JP3134459B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3134459B2
JP3134459B2 JP04047739A JP4773992A JP3134459B2 JP 3134459 B2 JP3134459 B2 JP 3134459B2 JP 04047739 A JP04047739 A JP 04047739A JP 4773992 A JP4773992 A JP 4773992A JP 3134459 B2 JP3134459 B2 JP 3134459B2
Authority
JP
Japan
Prior art keywords
heat exchanger
pressure
capillary
refrigerant
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04047739A
Other languages
Japanese (ja)
Other versions
JPH05215425A (en
Inventor
卓夫 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04047739A priority Critical patent/JP3134459B2/en
Publication of JPH05215425A publication Critical patent/JPH05215425A/en
Application granted granted Critical
Publication of JP3134459B2 publication Critical patent/JP3134459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、室外機交換器、室内
熱交換器が冷媒配管で接続された空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner in which an outdoor unit exchanger and an indoor heat exchanger are connected by refrigerant pipes.

【0002】[0002]

【従来の技術】図5は、例えば特開昭60−13325
3号公報に示された従来の空気調和機を示す構成図であ
る。図において、1は冷媒を圧縮して吐き出す圧縮機、
2は圧縮機1への冷媒入路及び圧縮冷媒の送出先を切り
換える四方弁、3は室外熱交換器、4は減圧弁、5は室
内熱交換器、6は蓄液器、8は圧縮機1、四方弁2、室
外熱交換器3、減圧弁4、室内熱交換器5、蓄液器6及
び圧縮機1を順次接続した冷媒配管7からなる冷媒回
路、9、10はそれぞれ室外熱交換器3の中央及び出口
における冷媒配管7上に設置されてその位置の冷媒配管
7の温度を検出する検温器、11は検温器9、10によ
って検出された温度信号をデジタル温度データに変換す
るA/D変換部、12はA/D変換部11から出力され
るデジタル値の温度検出信号を予め設定された基準値と
比較して演算することにより、減圧弁4の最適開度を求
める比較演算部、13は減圧弁4の最適開度を制御する
弁開度制御手段である。
2. Description of the Related Art FIG.
FIG. 3 is a configuration diagram illustrating a conventional air conditioner disclosed in Japanese Patent Publication No. 3 (JP-A) No. 3-2003. In the figure, 1 is a compressor that compresses and discharges refrigerant.
2 is a four-way valve for switching the refrigerant passage to the compressor 1 and the destination of the compressed refrigerant, 3 is an outdoor heat exchanger, 4 is a pressure reducing valve, 5 is an indoor heat exchanger, 6 is a liquid storage device, and 8 is a compressor. 1, a refrigerant circuit comprising a four-way valve 2, an outdoor heat exchanger 3, a pressure reducing valve 4, an indoor heat exchanger 5, a liquid storage device 6, and a refrigerant pipe 7 sequentially connected to the compressor 1, and 9, 10 represent outdoor heat exchange, respectively. A temperature detector 11 which is installed on the refrigerant pipe 7 at the center and the outlet of the detector 3 and detects the temperature of the refrigerant pipe 7 at that position; and 11 converts the temperature signal detected by the temperature detectors 9 and 10 into digital temperature data. The A / D converter 12 compares the digital temperature detection signal output from the A / D converter 11 with a preset reference value and calculates the same, thereby obtaining the optimum opening of the pressure reducing valve 4. And 13, a valve opening control means for controlling the optimum opening of the pressure reducing valve 4. .

