JP2000004054A - Production of organic super lattice material - Google Patents

Production of organic super lattice material

Info

Publication number
JP2000004054A
JP2000004054A JP10166604A JP16660498A JP2000004054A JP 2000004054 A JP2000004054 A JP 2000004054A JP 10166604 A JP10166604 A JP 10166604A JP 16660498 A JP16660498 A JP 16660498A JP 2000004054 A JP2000004054 A JP 2000004054A
Authority
JP
Japan
Prior art keywords
organic
chain
alkyl group
functioned
super lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10166604A
Other languages
Japanese (ja)
Inventor
Shigehisa Tanaka
滋久 田中
Yasunobu Matsuoka
康信 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10166604A priority Critical patent/JP2000004054A/en
Publication of JP2000004054A publication Critical patent/JP2000004054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an orientative lamination method of different kind of organic material thin film suitable for production of organic super lattice by laminating cyclic organic molecules sequentially on an organic material having at least single chain molecule structure while skewering. SOLUTION: At first, azobenzene 1 having a chain of alkyl group 5 is formed in single layer on an Au electrode 2 deposited on an Si substrate T by Langmuir-Blodgett method. It is then immersed into ferrocene functioned βcyclodextrin solution and applied with a field. Consequently a layer of ferrocene functioned βcyclodextrin 3 is formed while being skewered by the alkyl group chain 5 of azobenzene 1. Similarly, an organic super lattice structure is produced when it is immersed into ruthenocene functioned γ cyclodextrin solution. Finally, it is irradiated with UV-rays and alkyl group chain is terminated by isomerizing anthracene thus stabilizing the structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非線形光学材料や電
子材料として用いられる有機超格子材料およびその製法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic superlattice material used as a nonlinear optical material or an electronic material and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、異種材料の薄膜を積層して所
望の特性を持つ材料を人工的に創製する研究が盛んに行
われてきた。特に薄膜の厚さが数十nm以下の薄膜を用
いたものは超格子構造と呼ばれ、主に半導体を中心に活
発に研究されてきた。今日ではこの半導体人工材料を用
いて様々の新デバイスが実現、実用化されている。しか
しながら、半導体材料のみでは実現される物性値に限界
があり、より高効率のデバイスの作製に向けて新たな人
工材料の創製が望まれる。
2. Description of the Related Art Heretofore, researches for artificially creating a material having desired characteristics by laminating thin films of different materials have been actively conducted. In particular, a film using a thin film having a thickness of several tens nm or less is called a superlattice structure, and has been actively studied mainly on semiconductors. Today, various new devices have been realized and put into practical use using this semiconductor artificial material. However, there are limits to the physical properties that can be realized by using only semiconductor materials, and creation of a new artificial material is desired in order to manufacture devices with higher efficiency.

【0003】このような要求に応える新材料として、有
機材料の超格子が有望視されている。有機材料は光学的
励起により異性体へ変異するものがあるなどの従来の半
導体には無い魅力があるため、その超格子構造を実用化
して物性制御が可能となれば、新機能デバイスが開発で
きると予想される。高効率の有機材料を得るためには、
各分子の配向までを制御して積層することが必要となる
と考えられている。
As a new material meeting such a demand, a superlattice made of an organic material is considered promising. Organic materials have attraction not found in conventional semiconductors, such as those that can be mutated into isomers by optical excitation.If practical use of the superlattice structure enables control of physical properties, new functional devices can be developed. It is expected to be. To obtain highly efficient organic materials,
It is considered that it is necessary to stack the layers while controlling the orientation of each molecule.

【0004】このため、例えば信学技報(vol.96,
OME−96−29,pp.19−24,1996)の
菊池らによる論文“イオン化蒸着法によるポリ尿素薄膜
の配向制御”では、有機分子の配向を制御して、基板上
に薄膜を形成する方法が報告されている。
For this reason, for example, IEICE Technical Report (vol. 96,
OME-96-29, pp. 19-24, 1996), by Kikuchi et al., Discloses a method of controlling the orientation of organic molecules to form a thin film on a substrate by controlling the orientation of organic molecules.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記手法では
配向性の有機薄膜を単層形成できるに過ぎず、異種材料
を配向性を保持したまま積層するまでには至っていな
い。異種材料の積層は超格子構造の作製に必須であるた
め、その手法の確立が望まれる。
However, according to the above-mentioned method, only a single layer of an oriented organic thin film can be formed, and it is not possible to laminate different materials while maintaining the orientation. Since the lamination of dissimilar materials is indispensable for fabricating a superlattice structure, it is desired to establish a method thereof.

【0006】よって本発明は、有機超格子作製に適した
異種有機材料薄膜の配向性積層法を提供するものであ
る。
Accordingly, the present invention provides a method for orienting and laminating thin films of different kinds of organic materials suitable for producing an organic superlattice.

【0007】[0007]

【課題を解決するための手段】本発明の有機超格子材料
は、少なくとも1つの鎖状分子構造を持つ有機材料に、
順次環状有機分子を串刺し状に積層して形成された構造
を有する。
The organic superlattice material of the present invention comprises at least one organic material having a chain molecular structure,
It has a structure formed by sequentially stacking cyclic organic molecules in a skewered manner.

【0008】[0008]

【発明の実施の形態】図1に、本発明による有機超格子
の一実施例としての有機超格子構造の模式的な斜視図を
示す。図のように、アルキル基5を鎖とするアゾベンゼ
ン1をSi基板7上に蒸着したAu電極2上に単層形成
し、この鎖に環状の分子構造を持つフェロセン官能化β
シクロデキストリン3とルテノセン官能化γシクロデキ
ストリン4を順に串刺し状に積層して超格子構造を形成
した。
FIG. 1 is a schematic perspective view of an organic superlattice structure as one embodiment of an organic superlattice according to the present invention. As shown, a single layer is formed on an Au electrode 2 on which an azobenzene 1 having an alkyl group 5 as a chain is vapor-deposited on a Si substrate 7, and the chain has a ferrocene-functionalized β having a cyclic molecular structure.
Cyclodextrin 3 and ruthenocene-functionalized gamma cyclodextrin 4 were sequentially skewer-stacked to form a superlattice structure.

【0009】図2は、図1の有機超格子の作製法を示す
図である。図のように、まずSi基板7上に蒸着したA
u電極2上に、アルキル基5を鎖とするアゾベンゼン1
をラングミュア・ブロジェット法で単層形成する
(a)。次に、これをフェロセン官能化βシクロデキス
トリン溶液に浸漬し電界を印加する。するとフェロセン
官能化βシクロデキストリン3がアゾベンゼン1のアル
キル基鎖5に串刺しされる形で1層形成される(b)。
FIG. 2 is a diagram showing a method for producing the organic superlattice of FIG. As shown in FIG.
azobenzene 1 having alkyl group 5 as a chain on u electrode 2
Is formed in a single layer by the Langmuir-Blodgett method (a). Next, this is immersed in a ferrocene-functionalized β-cyclodextrin solution and an electric field is applied. As a result, a single layer is formed in which the ferrocene-functionalized β-cyclodextrin 3 is skewered into the alkyl group chain 5 of the azobenzene 1 (b).

【0010】次に、同様にルテノセン官能化γシクロデ
キストリン溶液に浸漬すると同図(c),(d)の有機超
格子構造が作製される。最後に紫外線を照射してアント
ラセンを図のように異性化してアルキル基鎖を終端し、
構造を安定化させる(e)。
Next, by similarly immersing in a ruthenocene-functionalized γ-cyclodextrin solution, the organic superlattice structure shown in FIGS. Finally, the anthracene is isomerized by irradiating ultraviolet rays as shown in the figure to terminate the alkyl group chain,
Stabilize the structure (e).

【0011】図3は、このようにして作製した有機超格
子薄膜のX線回折測定結果である。図のように回折スペ
クトルに超格子構造に対応するサテライトピークが現れ
ており、本方法で有機超格子構造が作製できることが示
された。
FIG. 3 shows the results of X-ray diffraction measurement of the organic superlattice thin film thus produced. As shown in the figure, a satellite peak corresponding to the superlattice structure appears in the diffraction spectrum, indicating that an organic superlattice structure can be produced by this method.

【0012】[0012]

【発明の効果】このような結果から、本発明による有機
超格子の製法は、高機能電子,光素子の実現に有効であ
る。
From the above results, the method for producing an organic superlattice according to the present invention is effective for realizing high-performance electronic and optical devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の有機超格子構造の模式的斜
視図。
FIG. 1 is a schematic perspective view of an organic superlattice structure according to one embodiment of the present invention.

【図2】図1の有機超格子の作製法を示す模式的斜視
図。
FIG. 2 is a schematic perspective view showing a method for producing the organic superlattice of FIG.

【図3】図1の有機超格子のX線回折スペクトル図。FIG. 3 is an X-ray diffraction spectrum of the organic superlattice of FIG.

【符号の説明】[Explanation of symbols]

1…アゾベンゼン、2…Au電極、3…フェロセン官能
化βシクロデキストリン、4…ルテノセン官能化γシク
ロデキストリン、5…アルキル基鎖、6…アントラセ
ン、7…Si基板。
DESCRIPTION OF SYMBOLS 1 ... azobenzene, 2 ... Au electrode, 3 ... ferrocene functionalized (beta) cyclodextrin, 4 ... ruthenocene functionalized (gamma) cyclodextrin, 5 ... alkyl group, 6 ... anthracene, 7 ... Si substrate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1つの鎖状分子構造と2種以上
の環状分子構造を有する有機材料であって、上記環状分
子が上記鎖状分子を介して串状に積層されていることを
特徴とする有機超格子材料。
1. An organic material having at least one chain molecular structure and two or more cyclic molecular structures, wherein said cyclic molecules are stacked in a skewered manner via said chain molecules. Organic superlattice material.
【請求項2】請求項1記載の有機超格子材料を2種以上
積層した有機超格子材料。
2. An organic superlattice material obtained by laminating two or more kinds of the organic superlattice materials according to claim 1.
【請求項3】請求項1または請求項2記載の有機超格子
材料2個以上が、基板となるSi,GaAs,InP,
Ge等の結晶材料またはガラス等のアモルファス材料表
面上に配列されていることを特徴とする有機超格子材
料。
3. The method according to claim 1, wherein two or more organic superlattice materials according to claim 1 or 2 are used as a substrate for Si, GaAs, InP,
An organic superlattice material characterized by being arranged on the surface of a crystalline material such as Ge or an amorphous material such as glass.
JP10166604A 1998-06-15 1998-06-15 Production of organic super lattice material Pending JP2000004054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10166604A JP2000004054A (en) 1998-06-15 1998-06-15 Production of organic super lattice material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10166604A JP2000004054A (en) 1998-06-15 1998-06-15 Production of organic super lattice material

Publications (1)

Publication Number Publication Date
JP2000004054A true JP2000004054A (en) 2000-01-07

Family

ID=15834387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10166604A Pending JP2000004054A (en) 1998-06-15 1998-06-15 Production of organic super lattice material

Country Status (1)

Country Link
JP (1) JP2000004054A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088514B2 (en) * 2001-03-23 2006-08-08 Fuji Photo Film Co., Ltd. Particle size variable reactor
US7202954B2 (en) 2002-12-13 2007-04-10 Fuji Photo Film Co., Ltd. Target detecting apparatus, target detection method and target detection substrate
CN102516739A (en) * 2011-12-13 2012-06-27 中国科学院成都生物研究所 Multiple sensitive hydrogel material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088514B2 (en) * 2001-03-23 2006-08-08 Fuji Photo Film Co., Ltd. Particle size variable reactor
US7202954B2 (en) 2002-12-13 2007-04-10 Fuji Photo Film Co., Ltd. Target detecting apparatus, target detection method and target detection substrate
CN102516739A (en) * 2011-12-13 2012-06-27 中国科学院成都生物研究所 Multiple sensitive hydrogel material and preparation method thereof

Similar Documents

Publication Publication Date Title
Chikan et al. Synthesis of highly luminescent GaSe nanoparticles
Kim et al. 25th anniversary article: colloidal quantum dot materials and devices: a quarter‐century of advances
US6316098B1 (en) Molecular layer epitaxy method and compositions
US6783849B2 (en) Molecular layer epitaxy method and compositions
US4939556A (en) Conductor device
US20060024860A1 (en) Semiconductor apparatus and process for fabricating the same
Allara et al. Evolution of Strategies for Self‐Assembly and Hookup of Molecule‐Based Devices
JPH0766990B2 (en) Organic device and manufacturing method thereof
JPH0488678A (en) Organic device and manufacture thereof
Martinez-Gordillo et al. Polar discontinuities and 1D interfaces in monolayered materials
JP2000004054A (en) Production of organic super lattice material
Metzger Unimolecular rectifiers and prospects for other unimolecular electronic devices
JP2967112B2 (en) Organic thin film manufacturing method
JP2692644B2 (en) Fullerene thin film manufacturing method
JP2004172270A (en) Molecular and thin film transistor by inclusion fullerene
Nichogi et al. Structural analysis of Langmuir-Blodgett films of alkylated tetracyanoquinodimethanes
Schmid et al. Physical and chemical properties of large metal and semiconductor clusters in view of future applications
JP3284242B2 (en) Preparation method of fine pattern of organic thin film
JP2862005B2 (en) Organic film fabrication method
KR102480374B1 (en) Photoluminescence single device and manufacturing method of the same
JP4982728B2 (en) Method for manufacturing a single electronic device
JP3135733B2 (en) Spectral element
Xue et al. Coulomb expansion of a van der Waals C 60 solid film
JPH10204124A (en) Production of polyacetylene
Kim et al. Enhancement of the activation energy due to coupling effects in CdxZn1− xTe∕ ZnTe double quantum dots