air layer 7 is configured such that air A circulates between the outside and an air supply source (not shown) such as a compressor via a rotary joint 14 at the air inlet 13. In addition to being connected, the air outlet 15 is opened to the atmosphere, that is, to the outside of the casing 51. The screw shaft 2 in the vicinity of the air outlet 15 is provided with a partition plate 16 for guiding the discharged air A in the direction perpendicular to the axis.

前記水入口9側のロータリジョイント11と空気入口13側のロータリジョイント14は、一体化されて水Wと空気Aとが取り扱える複式内管回転式のものにしてあると共に、前記水出口10側のロータリジョイント12は、水Wが取り扱える単式のものにしてある。   The rotary joint 11 on the side of the water inlet 9 and the rotary joint 14 on the side of the air inlet 13 are integrated so as to be of a double inner pipe rotation type capable of handling water W and air A, and on the water outlet 10 side. The rotary joint 12 is a single type that can handle water W.

スクリュ羽根3は、スクリュ軸2の外周に設けられたもので、ダストをダスト出口側に搬送する螺旋状のものである。   The screw blade 3 is provided on the outer periphery of the screw shaft 2 and has a spiral shape for conveying dust to the dust outlet side.

次に、この様な構成に基づいてその作用を述解する。
回転駆動手段55に依りスクリュ軸2が所定方向に回転されると、ケーシング51のダスト入口52からのダストがスクリュ羽根3に依りダスト出口側に搬送されてここから排出される。
水供給源からの冷却水Wは、ロータリジョイント11→水入口9→水路6→水出口10→ロータリジョイント12→水供給源という様に循環される。空気供給源からの空気Aは、ロータリジョイント14→空気入口13→空気層(空気室)7→空気出口15→大気中に放出される。
Next, the operation will be described based on such a configuration.
When the screw shaft 2 is rotated in a predetermined direction by the rotation driving means 55, the dust from the dust inlet 52 of the casing 51 is conveyed to the dust outlet side by the screw blade 3 and is discharged therefrom.
The cooling water W from the water supply source is circulated as follows: rotary joint 11 → water inlet 9 → water channel 6 → water outlet 10 → rotary joint 12 → water supply source. The air A from the air supply source is discharged into the rotary joint 14 → the air inlet 13 → the air layer (air chamber) 7 → the air outlet 15 → the atmosphere.

水路6には、水供給源からの冷却水Wが通流されるので、スクリュ軸2が冷却水Wに依り冷却される。この時、水路6の外側には、空気層7が形成されているので、スクリュ軸2の表面温度が低温腐食温度域(120〜130℃)にはならない様に冷却される。
空気層7は、水路6の外側の全周に亘って形成されているので、スクリュ軸2の表面は、全周に亘って均等に冷却される。
Since the cooling water W from the water supply source flows through the water channel 6, the screw shaft 2 is cooled by the cooling water W. At this time, since the air layer 7 is formed outside the water channel 6, the surface temperature of the screw shaft 2 is cooled so as not to fall in the low temperature corrosion temperature range (120 to 130 ° C.).
Since the air layer 7 is formed over the entire outer periphery of the water channel 6, the surface of the screw shaft 2 is uniformly cooled over the entire periphery.

水路6は、両端部に対して中間部が膨径されているので、水路6の中間部で冷却水の流速を遅くかつ空気層7の厚みを薄くする事で、適切な冷却効果を得る事ができる。
空気層7は、外部との間で空気Aが循環する様にされているので、空気層7の温度を一定に保つ事ができ、冷却効果の均一化を図る事ができる。
Since the middle part of the water channel 6 has an enlarged diameter relative to both ends, an appropriate cooling effect can be obtained by reducing the flow rate of the cooling water and reducing the thickness of the air layer 7 in the middle part of the water channel 6. Can do.
Since air A circulates between the air layer 7 and the outside, the temperature of the air layer 7 can be kept constant, and the cooling effect can be made uniform.

尚、水路6は、先の例では、両端部に対して中間部が膨径されていたが、これに限らず、例えば全部分が同径であっても良い。
空気層7は、先の例では、空気供給源に接続されて空気Aを外部との間で強制循環させるものであったが、これに限らず、例えば空気供給源を割愛して空気Aを自然循環させたり、或は空気Aを循環させずに貯留(封入)されるものでも良い。
In the previous example, the middle portion of the water channel 6 has an enlarged diameter with respect to both end portions. However, the present invention is not limited thereto, and for example, the entire portion may have the same diameter.
In the previous example, the air layer 7 is connected to the air supply source and forcibly circulates the air A to and from the outside. However, the air layer 7 is not limited to this. For example, the air layer 7 is omitted from the air supply source. It may be naturally circulated or stored (enclosed) without circulating air A.

本考案のスクリュコンベヤの冷却構造を示す縦断面図。The longitudinal cross-sectional view which shows the cooling structure of the screw conveyor of this invention. 図1の2−2線断面図。FIG. 2 is a sectional view taken along line 2-2 in FIG. 1. 図1の3−3線断面図。FIG. 3 is a sectional view taken along line 3-3 in FIG. 1. 図1の4−4線断面図である。FIG. 4 is a sectional view taken along line 4-4 of FIG.

