JP3135733B2 - Spectral element - Google Patents

Spectral element

Info

Publication number
JP3135733B2
JP3135733B2 JP05025561A JP2556193A JP3135733B2 JP 3135733 B2 JP3135733 B2 JP 3135733B2 JP 05025561 A JP05025561 A JP 05025561A JP 2556193 A JP2556193 A JP 2556193A JP 3135733 B2 JP3135733 B2 JP 3135733B2
Authority
JP
Japan
Prior art keywords
crystal
multilayer film
wavelength
fullerene
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05025561A
Other languages
Japanese (ja)
Other versions
JPH06242297A (en
Inventor
久貴 竹中
文彦 前田
雅人 富田
朋晃 川村
孝好 林
正治 尾嶋
芳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP05025561A priority Critical patent/JP3135733B2/en
Publication of JPH06242297A publication Critical patent/JPH06242297A/en
Application granted granted Critical
Publication of JP3135733B2 publication Critical patent/JP3135733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体材料など各種の
材料の化学状態、化学組成、不純物濃度、なかでも軽元
素を、高感度で分析する装置に必要な軟X線を選択する
分光素子やLSI用などの微細加工、生体観察やプラズ
マ観察用などのX線顕微鏡、太陽のコロナ観測用などの
X線望遠鏡などに必要なX線分光素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic element for selecting soft X-rays necessary for an apparatus for analyzing, with high sensitivity, the chemical state, chemical composition, and impurity concentration of various materials such as semiconductor materials. The present invention relates to an X-ray spectroscopic element required for an X-ray microscope for microfabrication, for LSI and LSI, an X-ray microscope for living body observation, plasma observation, and the like, and an X-ray telescope for sun corona observation.

【0002】[0002]

【従来の技術】軟X線を分光する素子には回折格子、多
層膜、単分子膜結晶がある。しかしながら、それぞれの
分光素子には次のような欠点がある。
2. Description of the Related Art There are a diffraction grating, a multilayer film, and a monomolecular crystal as devices for dispersing soft X-rays. However, each spectroscopic element has the following disadvantages.

【0003】(1)回折格子では通常の光電子分光など
の分析に使用する場合には波長分解能λ/Δλが100
0程度にもなり極めて高いが、10〜30Åの軟X線波
長においては回折効率と呼ばれる分光前の光強度に対す
る分光後の所望の波長の光強度の比が約1%と低く高感
度が要求される分光分析実験には不向きである。
(1) When a diffraction grating is used for analysis such as ordinary photoelectron spectroscopy, the wavelength resolution λ / Δλ is 100.
At about 10 to 30 ° soft X-ray wavelength, which is extremely high, the ratio of the light intensity of the desired wavelength after the spectrum called the diffraction efficiency to the light intensity before the spectrum, which is called diffraction efficiency, is as low as about 1% and high sensitivity is required. It is not suitable for the spectroscopic experiment performed.

【0004】(2)多層膜では回折効率は数10%程度
と高い値を示すが、分光された光の波長分解能が40〜
60程度と低い値を示すため、高感度でなく高分解能の
分析が必要な実験には適しないという問題がある。
(2) Although the diffraction efficiency of a multilayer film is as high as about several tens of percent, the wavelength resolution of dispersed light is 40 to 40%.
Since it shows a low value of about 60, there is a problem that it is not suitable for experiments requiring high-resolution analysis instead of high sensitivity.

【0005】(3)単分子膜結晶はLB法で作製するた
め結晶性の良い結晶の作製が困難である。そのため回折
効率が回折格子よりも低く、波長分解能も回折格子より
低い。また、熱に極めて弱いという問題点がある。
(3) Since monolayer crystal is produced by the LB method, it is difficult to produce a crystal having good crystallinity. Therefore, the diffraction efficiency is lower than that of the diffraction grating, and the wavelength resolution is lower than that of the diffraction grating. In addition, there is a problem that it is extremely weak to heat.

【0006】[0006]

【発明が解決しようとする課題】本発明は前述の問題点
を解決するために提案されたもので、高い分解能と回折
効率を同時に実現した、X線・軟X線利用の分光分析な
どの応用に好適に用いられる分光素子を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in order to solve the above-mentioned problems, and has realized high resolution and diffraction efficiency at the same time, such as application of spectral analysis utilizing X-rays and soft X-rays. It is an object of the present invention to provide a spectroscopy element that is suitably used for:

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め本発明の分光素子は、金属内包フラーレン結晶により
構成されたことを特徴とする。金属内包フラーレン結晶
を使用することにより、格子定数を大きくし、かつ、回
折効率を高くできる。
In order to achieve the above object, a spectroscopic element according to the present invention is characterized by comprising a metal-encapsulated fullerene crystal. By using the metal-encapsulated fullerene crystal, the lattice constant can be increased and the diffraction efficiency can be increased.

【0008】[0008]

【作用】多層膜は一般には10Å〜数10Å程度の重元
素層と軽元素層をそれぞれ一定の層厚で交互に積層させ
たものである。この重元素層と軽元素層の厚みによって
数10Åの波長を分光させることが可能になっている。
実際には各層の層厚によって数10層から200層程度
のものが作製されている。この層数が多くなればなるほ
ど波長分解能が向上し、層数が少ないと波長分解能が低
下する。また、多層膜を作製する場合、一般的には軽元
素層と重元素層の界面で拡散が僅かに起こり界面の密度
の分離の急峻さが低減し、これも波長分解能を低下させ
る要因となる。
In general, a multilayer film is formed by alternately stacking heavy element layers and light element layers of about 10 to several tens of degrees with a constant layer thickness. The thickness of the heavy element layer and light element layer makes it possible to split a wavelength of several tens of degrees.
Actually, several tens to about 200 layers are manufactured depending on the thickness of each layer. As the number of layers increases, the wavelength resolution improves, and as the number of layers decreases, the wavelength resolution decreases. In addition, when a multilayer film is manufactured, generally, diffusion occurs slightly at the interface between the light element layer and the heavy element layer, and the steepness of separation of the interface density is reduced, which also causes a decrease in wavelength resolution. .

【0009】結晶は周期構造を極めて多数繰り返す構造
をしていること、原子レベルにおける乱れも極めて少な
いため分解能が高い。もし、このような結晶で多層膜の
ような重元素層と軽元素層が交互に長い間隔で配置され
た周期構造をとれば、従来の結晶に比ベて波長が数Å以
上で反射率が高く、かつ、波長分解能の高い分光素子と
なる。
The crystal has a structure in which a very large number of periodic structures are repeated and the disturbance at the atomic level is extremely small, so that the resolution is high. If such a crystal has a periodic structure in which heavy element layers and light element layers, such as a multilayer film, are alternately arranged at long intervals, the reflectivity and the wavelength are several Å or more compared to conventional crystals. A spectral element having high wavelength resolution is obtained.

【0010】これまでの結晶では重元素と軽元素が交互
に積層する形態のものはまれであり、しかも、任意の波
長領域で高い反射率を示す材料の組み合わせをとること
ができなかった。
[0010] Until now, the crystal has rarely a form in which heavy elements and light elements are alternately laminated, and it has not been possible to use a combination of materials exhibiting high reflectivity in an arbitrary wavelength region.

【0011】最近フラーレンあるいは金属内包フラーレ
ンとよばれる分子や結晶が作製されるようになった。図
1に金属内包フラーレン分子の例を示す。金属内包フラ
ーレン結晶は数10あるいはそれ以上のC原子の結合か
らなる球形ネットや円筒形ネットの中にLa、Y、Sc
など様々な金属が内包された分子単位で規則正しく3次
元に配列したものである。このため、内包金属が通常の
結晶の格子定数よりもはるかに長い間隔で、多層膜のよ
うに原子の拡散が無い状態で、規則正しく配列すること
が可能になる。当然、金属内包フラーレン結晶で多層膜
のような重元素層と軽元素層が交互に長い間隔で配置さ
れた周期構造をとれば、従来の結晶や回折格子、単分子
膜結晶に比ベて波長が数Å以上で反射率が高く、かつ、
多層膜や単分子膜結晶よりも波長分解能の高い分光素子
となる。そのため、このような金属内包フラーレン結晶
からなる分光素子を例えばX線・軟X線などを利用した
各種分析に適用した場合、分光素子の波長分解能、及
び、反射率が向上し感度や精度が向上するなどの効果を
有することになる。
Recently, molecules and crystals called fullerenes or metal-encapsulated fullerenes have been produced. FIG. 1 shows an example of a metal-encapsulated fullerene molecule. The metal-encapsulated fullerene crystal is composed of La, Y, Sc in a spherical net or a cylindrical net composed of bonds of several tens or more C atoms.
These are regularly arranged three-dimensionally in molecular units including various metals. For this reason, it becomes possible to arrange the included metals regularly at intervals much longer than the lattice constant of a normal crystal without the diffusion of atoms as in a multilayer film. Naturally, if a metal-encapsulated fullerene crystal has a periodic structure in which heavy element layers and light element layers, such as a multilayer film, are alternately arranged at long intervals, the wavelength becomes longer than that of conventional crystals, diffraction gratings, and monomolecular crystals. Is a few square meters or more and the reflectance is high, and
It becomes a spectroscopic element having higher wavelength resolution than a multilayer film or a monomolecular crystal. Therefore, when such a spectroscopic element made of a metal-encapsulated fullerene crystal is applied to various analyzes using, for example, X-rays and soft X-rays, the wavelength resolution of the spectroscopic element and the reflectance are improved, and the sensitivity and accuracy are improved. This has the effect of doing so.

【0012】[0012]

【実施例】次に本発明の代表的な実施例について説明す
る。
Next, typical embodiments of the present invention will be described.

【0013】試料としてLa23とグラファイト粉末を
かためたものを用い、これを1000度で炭素化した
後、1200度で熱処理し、アルゴン雰囲気中でYAG
レーザーを照射して金属内包フラーレンを作製した。ク
ロマトグラフでLa内包C82フラーレンを分離した
後、フラーレン単結晶基板上に蒸着させて2μm厚みの
Laを内包したC82フラーレン結晶を作製し、分光素
子とした。ただし、現段階では結晶からの回折X線の半
値幅はC60の単結晶にくらベて約2.7倍あり、結晶
の完全性はC60の単結晶よりも悪い。図2にLaを内
包したC82フラーレン結晶、回折格子、多層膜により
回折された波長10Åの強度分布を示す。縦軸は入射光
強度で規格化したので回折効率と同義である。この図か
ら明かなように、本発明の分光素子の回折効率は22%
程度である。この値は回折効率において回折格子や単分
子膜結晶をうわまわり、多層膜の回折効率と同等であ
る。また、回折光のロッキングカーブから推測すると波
長分解能は1100程度と見積もられる。この値は多層
膜の分解能に比ベ高い。
A sample prepared by laminating La 2 O 3 and graphite powder is carbonized at 1000 ° C., heat-treated at 1200 ° C., and subjected to YAG in an argon atmosphere.
By irradiating a laser, a metal-encapsulated fullerene was produced. After the La-encapsulated C82 fullerene was separated by chromatography, it was vapor-deposited on a fullerene single-crystal substrate to produce a La-encapsulated C82 fullerene crystal having a thickness of 2 μm, which was used as a spectral element. However, at this stage, the half value width of the diffracted X-ray from the crystal is about 2.7 times that of the C60 single crystal, and the crystal integrity is lower than that of the C60 single crystal. FIG. 2 shows an intensity distribution at a wavelength of 10 ° diffracted by a C82 fullerene crystal containing La, a diffraction grating, and a multilayer film. The vertical axis has the same meaning as the diffraction efficiency because it is normalized by the incident light intensity. As apparent from this figure, the diffraction efficiency of the spectroscopic element of the present invention is 22%.
It is about. This value is equivalent to the diffraction efficiency of the multilayer film in the diffraction efficiency of the diffraction grating and the monomolecular film crystal. In addition, the wavelength resolution is estimated to be about 1100 as estimated from the rocking curve of the diffracted light. This value is higher than the resolution of the multilayer film.

【0014】なお、上記実施例ではLaを内包したC8
2フラーレン結晶のみを示したが、内包金属はどのよう
な物質であっても、また、内包金属の数が複数個であっ
ても、Cの結合数が実施例以外の数のフラーレンであっ
ても同様の効果を示すことができる。また、実施例以外
の製造法であっても、基板を使用しなくても内包金属フ
ラーレン結晶が得られれば上記目的は達成されることは
いうまでもない。
In the above embodiment, C8 containing La is used.
Although only 2 fullerene crystals are shown, the inclusion metal may be any substance, and even if the number of inclusion metals is plural, the number of C bonds may be a fullerene having a number other than that of the examples. Can exhibit the same effect. In addition, it goes without saying that the above-mentioned object can be achieved even in a manufacturing method other than the examples as long as the encapsulated metal fullerene crystal can be obtained without using a substrate.

【0015】[0015]

【発明の効果】以上述ベたように本発明の分光素子によ
り、従来両立しえなかった軟X線領域における高効率、
高分解能を実現することが可能となった。
As described above, according to the spectroscopic element of the present invention, high efficiency in the soft X-ray region, which has been incompatible with the prior art, can be obtained.
It has become possible to realize high resolution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属内包フラーレン分子を表す図。編目の交点
にはC原子が存在する。
FIG. 1 is a diagram showing a metal-encapsulated fullerene molecule. C atoms exist at the intersections of the stitches.

【図2】本発明による分光素子と回折格子、多層膜によ
る回折光の強度分布。
FIG. 2 is an intensity distribution of diffracted light by a spectroscopic element, a diffraction grating, and a multilayer film according to the present invention.

【符号の説明】[Explanation of symbols]

1 La原子、 2 本発明の分光素子による強度分布、 3 多層膜による強度分布、 4 回折格子による強度分布。 1 La atom, 2 intensity distribution by the spectroscopic element of the present invention, 3 intensity distribution by the multilayer film, 4 intensity distribution by the diffraction grating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川村 朋晃 東京都千代田区内幸町1丁目1番6号日 本電信電話株式会社内 (72)発明者 林 孝好 東京都千代田区内幸町1丁目1番6号日 本電信電話株式会社内 (72)発明者 尾嶋 正治 東京都千代田区内幸町1丁目1番6号日 本電信電話株式会社内 (72)発明者 石井 芳一 東京都千代田区内幸町1丁目1番6号日 本電信電話株式会社内 (58)調査した分野(Int.Cl.7,DB名) G21K 1/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomoaki Kawamura 1-6-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Inside the Nippon Telegraph and Telephone Corporation (72) Takayoshi Hayashi 1-16-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Shoji Ojima 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Japan Nippon Telegraph and Telephone Corporation (72) Yoshikazu Ishii 1-1-1, Uchisaiwaicho, Chiyoda-ku, Tokyo No. 6 Inside Nippon Telegraph and Telephone Corporation (58) Field surveyed (Int. Cl. 7 , DB name) G21K 1/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属内包フラーレン結晶により構成され
たことを特徴とする分光素子。
1. A spectroscopic element comprising a metal-encapsulated fullerene crystal.
JP05025561A 1993-02-15 1993-02-15 Spectral element Expired - Fee Related JP3135733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05025561A JP3135733B2 (en) 1993-02-15 1993-02-15 Spectral element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05025561A JP3135733B2 (en) 1993-02-15 1993-02-15 Spectral element

Publications (2)

Publication Number Publication Date
JPH06242297A JPH06242297A (en) 1994-09-02
JP3135733B2 true JP3135733B2 (en) 2001-02-19

Family

ID=12169355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05025561A Expired - Fee Related JP3135733B2 (en) 1993-02-15 1993-02-15 Spectral element

Country Status (1)

Country Link
JP (1) JP3135733B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1416329A1 (en) * 2002-10-31 2004-05-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4970814B2 (en) * 2006-03-22 2012-07-11 国立大学法人 筑波大学 Metal-encapsulated fullerene conductive material and method for producing the same

Also Published As

Publication number Publication date
JPH06242297A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
WO2006097858A3 (en) Low-dielectric constant cryptocrystal layers and nanostructures
Gruznev et al. Synthesis of two-dimensional Tl x Bi1− x compounds and Archimedean encoding of their atomic structure
JP3135733B2 (en) Spectral element
Li et al. Pressure-regulated excitonic transitions in emergent metal halides
Shibuta et al. Interfacial oxidation of TA-encapsulating Si16 cage superatoms (Ta@ Si16) on strontium titanate substrates
Biswas et al. Edge-Confined Excitons in Monolayer Black Phosphorus
Su et al. Enhancing photodetection ability of MoS2 nanoscrolls via interface engineering
Shapiro et al. Optical and photoelectric properties of multichromic cyanine dye J-aggregates
Jin et al. Metallic transport in chemical vapor deposition ZrTe3 nanoribbons on a SiO2 wafer substrate
Agranovich et al. Superradiance of polaritons: Crossover from two-dimensional to three-dimensional crystals
Mintairov Molecular states of composite fermions in self-organized InP/GaInP quantum dots in zero magnetic field
Noonan et al. Domain mixtures in the NiAl (111) surface
Muntwiler et al. Exciton dynamics at interfaces of organic semiconductors
Bostedt et al. Controlling the electronic structure of nanocrystal assemblies by variation of the particle-particle interaction
Pasternak et al. Pressure‐induced Mott transition in transition‐metal iodides
Zhang et al. Coupling perovskite quantum dot pairs in solution using a nanoplasmonic assembly
Horn-von Hoegen Structural dynamics at surfaces by ultrafast reflection high-energy electron diffraction
Chuang et al. Fabrication and optical properties of two-dimensional photonic crystals of CdSe pillars
JPH06230194A (en) X-ray reflecting mirror
Brus Chemical approaches to semiconductor nanocrystals and nanocrystal materials
Meng et al. Experimental Studies of Water-Surface Interactions
JPH05203798A (en) Multi-layered film spectroscopic reflecting mirror
Sun et al. Hybridized Bonding
JP2000004054A (en) Production of organic super lattice material
Zhang et al. Structural phases formed by NO2/CO co-adsorption on Au {111} surfaces

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees