JP3139285B2 - Method for producing acrolein and acrylic acid - Google Patents

Method for producing acrolein and acrylic acid

Info

Publication number
JP3139285B2
JP3139285B2 JP06137048A JP13704894A JP3139285B2 JP 3139285 B2 JP3139285 B2 JP 3139285B2 JP 06137048 A JP06137048 A JP 06137048A JP 13704894 A JP13704894 A JP 13704894A JP 3139285 B2 JP3139285 B2 JP 3139285B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
acrylic acid
raw material
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06137048A
Other languages
Japanese (ja)
Other versions
JPH083093A (en
Inventor
功一 永井
好三郎 野村
義彦 長岡
康夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15189661&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3139285(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP06137048A priority Critical patent/JP3139285B2/en
Publication of JPH083093A publication Critical patent/JPH083093A/en
Application granted granted Critical
Publication of JP3139285B2 publication Critical patent/JP3139285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固定床多管式反応器を
用いてプロピレンを分子状酸素を用いて気相接触酸化し
アクロレインおよびアクリル酸を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing acrolein and acrylic acid by subjecting propylene to gas-phase catalytic oxidation using molecular oxygen in a fixed-bed multitubular reactor.

【0002】[0002]

【従来の技術】いわゆるモリブデン−ビスマス系複合酸
化物触媒を用いた気相接触酸化によるプロピレンからの
アクロレインおよびアクリル酸の製造技術はよく知られ
ているところである。
2. Description of the Related Art The technology for producing acrolein and acrylic acid from propylene by gas phase catalytic oxidation using a so-called molybdenum-bismuth composite oxide catalyst is well known.

【0003】本酸化反応は、通常、固定床多管式反応器
を用いて行われるが、大きな発熱を伴う反応のため、特
に原料ガス入り口側にホットスポットを生じ易く、この
ため過度の酸化反応による収率の低下と、触媒劣化が加
速されることによる触媒寿命の問題がある。特に単位触
媒あたりの生産性を高めるために原料プロピレン濃度を
高くしたり、空間速度を大きくしようとするとこの問題
はより重大な問題となる。
[0003] This oxidation reaction is usually carried out using a fixed-bed multitubular reactor. However, since the reaction generates a large amount of heat, a hot spot tends to be generated particularly on the inlet side of the raw material gas. Therefore, there is a problem in that the yield is lowered and the catalyst life is shortened due to accelerated catalyst deterioration. This problem becomes more serious especially when the raw material propylene concentration is increased or the space velocity is increased in order to increase the productivity per unit catalyst.

【0004】ホットスポットを抑え、生産性と触媒寿命
を改善するために過去にいくつかの提案がなされてい
る。例えば、特公昭57−30688号公報に開示され
ているように、ホットスポットの生じやすい部分の触媒
を反応に不活性な物質で希釈する方法である。同様に特
開昭51−127013号公報には、原料ガス入り口側
にいわゆる担持型触媒を置き、出口側を通常の成形触媒
とする方法が開示されている。
Several proposals have been made in the past to reduce hot spots and improve productivity and catalyst life. For example, as disclosed in Japanese Patent Publication No. 57-30688, a method of diluting a catalyst in a portion where a hot spot easily occurs with a substance inert to the reaction. Similarly, JP-A-51-127003 discloses a method in which a so-called supported catalyst is placed on the inlet side of a raw material gas, and the outlet side is used as a normal molded catalyst.

【0005】また、特公昭63−38331号公報に
は、モリブデン−ビスマス系多元触媒の成分中のアルカ
リ金属とタリウム群元素の種類又は(および)量を変え
ることにより、活性を制御された複数種の触媒を用意
し、原料ガス入口側より出口側に向かって活性のより高
い触媒を配置する方法が提案されている。
[0005] Japanese Patent Publication No. 63-38331 discloses a plurality of types of molybdenum-bismuth based multi-component catalysts whose activities are controlled by changing the types or amounts of alkali metals and thallium group elements. A method has been proposed in which a catalyst is prepared and a catalyst having higher activity is disposed from the inlet side of the raw material gas toward the outlet side.

【0006】さらに、特開平3−294239号公報に
は、モリブデン−ビスマス系多元触媒の成分中のアルカ
リ土類金属の種類又は(および)量を変えることによ
り、活性を制御し、上記と同様に配置する方法が、特開
平4−217932号公報には、触媒の大きさを変えて
活性を制御し、同様に配置する方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 3-294239 discloses that the activity is controlled by changing the kind or (and) amount of the alkaline earth metal in the components of the molybdenum-bismuth-based multi-way catalyst. As a method of disposing the catalyst, Japanese Patent Application Laid-Open No. H4-217932 discloses a method of controlling the activity by changing the size of the catalyst and disposing the catalyst in the same manner.

【0007】[0007]

【発明が解決しようとする課題】このように固定床多管
式反応器を用いて本気相接触酸化反応を行う際に、原料
ガス入り口部のホットスポットを抑制することによって
生産性を向上し、触媒寿命の延長を図る方法としては、
触媒活性を何らかの方法で制御し、反応管に分割して充
填する方法が採用されている。これらはいずれも有効な
方法であるが、不活性希釈材を用いる方法は、あらかじ
め触媒と希釈材を混合する作業が必要であるばかりでな
く、反応管に充填できる触媒成分の量が少なくなり、単
位触媒あたりの負荷が大きくなるため触媒寿命の点から
は必ずしも有利な方法ではない。
As described above, when performing the present gas phase catalytic oxidation reaction using a fixed-bed multitubular reactor, the productivity is improved by suppressing the hot spot at the inlet of the raw material gas. As a method to extend the catalyst life,
A method has been adopted in which the catalyst activity is controlled by some method and the reaction tube is divided and filled. These are all effective methods, but the method using an inert diluent not only requires the operation of mixing the catalyst and the diluent in advance, but also reduces the amount of the catalyst component that can be filled in the reaction tube, Since the load per unit catalyst becomes large, this is not always an advantageous method from the viewpoint of catalyst life.

【0008】それに比べ触媒組成を変えて活性を制御す
る方法はより優れた方法であるが、組成の異なる複数の
触媒を用意しなければならず、また組成が異なると活性
の経時変化の挙動が異なることがあるため、長期に運転
している間に初期の適当な活性の分布が崩れ、反応の継
続が困難になる恐れがある。また、触媒の大きさを変え
る方法は、形状を工夫し例えばリング状の触媒を用いた
としても形状が同じであれば大きなサイズの触媒ほどア
クロレインおよびアクリル酸の収率が悪くなるので、反
応収率の点からみて有利な方法とはいえない。
[0008] Compared to this, a method of controlling the activity by changing the catalyst composition is a more excellent method, but a plurality of catalysts having different compositions must be prepared. Since they may be different, the initial appropriate distribution of activity may be disrupted during long-term operation, making it difficult to continue the reaction. Also, a method of changing the size of the catalyst is that, even if the shape is devised and, for example, a ring-shaped catalyst is used, the yield of acrolein and acrylic acid decreases as the size of the catalyst increases if the shape is the same. This is not an advantageous method in terms of rate.

【0009】本発明の課題は、プロピレンを固定床多管
式反応器を用いて気相接触酸化し、アクロレインおよび
アクリル酸を製造するに際し、原料ガス入り口部のホッ
トスポットを抑制することによって、生産性を向上し、
触媒寿命を延長するためのより簡便で、確実な方法を提
供することにある。
An object of the present invention is to produce propylene by gas-phase catalytic oxidation using a fixed-bed multitubular reactor to suppress a hot spot at a raw material gas inlet when producing acrolein and acrylic acid. Improve
It is to provide a simpler and more reliable method for extending the catalyst life.

【0010】[0010]

【課題を解決するための手段】本発明者らは、かかる課
題を解決するため、触媒の活性を制御し、長期にわたっ
て安定した高い生産性を維持する方法について鋭意検討
を重ねた結果、単に触媒の焼成温度を変えることによっ
て活性を制御でき、反応管に分割充填することによって
上記の課題を達成できることを見いだし、本発明に至っ
た。
Means for Solving the Problems In order to solve the above problems, the present inventors have made intensive studies on a method for controlling the activity of a catalyst and maintaining a stable and high productivity over a long period of time. It has been found that the activity can be controlled by changing the calcination temperature of, and that the above-mentioned problem can be achieved by dividing and filling the reaction tube, thereby leading to the present invention.

【0011】本発明は次のとおりのものである。 (1) 触媒として一般式、 Moa −Bib −Fec −Ad −Be −Cf −Dg −O
x (Moはモリブデン、Biはビスマス、Feは鉄をそれ
ぞれ表し、Aはニッケルおよび/またはコバルトを表
し、Bはマンガン、亜鉛、カルシウム、マグネシウム、
スズおよび鉛からなる群より選ばれた少なくとも1種の
元素を表し、Cはリン、ホウ素、ヒ素、テルル、タング
ステン、アンチモンおよびケイ素からなる群より選ばれ
た少なくとも1種の元素を表し、Dはカリウム、ルビジ
ウム、セシウムおよびタリウムからなる群より選ばれた
少なくとも1種の元素を表し、a=12としたとき
<b≦10、0<c≦10、1≦d≦10、0≦e≦1
0、0≦f≦20、0<g≦2であり、xは各元素の酸
化状態により定まる値である)で示される複合酸化物を
充填した固定床多管式反応器を用いて、プロピレンを分
子状酸素で気相接触酸化してアクロレインおよびアクリ
ル酸を製造する方法において、各反応管を複数の層に分
割し、各層間で触媒組成を事実上変更することなく、
料ガス入口側ほどより高温で焼成して調製した触媒を順
次充填することを特徴とするアクロレインおよびアクリ
ル酸の製造方法。 (2) 少なくとも原料ガス入り口部に充填する触媒と
して、前項(1)記載の複合酸化物と本反応にはそれ自
身は実質的に不活性な酸化モリブデンとを混合成形した
ものを用いる前項(1)記載の方法。
The present invention is as follows. (1) General formula as catalyst, Mo a -Bi b -Fe c -A d -B e -C f -D g -O
x (Mo is molybdenum , Bi is bismuth , Fe is iron
Each represents, A represents nickel and / or cobalt, B is manganese, zinc, calcium, magnesium,
C represents at least one element selected from the group consisting of tin and lead, C represents at least one element selected from the group consisting of phosphorus, boron, arsenic, tellurium, tungsten, antimony and silicon, and D represents Represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and when a = 12 , 0
<B ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 1
0, 0 ≦ f ≦ 20, 0 <g ≦ 2, and x is a value determined according to the oxidation state of each element), using a fixed-bed multitubular reactor filled with a complex oxide represented by the following formula: In the method of producing acrolein and acrylic acid by gas-phase catalytic oxidation of molecular gas with molecular oxygen, each reaction tube is divided into a plurality of layers, and without substantially changing the catalyst composition between each layer, the raw material gas inlet side A process for producing acrolein and acrylic acid, which comprises sequentially charging a catalyst prepared by calcining at a higher temperature. (2) As a catalyst to be filled at least into the raw material gas inlet, a mixture obtained by mixing and forming the composite oxide described in the above item (1) and molybdenum oxide which is substantially inert in the present reaction is used. ) Described method.

【0012】以下、本発明を詳細に説明する。本発明に
おいて使用される触媒としては、いわゆる多成分複合酸
化物系触媒として公知の、一般式Moa −Bib −Fe
c −Ad −Be −Cf −Dg −Ox(Mo、Bi、Fe
はそれぞれモリブデン,ビスマスおよび鉄を表し、Aは
ニッケルおよび/またはコバルトを表し、Bはマンガ
ン、亜鉛、カルシウム、マグネシウム、スズおよび鉛か
らなる群より選ばれた少なくとも1種の元素を表し、C
はリン、ホウ素、ヒ素、テルル、タングステン、アンチ
モンおよびケイ素からなる群より選ばれた少なくとも1
種の元素を表し、Dはカリウム、ルビジウム、セシウム
およびタリウムからなる群より選ばれた少なくとも1種
の元素を表し、a=12としたとき 0<b≦10、0
<c≦10、1≦d≦10、0≦e≦10、0≦f≦2
0、0<g≦2であり、xは各元素の酸化状態により定
まる値である)で示されるものであり、例えば特公昭4
7−27490号公報、特公昭47−32044号公
報、特公昭47−32051号公報、特公昭47−42
241号公報に記載されている。
Hereinafter, the present invention will be described in detail. The catalyst used in the present invention includes a general formula Moa-Bib-Fe known as a so-called multi-component composite oxide catalyst.
c-Ad-Be-Cf-Dg-Ox (Mo, Bi, Fe
Represents molybdenum, bismuth and iron, A represents nickel and / or cobalt, B represents at least one element selected from the group consisting of manganese, zinc, calcium, magnesium, tin and lead;
Is at least one selected from the group consisting of phosphorus, boron, arsenic, tellurium, tungsten, antimony and silicon.
D represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and when a = 12, 0 <b ≦ 10, 0
<C ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 2
0, 0 <g ≦ 2, and x is a value determined by the oxidation state of each element).
7-27490, JP-B-47-32044, JP-B-47-32051, JP-B-47-42.
241.

【0013】具体的には、例えば、下記の組成(酸素原
子を除く)の触媒等が挙げられる。 Mo12Bi0.1-5 Fe0.5-5 Co5-10Cs0.01-1Si
0.1-20 Mo120.1-2 Bi0.1-5 Fe0.5-5 Co5-10Cs
0.01-1Si0.1-20 Mo120.1-2 Bi0.1-5 Fe0.5-5 Co5-100.01-1
Si0.1-20 Mo12Bi0.1-5 Fe0.5-5 Co5-10Tl0.01-1
0.01-2Si0.1-20 Mo12Bi0.1-5 Fe0.5-5 Ni5-10Tl0.01-1
0.01-2Si0.1-20
Specifically, for example, a catalyst having the following composition (excluding oxygen atoms) is exemplified. Mo 12 Bi 0.1-5 Fe 0.5-5 Co 5-10 Cs 0.01-1 Si
0.1-20 Mo 12 W 0.1-2 Bi 0.1-5 Fe 0.5-5 Co 5-10 Cs
0.01-1 Si 0.1-20 Mo 12 W 0.1-2 Bi 0.1-5 Fe 0.5-5 Co 5-10 K 0.01-1
Si 0.1-20 Mo 12 Bi 0.1-5 Fe 0.5-5 Co 5-10 Tl 0.01-1 P
0.01-2 Si 0.1-20 Mo 12 Bi 0.1-5 Fe 0.5-5 Ni 5-10 Tl 0.01-1 P
0.01-2 Si 0.1-20

【0014】本発明に使用する触媒の焼成温度を除く調
製方法、および混合成形するために用いる酸化モリブデ
ン以外の原料については特に限定されるものではなく、
一般に用いられている方法および原料を採用することが
できる。触媒の形状についても特に限定されず、球状、
円柱状、円筒状などとすることができ、成形方法も担持
成形、押し出し成形、打錠成形などを用いることができ
る。
The method for preparing the catalyst used in the present invention except for the calcination temperature and the raw materials other than molybdenum oxide used for mixing and molding are not particularly limited.
Commonly used methods and raw materials can be employed. The shape of the catalyst is not particularly limited, and may be spherical,
It can be formed into a columnar shape, a cylindrical shape, or the like, and the molding method can be carrier molding, extrusion molding, tablet molding, or the like.

【0015】本発明において、各反応管を複数個、好ま
しくは2ないし3個の領域に分割し、原料ガスの入り口
側から出口側に向かってより活性が高くなるように配置
するが、この活性の制御を主として触媒の最終焼成温度
を変えた触媒を配置するという簡単な手法により行う。
本系触媒は成形した後、あるいは成形する前に通常空気
中または不活性ガス中400℃〜600℃の温度で、2
〜20時間焼成することによって活性化され反応に使用
されるが、好ましい焼成温度は触媒の組成によって定ま
り、従来は反応収率が最高になるように決められてい
た。高温で焼成するほどその活性は低下するが、選択率
はむしろ向上することがわかった。従って出口側に充填
する触媒として従来の比較的低温で焼成した高活性触媒
を用い、入り口側にそれより高温で焼成し活性の低い触
媒を充填する。
In the present invention, each reaction tube is divided into a plurality of regions, preferably two or three regions, and they are arranged so that the activity becomes higher from the inlet side to the outlet side of the raw material gas. Is mainly controlled by a simple method of arranging a catalyst in which the final calcination temperature of the catalyst is changed.
The catalyst of the present invention is usually formed in air or in an inert gas at a temperature of 400 ° C. to 600 ° C. after molding or before molding.
It is activated by calcining for 2020 hours and used for the reaction. The preferred calcining temperature is determined by the composition of the catalyst, and conventionally, the reaction yield is determined to be the highest. It was found that the higher the temperature, the lower the activity but the higher the selectivity. Therefore, a conventional high-activity catalyst calcined at a relatively low temperature is used as a catalyst to be charged on the outlet side, and a catalyst having a lower activity is calcined at a higher temperature on the inlet side.

【0016】活性を制御する手段としての焼成時間は焼
成温度にもよるが2時間以上であれば良く、上記の範囲
で適宜決めることができる。高温で焼成した触媒は、出
口部の触媒より選択性も高くなるので従来の希釈法によ
るよりも反応収率が高くなり、また触媒の実質使用量も
多いので触媒寿命の点でも有利である。
The firing time as a means for controlling the activity depends on the firing temperature but may be 2 hours or more, and can be appropriately determined within the above range. The catalyst calcined at a high temperature has a higher selectivity than the catalyst at the outlet, so that the reaction yield is higher than that obtained by the conventional dilution method, and the substantial use of the catalyst is advantageous in terms of the life of the catalyst.

【0017】本発明で用いられる触媒の活性抑制方法
は、基本的に焼成温度だけであり、すなわち、例えば、
500℃、480℃、450℃で焼成した触媒を原料ガ
スの入り口側から出口側に向かって順次充填するだけで
あり、触媒の組成は混合成形する不活性な希釈材または
酸化モリブデンを用いる場合を除いて変更しない。アル
カリ金属などの種類または量を変えて活性を変えた触媒
は、長期の運転による活性変化の挙動が異なり、例えば
入り口側に充填したアルカリ金属の多い触媒は出口側の
アルカリ金属の少ない触媒に比べ活性の低下速度が大き
く、長期の運転によって、入り口側の活性のみが低下
し、出口側の層に新たなホットスポットが出現してしま
うという問題が、起こる可能性がある。
The method for suppressing the activity of the catalyst used in the present invention is basically only at the calcination temperature, that is, for example,
The catalyst fired at 500 ° C., 480 ° C., and 450 ° C. is merely charged in order from the inlet side of the raw material gas toward the outlet side, and the composition of the catalyst is such that an inert diluent or molybdenum oxide mixed and molded is used. Do not change except. Catalysts whose activities have been changed by changing the type or amount of alkali metals, etc., have different behaviors of activity change over long-term operation.For example, a catalyst with a large amount of alkali metal filled at the entrance side is compared with a catalyst with a small amount of alkali metal at the exit side. There is a possibility that the activity decreases at a high rate, and a long-term operation reduces only the activity on the entrance side, and a new hot spot appears on the layer on the exit side.

【0018】それに対し、焼成温度で活性を制御したも
のは基本的に活性の経時変化の挙動が同じであり、その
ような問題は起こりにくい。焼成温度を高くすることに
よって活性が低下する原因は主として触媒の比表面積の
減少によるものであり、反応によっては比表面積は殆ど
変化しないことがわかった。従って本発明による方が長
期にわたって安定的に高い生産性で運転の継続が可能で
ある。
On the other hand, in the case where the activity is controlled by the firing temperature, the behavior of the activity changes with time is basically the same, and such a problem hardly occurs. It has been found that the reason why the activity is decreased by increasing the calcination temperature is mainly due to the decrease in the specific surface area of the catalyst, and the specific surface area hardly changes depending on the reaction. Therefore, according to the present invention, the operation can be stably continued for a long time with high productivity.

【0019】ところで触媒組成を変えずに焼成温度で活
性を制御し分割充填する方法によっても、非常に長期の
運転では触媒の劣化は避けられない。本発明者らは先
に、この触媒劣化の抑制方法として、本反応に実質的に
不活性な酸化モリブデンを少なくとも原料ガス入り口側
の触媒と共存させる方法を提案した。(特願平5−15
4885号)
By the way, even in a method of controlling the activity at the calcination temperature without changing the catalyst composition and dividing and packing the catalyst, deterioration of the catalyst cannot be avoided in a very long operation. The inventors of the present invention have previously proposed a method of suppressing the catalyst deterioration by coexisting molybdenum oxide which is substantially inactive in the present reaction with at least the catalyst on the inlet side of the raw material gas. (Japanese Patent Application 5-15
No. 4885)

【0020】この方法は、触媒の劣化が主として入り口
部のモリブデン成分の揮散によってもたらされること、
反応収率を落とさないためには本反応に実質的に不活性
な酸化モリブデンのかたちで共存させる必要があること
を見いだしたものである。酸化モリブデンはそれ自身不
活性希釈材であるので入り口側にこれを用いれば、入り
口側の活性を低く抑える方法の一つとなることを主張し
ているが、活性を制御するにはかなり大量たとえば20
〜60%の酸化モリブデンを共存させる必要があり、一
方劣化を抑えるためには比較的少量例えば2〜20%の
共存で十分である。
[0020] In this method, the deterioration of the catalyst is mainly caused by volatilization of the molybdenum component at the entrance,
It has been found that it is necessary to coexist in the form of molybdenum oxide which is substantially inactive in the present reaction so as not to lower the reaction yield. Since molybdenum oxide itself is an inert diluent, it is argued that its use as an inlet diluent would be one of the methods to reduce the activity at the entrance side.
It is necessary to make モ 60% of molybdenum oxide coexist. On the other hand, in order to suppress deterioration, a relatively small amount of coexistence, for example, 2 to 20% is sufficient.

【0021】本発明の方法は比較的少量の酸化モリブデ
ンを混合成形した触媒を焼成温度を変えて活性を制御
し、分割充填することによってホットスポットの抑制
と、触媒劣化の抑制という目的を達成しようとするもの
である。酸化モリブデンを混合成形した触媒は少なくと
もガス入り口側に充填する必要があるが、全層にわたっ
て共存させてもよく、分割した層によってその濃度を変
えてもかまわない。酸化モリブデンは、本反応に実質的
に不活性なものであればよいが、例えば市販のモリブデ
ン酸アンモニウムを空気中で550℃から700℃で熱
処理する事により得られる。熱処理温度がこれより低温
であると、オレフィンの完全酸化活性があり、これを触
媒と共存させた場合、反応の選択性を悪くする原因とな
る。また市販の三酸化モリブデンの中から反応に不活性
なものを選ぶこともできる。
In the method of the present invention, the activity of the catalyst formed by mixing and molding a relatively small amount of molybdenum oxide is controlled by changing the calcination temperature, and by dividing and filling the catalyst, the objectives of suppressing hot spots and suppressing catalyst deterioration are achieved. It is assumed that. The catalyst formed by mixing and forming molybdenum oxide must be filled at least on the gas inlet side, but it may be coexisted in all layers or its concentration may be changed depending on the divided layers. Molybdenum oxide may be any substance that is substantially inert to the present reaction. For example, molybdenum oxide can be obtained by heat-treating commercially available ammonium molybdate at 550 ° C. to 700 ° C. in air. If the heat treatment temperature is lower than this, the olefin has a complete oxidation activity, and when it is coexisted with a catalyst, it causes a decrease in the selectivity of the reaction. Alternatively, a commercially available molybdenum trioxide that is inert to the reaction can be selected.

【0022】プロピレンの分子状酸素による気相接触酸
化反応の条件は、従来公知の方法で行うことができる。
例えば原料ガス中のプロピレン濃度は3〜15%、プロ
ピレンに対する分子状酸素の比は1〜3であり、残りは
窒素、水蒸気、酸化炭素、プロパンなどである。分子状
酸素の供給源としては空気が有利に用いられるが、必要
により酸素富化空気、純酸素を用いることもでき、ワン
パス法あるいはリサイクル法が用いられる。反応温度は
250℃〜450℃、反応圧力は常圧から5気圧、空間
速度500〜3000h-1(STP)の範囲で行われ
る。
The conditions for the gas phase catalytic oxidation reaction of propylene with molecular oxygen can be carried out by a conventionally known method.
For example, the propylene concentration in the raw material gas is 3 to 15%, the ratio of molecular oxygen to propylene is 1 to 3, and the rest is nitrogen, steam, carbon oxide, propane, or the like. Air is advantageously used as a supply source of molecular oxygen, but if necessary, oxygen-enriched air or pure oxygen can be used, and a one-pass method or a recycling method is used. The reaction is performed at a reaction temperature of 250 ° C. to 450 ° C., a reaction pressure of normal pressure to 5 atm, and a space velocity of 500 to 3000 h −1 (STP).

【0023】[0023]

【実施例】以下実施例を挙げて本発明をさらに詳細に説
明する。なお、本明細書における反応率(%)、選択率
(%)、収率(%)は、次の如く定義する。 反応率(%)=(反応したプロピレンモル数/供給したプ
ロピレンのモル数)×100 選択率(%)=(生成物のモル数/反応したプロピレン
モル数)×100 収 率(%)=(生成物のモル数/供給したプロピレンの
モル数)×100
The present invention will be described in more detail with reference to the following examples. The conversion (%), selectivity (%), and yield (%) in this specification are defined as follows. Conversion (%) = (moles of propylene reacted / moles of propylene supplied) × 100 Selectivity (%) = (moles of product / propylene reacted)
Number of moles) × 100 Yield (%) = (Mole number of product / Mole number of supplied propylene) × 100

【0024】実施例1 〔触媒調製〕モリブデン酸アンモニウム〔(NH4 6
Mo7 24・4H2 O〕11500gを温水37.6L
に溶解し、さらに20%シリカゾル(SiO2 )163
0gを加え、これをA液とする。硝酸コバルト〔Co
(NO3 2 ・6H2 O〕11080gおよび硝酸第二
鉄〔Fe(NO3 3 ・9H2 O〕4400gおよび硝
酸セシウム(CsNO3 )53gを温水20Lに溶解
し、これをB液とする。純水3.2Lに60%硝酸75
0gを加え、硝酸ビスマス〔Bi(NO3 3・5H2
O〕2640kgを溶解し、これをC液とする。次にB
液とC液を混合する。
Example 1 [Preparation of catalyst] Ammonium molybdate [(NH 4 ) 6
Hot water Mo 7 O 24 · 4H 2 O] 11500g 37.6L
And 20% silica sol (SiO 2 ) 163
Add 0 g, and use this solution A. Cobalt nitrate [Co
(NO 3) 2 · 6H 2 O ] 11080g and ferric nitrate [Fe (NO 3) 3 · 9H 2 O ] 4400g and cesium nitrate (CsNO 3) was dissolved 53g of warm water 20L, the At the B solution . 60% nitric acid 75 in 3.2L of pure water
0 g, and add bismuth nitrate [Bi (NO 3 ) 3 .5H 2
O] 2640 kg was dissolved, and this was designated as solution C. Then B
Mix liquid and liquid C.

【0025】A液を撹拌しながら、B液とC液の混合液
を添加してスラリーを得る。これを濃縮乾燥後、空気流
通下200〜250℃で塩分解する。その後粉砕し、5
mmφ×2mmφ×6mmHの円筒状に押し出し成形し、46
0℃で6時間焼成して触媒Aとした。酸素を除く触媒組
成は、Mo12Bi1 Fe2 Co7 Cs0.05Si1 であ
る。
While stirring the solution A, a mixed solution of the solution B and the solution C is added to obtain a slurry. This is concentrated and dried, and then subjected to salt decomposition at 200 to 250 ° C. in an air stream. Then crush and 5
Extruded into a cylinder of mmφ × 2mmφ × 6mmH, 46
It was calcined at 0 ° C. for 6 hours to obtain catalyst A. The catalyst composition excluding oxygen is Mo 12 Bi 1 Fe 2 Co 7 Cs 0.05 Si 1 .

【0026】この触媒の最終焼成のみを490℃6時間
としたものを触媒Bとする。 〔反応〕内径30mmφ×6000mmの反応管に、原料ガ
ス入口側の触媒として、触媒Bを1.15L、その後に
触媒Aを2.3L充填し、塩浴温度325℃でスタート
し、プロピレン:空気:窒素:スチーム=1:8:3:
1.5のモル比でSV=1300h-1、入口圧力2.8
atmの条件で反応を行った。結果を表1に示す。
A catalyst obtained by performing only the final calcination of this catalyst at 490 ° C. for 6 hours is referred to as catalyst B. [Reaction] A reaction tube having an inner diameter of 30 mmφ × 6000 mm was charged with 1.15 L of catalyst B and then 2.3 L of catalyst A as a catalyst on the raw material gas inlet side, and started at a salt bath temperature of 325 ° C. : Nitrogen: Steam = 1: 8: 3:
At a molar ratio of 1.5, SV = 1300 h -1 , inlet pressure 2.8
The reaction was performed under the conditions of atm. Table 1 shows the results.

【0027】比較例1 実施例1で作った触媒Aを希釈して充填した。すなわち
触媒A0.8Lと磁性ラシヒリング0.35Lを混合し
実施例1と同様に原料ガス入り口側に充填し、出口側に
は触媒Aを2.3L充填して、実施例1と同様に反応を
行った。結果を表2に示す。比較例1の方がアクロレイ
ンとアクリル酸の総合収率の低下が大きい。
Comparative Example 1 The catalyst A prepared in Example 1 was diluted and charged. That is, 0.8 L of catalyst A and 0.35 L of magnetic Raschig ring were mixed and charged into the raw material gas inlet side in the same manner as in Example 1, and 2.3 L of catalyst A was charged into the outlet side in the same manner as in Example 1. went. Table 2 shows the results. Comparative Example 1 has a larger decrease in the overall yield of acrolein and acrylic acid.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】比較例2 実施例1の触媒Aと同様にして原料の硝酸セシウムの量
のみ変えて、酸素を除く触媒組成がMo12Bi1 Fe2
Co7 Cs0.3 Si1 なる触媒Cを作った。同様に触媒
C1.15Lを原料ガス入り口側に充填し、出口側には
触媒A2.3Lを充填し実施例1と同様に反応を行っ
た。結果を表3に示す。
Comparative Example 2 In the same manner as in the catalyst A of Example 1, only the amount of the raw material cesium nitrate was changed, and the catalyst composition excluding oxygen was changed to Mo 12 Bi 1 Fe 2.
A catalyst C of Co 7 Cs 0.3 Si 1 was prepared. Similarly, 1.15 L of the catalyst C was charged at the inlet side of the raw material gas, and 2.3 L of the catalyst A was charged at the outlet side, and the reaction was carried out in the same manner as in Example 1. Table 3 shows the results.

【0031】入り口側の触媒C層の活性低下が著しく、
速い速度で塩浴温度を上げていく必要がある。250日
後この層のホットスポットの温度は低下しているが、触
媒A層にある第2のホットスポットが上昇し温度が逆転
した。実施例1に比べさらに長期の運転には耐えられな
い可能性が大きい。
The activity of the catalyst C layer on the entrance side is significantly reduced,
It is necessary to increase the salt bath temperature at a fast rate. After 250 days, the temperature of the hot spot in this layer had dropped, but the second hot spot in the catalyst A layer had risen and the temperature had been reversed. There is a high possibility that it cannot withstand long-term operation as compared with the first embodiment.

【0032】[0032]

【表3】 [Table 3]

【0033】実施例2 モリブデン酸アンモニウム(NH4 6 Mo7 24・4
2 Oを空気中630℃で3時間焼成しMoO3 を得
た。実施例1で得られた塩分解後の触媒前駆体粉末90
部とこのMoO3 10部を混合し、同じ形状に押し出し
成形した。これを490℃で6時間焼成し触媒Dを得
た。この触媒D1.15Lをガス入り口側に充填、出口
側には触媒A2.3Lを充填し、実施例1と同様に反応
を行った。結果を表4に示す。塩浴温度の変化もごく僅
かであり、反応収率の低下も全く見られなかった。
[0033] Example 2 Ammonium molybdate (NH 4) 6 Mo 7 O 24 · 4
H 2 O was calcined in air at 630 ° C. for 3 hours to obtain MoO 3 . Catalyst precursor powder 90 after salt decomposition obtained in Example 1
And 10 parts of this MoO 3 were mixed and extruded into the same shape. This was calcined at 490 ° C. for 6 hours to obtain catalyst D. 1.15 L of this catalyst D was charged on the gas inlet side, and 2.3 L of catalyst A was charged on the outlet side, and a reaction was carried out in the same manner as in Example 1. Table 4 shows the results. The change in the salt bath temperature was very slight, and no reduction in the reaction yield was observed.

【0034】[0034]

【表4】 [Table 4]

フロントページの続き (51)Int.Cl.7 識別記号 FI C07C 57/05 C07C 57/05 // C07B 61/00 300 C07B 61/00 300 (72)発明者 伊藤 康夫 愛媛県新居浜市惣開町5番1号 住友化 学工業株式会社内 (56)参考文献 特開 平3−294238(JP,A) 特開 平4−217932(JP,A) 特開 平5−317714(JP,A) 特開 昭61−221149(JP,A) 特開 昭64−56634(JP,A) 特開 昭51−127013(JP,A) 特公 昭53−30688(JP,B2) 特公 昭43−24403(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C07C 27/00 340 B01J 23/88 C07C 45/35 C07C 47/22 C07C 51/25 C07C 57/05 C07B 61/00 300 Continuation of the front page (51) Int.Cl. 7 Identification code FI C07C 57/05 C07C 57/05 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Yasuo Ito 5th Sokai-cho, Niihama-shi, Ehime No. 1 Sumitomo Kagaku Kogyo Co., Ltd. (56) References JP-A-3-294238 (JP, A) JP-A-4-217932 (JP, A) JP-A-5-317714 (JP, A) JP-A Sho 61-221149 (JP, A) JP-A-64-56634 (JP, A) JP-A-51-227013 (JP, A) JP-B-53-30688 (JP, B2) JP-B-43-24403 (JP, A) B1) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 27/00 340 B01J 23/88 C07C 45/35 C07C 47/22 C07C 51/25 C07C 57/05 C07B 61/00 300

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 触媒として一般式、 Moa −Bib −Fec −Ad −Be −Cf −Dg −O
x (Moはモリブデン、Biはビスマス、Feは鉄をそれ
ぞれ表し、Aはニッケルおよび/またはコバルトを表
し、Bはマンガン、亜鉛、カルシウム、マグネシウム、
スズおよび鉛からなる群より選ばれた少なくとも1種の
元素を表し、Cはリン、ホウ素、ヒ素、テルル、タング
ステン、アンチモンおよびケイ素からなる群より選ばれ
た少なくとも1種の元素を表し、Dはカリウム、ルビジ
ウム、セシウムおよびタリウムからなる群より選ばれた
少なくとも1種の元素を表し、a=12としたとき
<b≦10、0<c≦10、1≦d≦10、0≦e≦1
0、0≦f≦20、0<g≦2であり、xは各元素の酸
化状態により定まる値である)で示される複合酸化物を
充填した固定床多管式反応器を用いて、プロピレンを分
子状酸素で気相接触酸化してアクロレインおよびアクリ
ル酸を製造する方法において、各反応管を複数の層に分
割し、各層間で触媒組成を事実上変更することなく、
料ガス入口側ほどより高温で焼成して調製した触媒を順
次充填することを特徴とするアクロレインおよびアクリ
ル酸の製造方法。
1. A general formula as catalyst, Mo a -Bi b -Fe c -A d -B e -C f -D g -O
x (Mo is molybdenum , Bi is bismuth , Fe is iron
Each represents, A represents nickel and / or cobalt, B is manganese, zinc, calcium, magnesium,
C represents at least one element selected from the group consisting of tin and lead, C represents at least one element selected from the group consisting of phosphorus, boron, arsenic, tellurium, tungsten, antimony and silicon, and D represents Represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and when a = 12 , 0
<B ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 1
0, 0 ≦ f ≦ 20, 0 <g ≦ 2, and x is a value determined according to the oxidation state of each element), using a fixed-bed multitubular reactor filled with a complex oxide represented by the following formula: In the method of producing acrolein and acrylic acid by gas-phase catalytic oxidation of molecular gas with molecular oxygen, each reaction tube is divided into a plurality of layers, and without substantially changing the catalyst composition between each layer, the raw material gas inlet side A process for producing acrolein and acrylic acid, which comprises sequentially charging a catalyst prepared by calcining at a higher temperature.
【請求項2】 少なくとも原料ガス入り口部に充填する
触媒として、請求項1記載の複合酸化物と本反応にはそ
れ自身は実質的に不活性な酸化モリブデンとを混合成形
したものを用いる請求項1記載の方法。
2. A catalyst which is formed by mixing and molding the composite oxide according to claim 1 and molybdenum oxide which is substantially inert in itself in the present reaction, as a catalyst to be filled at least into a raw material gas inlet. The method of claim 1.
JP06137048A 1994-06-20 1994-06-20 Method for producing acrolein and acrylic acid Expired - Lifetime JP3139285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06137048A JP3139285B2 (en) 1994-06-20 1994-06-20 Method for producing acrolein and acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06137048A JP3139285B2 (en) 1994-06-20 1994-06-20 Method for producing acrolein and acrylic acid

Publications (2)

Publication Number Publication Date
JPH083093A JPH083093A (en) 1996-01-09
JP3139285B2 true JP3139285B2 (en) 2001-02-26

Family

ID=15189661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06137048A Expired - Lifetime JP3139285B2 (en) 1994-06-20 1994-06-20 Method for producing acrolein and acrylic acid

Country Status (1)

Country Link
JP (1) JP3139285B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3793317B2 (en) * 1996-05-14 2006-07-05 日本化薬株式会社 Catalyst and method for producing unsaturated aldehyde and unsaturated acid
JP3775872B2 (en) * 1996-12-03 2006-05-17 日本化薬株式会社 Method for producing acrolein and acrylic acid
US6969774B2 (en) 1999-12-10 2005-11-29 Mitsubishi Rayon Co., Ltd. Method for producing methacrylic acid
JP4318367B2 (en) * 2000-02-16 2009-08-19 株式会社日本触媒 Method for producing acrolein and acrylic acid
US6337424B1 (en) 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
US6960684B2 (en) 2002-03-29 2005-11-01 Nippon Shokubai Co., Ltd. Production process for unsaturated aldehyde
US7045657B2 (en) 2002-04-03 2006-05-16 Nippon Shokubai Co., Ltd. Catalytic gas phase oxidation process
WO2005054166A1 (en) * 2003-12-03 2005-06-16 Mitsubishi Chemical Corporation Process for producing unsaturated aldehyde and unsaturated carboxylic acid
KR100807972B1 (en) 2005-08-10 2008-02-28 주식회사 엘지화학 Complex metal oxide catalyst with high acrylic acid selectivity
JP5232584B2 (en) * 2008-09-26 2013-07-10 東亞合成株式会社 Acrylic acid production method
JP2011121048A (en) * 2009-12-09 2011-06-23 Rohm & Haas Co Method for blending and loading solid catalyst material into tubular structure
CN103347845B (en) * 2011-02-02 2015-04-01 日本化药株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2014019675A (en) * 2012-07-20 2014-02-03 Nippon Kayaku Co Ltd Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2015008814A1 (en) 2013-07-18 2015-01-22 日本化薬株式会社 Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2016106082A (en) * 2015-11-24 2016-06-16 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP6912153B2 (en) 2019-03-29 2021-07-28 日本化薬株式会社 Manufacturing method of unsaturated aldehyde

Also Published As

Publication number Publication date
JPH083093A (en) 1996-01-09

Similar Documents

Publication Publication Date Title
EP0450596B1 (en) Process for producing unsaturated aldehydes and unsaturated acids
EP1055662B1 (en) A process for producing acrylic acid
US5276178A (en) Process for producing methacrolein and methacrylic acid
EP1156027B1 (en) A process for producing unsaturated aldehydes and unsaturated carboxylic acids
JP3139285B2 (en) Method for producing acrolein and acrylic acid
JP4318367B2 (en) Method for producing acrolein and acrylic acid
JP2574948B2 (en) Method for producing methacrylic acid
US7015354B2 (en) Preparation of (meth)acrolein and/or (meth)acrylic acid
JPH0813332B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JP4045693B2 (en) Method for producing methacrylic acid
EP1503856B1 (en) Method for preparing a catalyst for partial oxidation of propylene
JP2988660B2 (en) Method for producing methacrolein and methacrylic acid
JP2003146920A (en) Method for producing acrolein and acrylic acid
JP3296146B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP3314457B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2659839B2 (en) Method for producing methacrolein and methacrylic acid
EP0441312A1 (en) Process for producing methacrylic acid
JP2934267B2 (en) Method for producing methacrolein and methacrylic acid
JP2863509B2 (en) Method for producing methacrolein and methacrylic acid
JPH03215441A (en) Preparation of methacrolein and methacrylic acid
JP2000351744A (en) Method for producing methacrolein and methacrylic acid
JP2756160B2 (en) Method for producing methacrolein and methacrylic acid
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
KR100630600B1 (en) A process for producing unsaturated aldehyde and carboxylic acid

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 13

EXPY Cancellation because of completion of term