符号の説明Explanation of symbols

1…冷却構造、2…スクリュ軸、3…スクリュ羽根、4…内管、5…外管、6…水路、7…空気層、8…支板、9…水入口、10…水出口、11,12…ロータリジョイント、13…空気入口、14…ロータリジョイント、15…空気出口、16…仕切板、50…スクリュコンベヤ、51…ケーシング、52…ダスト入口、53…軸受、54…シール手段、55…回転駆動手段、56…耐火材、W…冷却水、A…空気。   DESCRIPTION OF SYMBOLS 1 ... Cooling structure, 2 ... Screw shaft, 3 ... Screw blade, 4 ... Inner pipe, 5 ... Outer pipe, 6 ... Water channel, 7 ... Air layer, 8 ... Branch plate, 9 ... Water inlet, 10 ... Water outlet, 11 , 12 ... Rotary joint, 13 ... Air inlet, 14 ... Rotary joint, 15 ... Air outlet, 16 ... Partition plate, 50 ... Screw conveyor, 51 ... Casing, 52 ... Dust inlet, 53 ... Bearing, 54 ... Sealing means, 55 ... rotation drive means, 56 ... refractory material, W ... cooling water, A ... air.

Claims (3)

スクリュ軸と、スクリュ軸の外周に設けられたスクリュ羽根とを備えたスクリュコンベヤに於て、前記スクリュ軸を内管と外管を備えた二重管構造にして、内管には冷却水を流通させる水路を形成すると共に、スクリュ軸の内管と外管との間には空気層を形成した事を特徴とするスクリュコンベヤの冷却構造。   In a screw conveyor provided with a screw shaft and screw blades provided on the outer periphery of the screw shaft, the screw shaft has a double tube structure including an inner tube and an outer tube, and cooling water is supplied to the inner tube. A screw conveyor cooling structure characterized by forming a water channel to be circulated and forming an air layer between an inner tube and an outer tube of a screw shaft. 水路は、両端部に対して中間部が膨径されている請求項1に記載のスクリュコンベヤの冷却構造。   The screw conveyor cooling structure according to claim 1, wherein an intermediate portion of the water channel has an enlarged diameter with respect to both end portions. 空気層は、その空気が外部との間で循環する様にされている請求項1に記載のスクリュコンベヤの冷却構造。


2. The cooling structure for a screw conveyor according to claim 1, wherein the air layer circulates between the air and the outside.


JP2008000043U 2008-01-09 2008-01-09 Screw conveyor cooling structure Expired - Lifetime JP3140320U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000043U JP3140320U (en) 2008-01-09 2008-01-09 Screw conveyor cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000043U JP3140320U (en) 2008-01-09 2008-01-09 Screw conveyor cooling structure

Publications (1)

Publication Number Publication Date
JP3140320U true JP3140320U (en) 2008-03-21

Family

ID=43290449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000043U Expired - Lifetime JP3140320U (en) 2008-01-09 2008-01-09 Screw conveyor cooling structure

Country Status (1)

Country Link
JP (1) JP3140320U (en)

Similar Documents

Publication Publication Date Title
US9964356B2 (en) Drier apparatus
JP2968514B2 (en) Conveyor screw for furnace with solid flight
ES2795399T3 (en) Adjustable heat exchange apparatus and operating procedure
US4636127A (en) Conveying screw for furnace
ES2288030T3 (en) WATER REFRIGERATION SHIRTS FOR ELECTRIC ARC OVEN.
BRPI0509990B1 (en) Heat Exchanger System Used in Steel Confection
EP1438543B1 (en) Rotary hearth furnace and screw thereof for discharging reduced iron
EP1956215B1 (en) Gas turbine engine with insulated cooling circuit
JP3140320U (en) Screw conveyor cooling structure
JP2006299010A (en) External heating rotary kiln
US5924861A (en) Furnace discharge assembly
JP2006214289A (en) Industrial pump and manufacturing method thereof
JP4533332B2 (en) Air cooling structure of water-cooled horizontal rotating body
JP2005164094A (en) Kiln type external heating furnace
CN212126551U (en) High-temperature shaftless screw conveyor
CN211197605U (en) Air-cooled heat-insulation screw conveyor
RU2320925C1 (en) Draft device for transportation of chemically aggressive and high-temperature nonexplosive gas media
CN210735313U (en) Novel spiral conveyor structure
PT93123A (en) ROTARY BURNER AND PROCESS FOR THE MANUFACTURE OF THE SAME
JP3602218B2 (en) CFC gas inlet pipe to cement kiln
CN205245195U (en) Flying dust adds heat treatment device
JP2000327126A (en) Screw conveyor excellent in cooling power
CN213598600U (en) High-temperature-resistant gate valve assembly
JP2001201265A (en) Reduced iron discharge screw in moving hearth furnace
CN114184050A (en) Water-cooling closed spiral discharge device for high-temperature materials

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term