【0003】従来の空気調和機は上記のように構成さ
れ、電源スイッチの投入により圧縮機1が駆動される
と、圧縮機1から高温高圧の冷媒ガスが吐き出される。
そして、圧縮機1から吐き出された高温高圧の冷媒ガス
は、四方弁2を介して室外熱交換器3に供給され、室外
空気と熱交換されて凝縮するために高圧の液冷媒とな
る。このようにして凝縮された高圧の液冷媒は、減圧弁
4において減圧された後、室内熱交換器5を通過すると
きに室内空気と熱交換されて低圧のガス冷媒となる。そ
して、この低圧のガス冷媒は、四方弁2、及び蓄液器6
を介して圧縮機1に吸入されて再び圧縮され、高温高圧
の冷媒ガスとして吐き出されて冷凍サイクルを構成し空
気調和機としての作用が達成される。ここで、凝縮器と
なる室外熱交換器3の中央、及び出口における冷媒配管
7上に設置された検温器9、10は、高温高圧の冷媒ガ
スを凝縮する飽和温度と室外熱交換器3の出口の温度を
検出する。その検出信号をA/D変換部11に供給して
いる。A/D変換部11においては、検温器9、10か
ら供給されるアナログ値の温度検出信号をデジタル信号
に変換した後に比較演算部12に供給している。比較演
算部12においては、A/D変換部11から供給される
デジタル値の温度検出信号基準値と比較して演算するこ
とにより減圧弁4の最適開度を求める。そして、弁開度
制御手段13は比較演算部12の演算出力に応じて減圧
弁4の弁開度を制御することにより、検温器9、10に
より検出された凝縮器である室外熱交換器3の出口にお
ける冷媒の過冷却(サブクール)度が予め定められた値
になるように制御する。
A conventional air conditioner is configured as described above. When the compressor 1 is driven by turning on a power switch, a high-temperature and high-pressure refrigerant gas is discharged from the compressor 1.
Then, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 is supplied to the outdoor heat exchanger 3 via the four-way valve 2, and exchanges heat with outdoor air to become a high-pressure liquid refrigerant for condensation. The high-pressure liquid refrigerant condensed in this way is depressurized by the pressure reducing valve 4 and then exchanges heat with indoor air when passing through the indoor heat exchanger 5 to become a low-pressure gas refrigerant. The low-pressure gas refrigerant is supplied to the four-way valve 2 and the reservoir 6
, Is compressed again by the compressor 1, and is discharged as a high-temperature and high-pressure refrigerant gas to constitute a refrigeration cycle, thereby achieving the function as an air conditioner. Here, the temperature detectors 9 and 10 installed on the refrigerant pipe 7 at the center and at the outlet of the outdoor heat exchanger 3 serving as a condenser are used to determine the saturation temperature at which high-temperature and high-pressure refrigerant gas is condensed and the saturation temperature of the outdoor heat exchanger 3. Detect outlet temperature. The detection signal is supplied to the A / D converter 11. The A / D converter 11 converts the analog value temperature detection signal supplied from the temperature detectors 9 and 10 into a digital signal and then supplies the digital signal to the comparison operation unit 12. The comparison operation unit 12 compares the digital value supplied from the A / D conversion unit 11 with the reference value of the temperature detection signal and performs an operation to obtain the optimum opening of the pressure reducing valve 4. Then, the valve opening control means 13 controls the valve opening of the pressure reducing valve 4 in accordance with the calculation output of the comparison calculation unit 12, so that the outdoor heat exchanger 3, which is a condenser detected by the temperature detectors 9, 10. Is controlled such that the degree of subcooling (subcooling) of the refrigerant at the outlet of the above becomes a predetermined value.

【0004】すなわち、室外空気の温度が上昇すると、
室外熱交換器3の凝縮能力が減少して凝縮温度が上昇し
凝縮器となる室外熱交換器3の出口における液冷媒の過
冷却度が減少する。このことから、過冷却度を一定化す
るように減圧弁4の開度を広げて、冷房運転中における
循環冷媒流量を増加させる。この結果、室外空気の温度
が上昇、又は低下しても、適正な循環冷媒流量となるよ
うに検温器9、10により検出される過冷却度が一定に
なるように比較演算部12と弁開度制御手段13によっ
て減圧弁4の弁開度を制御している。
That is, when the temperature of outdoor air rises,
The condensation capacity of the outdoor heat exchanger 3 decreases, the condensation temperature rises, and the degree of supercooling of the liquid refrigerant at the outlet of the outdoor heat exchanger 3 serving as a condenser decreases. For this reason, the opening degree of the pressure reducing valve 4 is widened so as to make the degree of subcooling constant, and the circulating refrigerant flow rate during the cooling operation is increased. As a result, even if the temperature of the outdoor air rises or falls, the comparison operation unit 12 and the valve opening unit 12 open the valve so that the degree of supercooling detected by the temperature detectors 9 and 10 is constant so that the flow rate of the circulating refrigerant is appropriate. The degree of opening of the pressure reducing valve 4 is controlled by the degree control means 13.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の空
気調和機では、冷房、暖房それぞれの運転状態に適した
減圧作用に減圧弁4を制御している。このような制御は
冷媒流量を変化させる容量制御機能付、例えばインバー
タ制御の圧縮機1を搭載した場合に木目細かな冷媒制御
が可能である。しかし、容量制御機能のない、例えばイ
ンバータ制御のない圧縮機1を搭載したときには、減圧
弁4の開度調整だけでは冷媒制御が不十分であるという
問題点があった。また、電気的に作動する減圧弁4自体
高価であり、さらに、上記減圧弁4制御を有する空気調
和機には、検温器9、10や、A/D変換部11、比較
演算部12といった複雑なシステムを要するため製造費
が嵩むという問題点があった。
In the conventional air conditioner as described above, the pressure reducing valve 4 is controlled to a pressure reducing action suitable for the respective operating states of cooling and heating. Such control is provided with a capacity control function for changing the refrigerant flow rate. For example, when the inverter-controlled compressor 1 is mounted, fine-grained refrigerant control is possible. However, when the compressor 1 without the capacity control function, for example, without the inverter control is mounted, there is a problem that the refrigerant control is insufficient only by adjusting the opening degree of the pressure reducing valve 4. Further, the electrically operated pressure reducing valve 4 itself is expensive, and the air conditioner having the above-described pressure reducing valve 4 control includes complicated components such as temperature detectors 9 and 10, an A / D converter 11, and a comparator 12. However, there is a problem that the production cost is increased because a complicated system is required.

【0006】この発明は、かかる問題点を解消するため
になされたものであり、容量制御機能のない圧縮機を搭
載し、冷房過負荷条件のときには減圧弁の開度調整によ
り所要の冷媒制御ができる空気調和機を得ることを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem. A compressor without a capacity control function is mounted, and required refrigerant control can be performed by adjusting the opening of a pressure reducing valve in a cooling overload condition. The purpose is to obtain an air conditioner that can be used.

【0007】[0007]

【課題を解決するための手段】この発明に係る空気調和
機においては、圧縮機、四方弁、室外熱交換器、減圧用
毛細管、室内熱交換器、及び蓄液器を順次冷媒配管で接
続した冷媒回路と、減圧用毛細管を形成し、かつ、互い
に直列に配置されて室外熱交換器寄りに設けられた常時
減圧用毛細管、及び室内熱交換器寄りに設けられた暖房
時減圧用毛細管の両者、並びに上記両者の間に設けられ
た暖房・冷房通常時減圧用毛細管と、この暖房・冷房通
常時減圧用毛細管に対して設けられて一端が冷媒回路の
四方弁と室外熱交換器の間に接続され、他端は冷媒回路
の暖房・冷房通常時減圧用毛細管と暖房時減圧用毛細管
の間に接続されたバイパス回路と、このバイパス回路に
配置された絞り機構と、バイパス回路に配置されて室
熱交換器入口の圧力に応じて摺動する摺動弁によって動
作する圧力開閉弁とが設けられる。
In an air conditioner according to the present invention, a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing capillary, an indoor heat exchanger, and a liquid storage device are sequentially connected by refrigerant piping. A refrigerant circuit and a depressurizing capillary are formed, and both the constant-pressure depressurizing capillary arranged in series with each other and provided near the outdoor heat exchanger, and the heating-time depressurizing capillary provided near the indoor heat exchanger are both provided. and a capillary tube for heating and cooling during normal vacuum provided between the both end provided for the heating and cooling during normal depressurizing capillary of the refrigerant circuit
Connected between the four-way valve and the outdoor heat exchanger, the other end is a refrigerant circuit
Capillary tubes for normal and decompressing heating and cooling
The pressure to operate a bypass circuit connected between a throttle mechanism arranged in a bypass circuit of this, the sliding valve sliding in response disposed bypass circuit pressure chamber outside the heat exchanger inlet An on-off valve is provided.

【0008】[0008]

【作用】上記のように構成された空気調和機は、冷房運
転時に室外熱交換器入口の圧力が設定値を超えると、暖
房・冷房通常時減圧用毛細管に対して設けられたバイパ
ス回路が開いて、減圧作用が緩和される。
In the air conditioner constructed as described above, when the pressure at the entrance of the outdoor heat exchanger exceeds the set value during the cooling operation, the bypass circuit provided for the heating / cooling normal pressure reducing capillary is opened. As a result, the decompression effect is reduced.

【0009】[0009]

【実施例】実施例1. 図1〜図4は、この発明の一実施例を示す図で、図中、
1は冷媒を圧縮して吐き出す圧縮機、2は圧縮機1への
冷媒入路及び圧縮冷媒の送出先を切り換える四方弁、3
は室外熱交換器、41は減圧用毛細管で、互いに直列に
配置されて室外熱交換器3寄りに設けられた常時減圧用
毛細管42、及び室内熱交換器5寄りに設けられた暖房
時減圧用毛細管43の両者、並びに上記両者の間に設け
られた暖房・冷房通常時減圧用毛細管44が設けられて
いる。5は室内熱交換器、6は蓄液器、8は圧縮機1、
四方弁2、室外熱交換器3、減圧用毛細管41、室内熱
交換器5、蓄液器6、及び圧縮機1を順次接続した冷媒
配管7からなる冷媒回路で、ヒートポンプ式冷媒回路を
構成している。14は暖房時減圧用毛細管43に対して
形成されたバイパス回路に設けられた逆止弁、15は暖
房・冷房通常時減圧用毛細管44に対して設けられたバ
イパス回路で、図1に示すように一端が冷媒回路8の四
方弁2と室外熱交換器3の間に接続され、他端は冷媒回
路8の暖房・冷房通常時減圧用毛細管44と暖房時減圧
用毛細管43の間に接続されている。16はバイパス回
路15に設けられて絞り機構17を形成する圧力開閉弁
で、基体18に室外熱交換器3の入口において冷媒回路
8に連通する受圧口19、弁開口時に入口及び出口とな
る開閉弁入口20と開閉弁出口21が設けられ、また、
基体18内の空所には互いに離れて阻止部22、23が
形成され、これらの間を摺動する摺動弁24が配置され
る。さらに、摺動弁24には開閉弁入口20と開閉弁出
口21に対応する連通孔25が設けられ、また、摺動弁
24の受圧口19側は阻止部22との空間26に弾性体
からなる抵抗片27が配置される。また、基体18の空
間26の側壁には大気開放穴28が設けられている。
[Embodiment 1] 1 to 4 show an embodiment of the present invention.
1 is a compressor that compresses and discharges the refrigerant, 2 is a four-way valve that switches the refrigerant inlet to the compressor 1 and the destination of the compressed refrigerant, 3
Is an outdoor heat exchanger, 41 is a depressurizing capillary, which is arranged in series with each other and is a constant depressurizing capillary 42 provided near the outdoor heat exchanger 3 and a depressurizing capillary provided near the indoor heat exchanger 5. Both of the capillaries 43 are provided, as well as a heating / cooling normal-time depressurization capillary 44 provided between the both. 5 is an indoor heat exchanger, 6 is a reservoir, 8 is a compressor 1,
A refrigerant circuit comprising a four-way valve 2, an outdoor heat exchanger 3, a depressurizing capillary 41, an indoor heat exchanger 5, a liquid storage 6, and a refrigerant pipe 7 to which the compressor 1 is sequentially connected constitutes a heat pump type refrigerant circuit. ing. Reference numeral 14 denotes a check valve provided in a bypass circuit formed for the heating-time pressure reducing capillary 43, and reference numeral 15 denotes a bypass circuit provided for the heating / cooling normal-time pressure reducing capillary 44, as shown in FIG. One end of the refrigerant circuit 8
Is connected between the two-way valve 2 and the outdoor heat exchanger 3, and the other end is connected to a refrigerant circuit.
Route 8 heating / cooling normal depressurization capillary tube 44 and heating depressurization
Connected between the capillary tubes 43 . Reference numeral 16 denotes a pressure opening / closing valve which is provided in the bypass circuit 15 and forms a throttle mechanism 17. A valve inlet 20 and an on-off valve outlet 21 are provided,
In the space inside the base body 18, blocking portions 22 and 23 are formed apart from each other, and a sliding valve 24 that slides therebetween is arranged. Further, the sliding valve 24 is provided with a communication hole 25 corresponding to the opening / closing valve inlet 20 and the opening / closing valve outlet 21, and the pressure receiving port 19 side of the sliding valve 24 is formed from an elastic body into a space 26 with the blocking portion 22. Resistor piece 27 is disposed. Further, an atmosphere opening hole 28 is provided on a side wall of the space 26 of the base 18.

【0010】上記のように構成された空気調和機におい
て、冷房通常時は圧縮機1から吐き出された高温高圧の
冷媒ガスは、四方弁2を介して室外熱交換器3に供給さ
れ、室外空気と熱交換されて冷却され、凝縮して高圧の
まま過冷却な液冷媒となる。このようにして凝縮された
高圧の液冷媒は、常時減圧用毛細管42及び暖房・冷房
通常時減圧用毛細管44により減圧された後、逆止弁1
4を経て室内熱交換器5になり室内空気と熱交換するこ
とにより、低圧のまま加熱され蒸発してガス冷媒とな
る。そして、この低圧のガス冷媒は、四方弁2、及び蓄
液器6を経て圧縮機1に戻るというサイクルを繰り返
す。暖房時は、圧縮機1から吐き出された高温高圧の冷
媒ガスは、四方弁2を経て、凝縮器として動作する室内
熱交換器5で熱交換し、高圧の過冷却液冷媒となる。さ
らに、暖房時減圧用毛細管43、暖房・冷房通常時減圧
用毛細管44、及び常時減圧用毛細管42により減圧さ
れ、蒸発器として動作する室外熱交換器3で熱交換し、
蒸発してガス冷媒となる。そして、このガス冷媒は、四
方弁2、及び蓄液器6を経て圧縮機1に戻るというサイ
クルを繰り返す。
In the air conditioner constructed as described above, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 during normal cooling is supplied to the outdoor heat exchanger 3 through the four-way valve 2 and the outdoor air Then, it is cooled by heat exchange, condensed, and becomes a supercooled liquid refrigerant with high pressure. The high-pressure liquid refrigerant condensed in this way is constantly depressurized by the pressure-reducing capillary 42 and the heating / cooling normal-time pressure-reducing capillary 44, and then returned to the check valve 1.
The heat exchanger 5 passes through the indoor heat exchanger 5 and exchanges heat with the indoor air, thereby being heated and evaporated at a low pressure to become a gas refrigerant. Then, the cycle of returning the low-pressure gas refrigerant to the compressor 1 through the four-way valve 2 and the liquid storage device 6 is repeated. At the time of heating, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2 and exchanges heat with the indoor heat exchanger 5 operating as a condenser to become a high-pressure supercooled liquid refrigerant. Further, the pressure is reduced by the heating pressure reducing capillary 43, the heating / cooling normal pressure reducing capillary 44, and the constant pressure reducing capillary 42, and heat is exchanged in the outdoor heat exchanger 3 which operates as an evaporator.
Evaporates to a gas refrigerant. Then, the cycle of returning the gas refrigerant to the compressor 1 through the four-way valve 2 and the liquid storage device 6 is repeated.

【0011】また、図4は、縦軸に冷媒圧力P(kg /
cm2)、横軸にエンタルピ(kcal/kg )をとったモ
リエル線図である。なお、図4中の「1」 実線、及び
「2」 破線で示すサイクルは、それぞれJIS規格(J
IS B 8616)の冷房標準条件と冷房過負荷条件
での運転状態を示している。そして、冷房過負荷条件で
は、室外空気温度が高いため室外熱交換器3の凝縮能力
が減少し、凝縮温度が上昇して室外熱交換器3出口の液
冷媒の図4に示す過冷却度SCが減少する。また、圧縮
機1の吐出圧力Pd、吸入圧力Ps、吐出冷媒温度Td
はいずれも上昇し、特に吐出圧力Pdと吐出冷媒温度T
dは著しく上昇する。冷房過負荷運転時では、このよう
な吐出圧力Pd、吐出冷媒温度Tdの著しい上昇に伴
い、凝縮器として動作する室外熱交換器3の入口の圧力
が上昇する。そして、圧力開閉弁16の受圧口19に受
ける圧力が設定値を超えると、摺動弁24が図3に示す
位置まで摺動して、連通孔25が開閉弁入口20と開閉
弁出口21に対応しバイパス回路15が開口状態とな
る。このバイパス回路15開口状態での冷房運転は、凝
縮後の絞りが常時減圧用毛細管42だけで発生し、バイ
パス回路15でバイパスされる暖房・冷房通常時減圧用
毛細管44の分、減圧作用が緩和される。これによっ
て、容量制御機能のない、例えばインバータ制御のない
圧縮機1を搭載した場合であっても所要の冷媒制御が得
られ、少ない費用によって容易に冷房過負荷条件に適し
た冷房サイクルにでき安定運転することができる。
FIG. 4 shows the refrigerant pressure P (kg / kg) on the vertical axis.
FIG. 2 is a Mollier diagram with enthalpy (kcal / kg) on the horizontal axis. The cycles indicated by the “1” solid line and the “2” broken line in FIG.
It shows operating conditions under cooling standard conditions and cooling overload conditions of IS B 8616). Under the cooling overload condition, since the outdoor air temperature is high, the condensing capacity of the outdoor heat exchanger 3 decreases, the condensing temperature rises, and the supercooling degree SC of the liquid refrigerant at the outlet of the outdoor heat exchanger 3 shown in FIG. Decrease. Further, the discharge pressure Pd, the suction pressure Ps, and the discharge refrigerant temperature Td of the compressor 1
Rises, and particularly the discharge pressure Pd and the discharge refrigerant temperature T
d rises significantly. During the cooling overload operation, the pressure at the inlet of the outdoor heat exchanger 3 that operates as a condenser increases with the remarkable rise of the discharge pressure Pd and the discharge refrigerant temperature Td. When the pressure applied to the pressure receiving port 19 of the pressure on-off valve 16 exceeds the set value, the sliding valve 24 slides to the position shown in FIG. 3, and the communication hole 25 moves between the on-off valve inlet 20 and the on-off valve outlet 21. Correspondingly, the bypass circuit 15 is opened. In the cooling operation with the bypass circuit 15 opened, the condensing restriction is always generated only by the depressurizing capillary 42, and the depressurizing action is reduced by the heating / cooling normal depressurizing capillary 44 bypassed by the bypass circuit 15. Is done. As a result, even when the compressor 1 without the capacity control function, for example, without the inverter control, is mounted, the required refrigerant control can be obtained, and the cooling cycle suitable for the cooling overload condition can be easily achieved with a small cost and stable. Can drive.

【0012】なお、圧縮機1により吐出された高温、高
圧のガス冷媒を、室外熱交換器3で凝縮し高圧の液冷媒
とし、さらに減圧用毛細管41により減圧した後、室内
熱交換器5で蒸発してガス冷媒で圧縮機1に戻すという
サイクルを繰り返すのは通常冷房時と同様である。さら
に、冷媒回路8における室内外の温度条件の変化に基づ
くサイクル運転状態の変化を図4によって説明する。す
なわち、冷房運転時に室内外の温度が上昇して標準条件
から過負荷条件に変化すると、先に述べたように吐出圧
力Pd、吸入圧力Ps、吐出冷媒温度Td、凝縮圧力、
凝縮温度はいずれも上昇し、運転状態を示すサイクルが
図4に示す「 1」 実線から「 2」 破線で示すサイクルに
変化していく。この時、凝縮圧力が設定値を超えるとバ
イパス回路15が開口状態となり減圧作用が緩和されサ
イクルにおける循環冷媒流量が増加する。これにより、
運転状態を示すサイクルが図4に示す「 2」 破線から「
1」 実線で示すサイクルに近づく。
The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 3 to become a high-pressure liquid refrigerant, and further decompressed by the decompression capillary tube 41. The cycle of evaporating and returning to the compressor 1 with the gas refrigerant is repeated in the same manner as during normal cooling. Further, a change in the cycle operation state based on a change in the indoor and outdoor temperature conditions in the refrigerant circuit 8 will be described with reference to FIG. That is, when the temperature inside and outside the room increases during the cooling operation and changes from the standard condition to the overload condition, as described above, the discharge pressure Pd, the suction pressure Ps, the discharge refrigerant temperature Td, the condensing pressure,
The condensing temperature rises, and the cycle indicating the operating state changes from the “1” solid line shown in FIG. 4 to the “2” broken line cycle. At this time, if the condensing pressure exceeds the set value, the bypass circuit 15 is opened, the pressure reducing action is eased, and the circulating refrigerant flow rate in the cycle increases. This allows
The cycle indicating the operation state is changed from “2” shown in FIG.
1) The cycle shown by the solid line is approached.

【0013】実施例2. 図1〜図4の実施例では、減圧用毛細管41のバイパス
回路15の開閉を凝縮器として動作する室外熱交換器3
の入口の圧力により自己完結に制御できるメカ式の圧力
開閉弁16として示した。しかし、圧力開閉弁16を設
定圧力で電気的にスイッチをON/OFFする圧力開閉
器と、そのON/OFFにより弁の開閉を行う電磁弁の
組み合わせ、また、圧力開閉弁16を配管温度でスイッ
チをON/OFFするバイメタルサーモと電磁弁の組み
合わせ等による絞り機構17とすることが可能である。
このような、絞り機構17を有する冷媒回路8であって
も所要の冷媒制御を得ることができる。したがって、詳
細な説明を省略するが図1〜図4の実施例同様な作用が
得られることは明白である。
Embodiment 2 FIG. In the embodiment of FIGS. 1 to 4, the outdoor heat exchanger 3 that operates as a condenser to open and close the bypass circuit 15 of the pressure reducing capillary 41.
Is shown as a mechanical pressure on-off valve 16 which can be controlled in a self-contained manner by the pressure at the inlet of the valve. However, a combination of a pressure switch for electrically turning on / off the pressure on / off valve 16 at a set pressure and a solenoid valve for opening / closing the valve by ON / OFF of the pressure on / off valve 16 is also provided. The throttle mechanism 17 can be formed by a combination of a bimetal thermo-therm and an electromagnetic valve for turning ON / OFF the switch.
The required refrigerant control can be obtained even with the refrigerant circuit 8 having such a throttle mechanism 17. Therefore, although detailed description is omitted, it is obvious that the same operation as the embodiment of FIGS. 1 to 4 can be obtained.

【0014】[0014]

【発明の効果】この発明は、以上説明したように圧縮
機、四方弁、室外熱交換器、減圧用毛細管、室内熱交換
器、及び蓄液器を順次冷媒配管で接続した冷媒回路と、
減圧用毛細管を形成し、かつ、互いに直列に配置されて
室外熱交換器寄りに設けられた常時減圧用毛細管、及び
室内熱交換器寄りに設けられた暖房時減圧用毛細管の両
者、並びに上記両者の間に設けられた暖房・冷房通常時
減圧用毛細管と、暖房、冷房通常時減圧用毛細管に対し
て設けられて一端が冷媒回路の四方弁と室外熱交換器の
間に接続され、他端は冷媒回路の暖房・冷房通常時減圧
用毛細管と暖房時減圧用毛細管の間に接続されたバイパ
ス回路と、このバイパス回路に配置された絞り機構と、
イパス回路に配置されて室外熱交換器入口の圧力に応
じて摺動する摺動弁によって動作する圧力開閉弁とを設
けたものである。これにより、冷房運転時に室外熱交換
器入口の圧力が設定値を超えると、暖房・冷房通常時減
圧用毛細管に対して設けられたバイパス回路が開いて、
減圧作用が緩和される。したがって、圧力開閉弁が簡易
に構成されて確実に動作し、また循環冷媒流量の制御方
式が簡易であって、空気調和機が安価に製造でき、また
冷房過負荷条件においても確実に、かつ、効果的に循環
冷媒流量が増加して冷房過負荷条件に適応した冷房サイ
クルにでき安定した運転状態を得る効果がある。
As described above, the present invention relates to a refrigerant circuit in which a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing capillary, an indoor heat exchanger, and a liquid storage device are sequentially connected by refrigerant piping.
Forming a depressurizing capillary, and both a constant-pressure depressurizing capillary arranged near the outdoor heat exchanger and arranged in series with each other, and a heating-time depressurizing capillary provided near the indoor heat exchanger, and both of the above A heating / cooling normal-time depressurizing capillary provided between the heating and cooling normal-time depressurizing capillary, one end of which is provided for the refrigerant circuit four-way valve and the outdoor heat exchanger.
The other end is depressurized during normal heating / cooling of the refrigerant circuit.
The use capillary and the bypass circuit connected between the heating time of pressure reduction capillary, the diaphragm mechanism disposed in the bypass circuit of this,
It is provided with a pressure switch valve operated by a slide valve which slides in accordance disposed bypass circuit to the chamber outside the heat exchanger inlet pressure. Thereby, when the pressure at the entrance of the outdoor heat exchanger exceeds the set value during the cooling operation, the bypass circuit provided for the heating / cooling normal-time depressurizing capillary opens,
The decompression effect is reduced. Therefore, the pressure on-off valve is simply configured and operates reliably, the control method of the circulating refrigerant flow rate is simple, the air conditioner can be manufactured at low cost, and even under cooling overload conditions, and The flow rate of the circulating refrigerant is effectively increased, and a cooling cycle adapted to the cooling overload condition can be performed, thereby obtaining a stable operation state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1を示す概念的全体構成図。FIG. 1 is a conceptual overall configuration diagram showing a first embodiment of the present invention.

【図2】図1の圧力開閉弁の拡大縦断面図。FIG. 2 is an enlarged vertical sectional view of the pressure on-off valve of FIG. 1;

【図3】図2の圧力開閉弁の動作を説明した図。FIG. 3 is a view for explaining the operation of the pressure on-off valve of FIG. 2;

【図4】図1の装置に関する温度条件の変化によるサイ
クル運転状態を示すモリエル線図。
FIG. 4 is a Mollier diagram showing a cycle operation state according to a change in temperature conditions for the apparatus of FIG. 1;

【図5】従来の空気調和機を示す図1相当図。FIG. 5 is a diagram corresponding to FIG. 1 showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 四方弁、3 室外熱交換器、5 室内
熱交換器、6 蓄液器、7 冷媒配管、8 冷媒回路、
15 バイパス回路、16 圧力開閉弁、17絞り機
構、24 摺動弁、41 減圧用毛細管、42 常時減
圧用毛細管、43 暖房時減圧用毛細管、44 暖房・
冷房通常時減圧用毛細管。
1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 5 indoor heat exchanger, 6 liquid storage, 7 refrigerant piping, 8 refrigerant circuit,
15 bypass circuit, 16 pressure on-off valve, 17 throttle mechanism, 24 sliding valve, 41 pressure reducing capillary, 42 constant pressure reducing capillary, 43 heating pressure reducing capillary, 44 heating
Capillary tube for decompression during normal cooling.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、四方弁、室外熱交換器、減圧用
毛細管、室内熱交換器及び蓄圧機を順次冷媒配管で接続
した冷媒回路と、上記減圧用毛細管を形成し、かつ互い
に直列に配置されて上記室外熱交換器寄りに設けられた
常時減圧用毛細管及び上記室内熱交換器寄りに設けられ
た暖房時減圧用毛細管の両者並びに上記両者の間に設け
られた暖房・冷房通常時減圧用毛細管と、この暖房・冷
房通常時減圧用毛細管に対して設けられて一端が上記冷
媒回路の上記四方弁と上記室外熱交換器の間に接続さ
れ、他端は上記冷媒回路の上記暖房・冷房通常時減圧用
毛細管と上記暖房時減圧用毛細管の間に接続されたバイ
パス回路と、このバイパス回路に配置された絞り機構
と、上記バイパス回路に配置されて上記室外熱交換器入
口の圧力に応じて摺動する摺動弁によって動作する圧力
開閉弁とを備えた空気調和機。
1. A refrigerant circuit in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression capillary, an indoor heat exchanger, and a pressure accumulator are sequentially connected by refrigerant piping, and the decompression capillary formed in series with each other. Both the normally depressurized capillary arranged near the outdoor heat exchanger and the heating depressurized capillary provided near the indoor heat exchanger, and the normal heating / cooling depressurization provided between the two. And one end provided for the heating / cooling normal pressure reducing capillary,
Connected between the four-way valve of the medium circuit and the outdoor heat exchanger.
The other end is for depressurization of the refrigerant circuit during normal heating and cooling.
A bypass circuit connected between the capillary and the heating time of pressure reduction capillary, the diaphragm mechanism disposed in the bypass circuit of this, according to the pressure of the upper Symbol outdoor heat exchanger inlet is disposed above Kiba bypass circuit An air conditioner provided with a pressure switching valve operated by a sliding valve that slides.
JP04047739A 1992-02-05 1992-02-05 Air conditioner Expired - Fee Related JP3134459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04047739A JP3134459B2 (en) 1992-02-05 1992-02-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04047739A JP3134459B2 (en) 1992-02-05 1992-02-05 Air conditioner

Publications (2)

Publication Number Publication Date
JPH05215425A JPH05215425A (en) 1993-08-24
JP3134459B2 true JP3134459B2 (en) 2001-02-13

Family

ID=12783721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04047739A Expired - Fee Related JP3134459B2 (en) 1992-02-05 1992-02-05 Air conditioner

Country Status (1)

Country Link
JP (1) JP3134459B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179179B2 (en) * 2019-06-26 2022-11-28 日立Astemo株式会社 Cylinder device, metal sliding part, and method for manufacturing metal sliding part

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132302Y2 (en) * 1978-02-22 1986-09-19

Also Published As

Publication number Publication date
JPH05215425A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
US6807815B2 (en) Air conditioning system and method for operating the same
KR100405986B1 (en) Air conditioning system and method
US8205464B2 (en) Refrigeration device
US20060123834A1 (en) Air conditioner
JP2007155230A (en) Air conditioner
US8171747B2 (en) Refrigeration device
US20030233838A1 (en) Air conditioning system with two compressors and method for operating the same
CA2565839A1 (en) Apparatus and method for controlling multi-type air conditioner
JP2006138525A (en) Freezing device, and air conditioner
JP3334601B2 (en) Air conditioner with natural circulation
JP3134459B2 (en) Air conditioner
JP3097323B2 (en) Operation control device for air conditioner
JP3188989B2 (en) Air conditioner
JPWO2020008590A1 (en) Refrigeration cycle equipment
JPH06288654A (en) Device for controlling motor-operated expansion valve in air conditioner
JP3303689B2 (en) Binary refrigeration equipment
JPH11142017A (en) Air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
KR20030043038A (en) Refrigerating cycle and control method
JPH0650646A (en) Refrigerator
JPS63286664A (en) Heat pump type air conditioner
JPS5969663A (en) Refrigeration cycle
JPH05248722A (en) Refrigerant control device for multi-chamber type air conditioner
JP3054560B2 (en) Air conditioner heating operation method
JP3338229B2 (en) Operating method of air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees