JP3134095B2 - Fiber recovery and reuse method from fiber reinforced plastic - Google Patents

Fiber recovery and reuse method from fiber reinforced plastic

Info

Publication number
JP3134095B2
JP3134095B2 JP26124096A JP26124096A JP3134095B2 JP 3134095 B2 JP3134095 B2 JP 3134095B2 JP 26124096 A JP26124096 A JP 26124096A JP 26124096 A JP26124096 A JP 26124096A JP 3134095 B2 JP3134095 B2 JP 3134095B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
fibers
recovering
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26124096A
Other languages
Japanese (ja)
Other versions
JPH1087872A (en
Inventor
孟 菅田
尭 中根
猛 佐古
勝人 大竹
勝彦 上野
眞士 佐藤
昭二 永岡
正典 永田
賛平 永山
誠 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto Prefecture
Original Assignee
Kumamoto Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto Prefecture filed Critical Kumamoto Prefecture
Priority to JP26124096A priority Critical patent/JP3134095B2/en
Publication of JPH1087872A publication Critical patent/JPH1087872A/en
Application granted granted Critical
Publication of JP3134095B2 publication Critical patent/JP3134095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、輸送産業、化学産
業に広く浸透し、例えば、船舶、航空機等の構造材料に
利用されているガラス繊維強化プラスチック又は炭素繊
維強化プラスチック等の繊維強化プラスチックの廃材処
理に関し、特に、繊維強化プラスチックの高分子成分を
低分子レベルまで分解し、強化繊維成分を分離回収して
再利用する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is widely used in the transportation industry and the chemical industry, for example, for fiber reinforced plastics such as glass fiber reinforced plastics or carbon fiber reinforced plastics used for structural materials of ships, aircrafts and the like. More particularly, the present invention relates to a technology for decomposing a polymer component of a fiber reinforced plastic to a low molecular level, separating and collecting a reinforced fiber component for reuse.

【0002】[0002]

【従来の技術】鉄、アルミニウムなどの金属材料にはな
い、軽量性あるいは化学的安定性に優れているプラスチ
ックは、あらゆる産業分野及び生活分野に利用されてい
るが、その中で、特に、小型船舶や航空機の構造材料等
のように強度を必要とするところには、補強材として炭
素繊維やガラス繊維などを配合した繊維強化プラスチッ
クが広く用いられている。
2. Description of the Related Art Plastics, which are not found in metallic materials such as iron and aluminum and have excellent light weight or chemical stability, are used in all industrial fields and daily life fields. In places requiring strength, such as structural materials for ships and aircraft, fiber-reinforced plastics containing carbon fiber, glass fiber, or the like as a reinforcing material are widely used.

【0003】こうした中で、現在、老朽化して、廃棄さ
れる繊維強化プラスチック廃材も大量に発生してきてい
るが、現在のところ、これらの廃材は主として、焼却と
埋立てとによって処理されている。
[0003] Under such circumstances, a large amount of fiber-reinforced plastic waste materials that are aged and discarded are now being generated. At present, these waste materials are mainly treated by incineration and landfill.

【0004】また、高温水蒸気による加水分解反応を利
用した処理法も提案されており、この方法で熱可塑性プ
ラスチック及び熱硬化性プラスチックの有機高分子成分
を一応分解することができる。
[0004] Further, a treatment method utilizing a hydrolysis reaction with high-temperature steam has also been proposed, and by this method, organic polymer components of thermoplastic plastics and thermosetting plastics can be decomposed temporarily.

【0005】さらに、これらの繊維強化プラスチックを
粉砕し、建材やプラスチック生活用品への充填剤として
使用しようとする例もある。
[0005] Further, there is an example in which these fiber reinforced plastics are crushed and used as a filler for building materials and plastic household goods.

【0006】[0006]

【発明が解決しようとする課題】しかし、埋立て処理に
関しては、埋立て地を確保することが難しくなってきて
おりかつ半永久的に分解しない繊維強化プラスチックの
埋立てそのものも問題視されている。
However, with respect to landfill treatment, it is becoming difficult to secure landfill sites, and landfilling of fiber-reinforced plastics that do not decompose semi-permanently has been regarded as a problem.

【0007】一方、焼却による処理には、黒煙、有害ガ
スあるいは悪臭の発生による二次災害のおそれがあり、
さらに約820°C以上の高温で加熱するため、焼却炉
を著しく損傷し、その寿命を短くしてしまう問題があ
る。
On the other hand, the treatment by incineration may cause secondary disasters due to the generation of black smoke, harmful gas or odor.
Further, since heating is performed at a high temperature of about 820 ° C. or more, there is a problem that the incinerator is significantly damaged and its life is shortened.

【0008】また、高温水蒸気による加水分解反応の利
用は、有機成分が繊維中に残存することが多く、分離し
たガラスや炭素等の強化繊維をそのまま再利用すること
はできない。
[0008] In the utilization of the hydrolysis reaction using high-temperature steam, organic components often remain in the fibers, and the separated reinforcing fibers such as glass and carbon cannot be reused as they are.

【0009】さらに、これらの繊維強化プラスチックを
粉砕する処理は、粉砕時に発生するガラス繊維等の粉塵
がアスべストと同様な発がん性等の問題を引き起こす可
能性が指摘されており、実用化にはかなり問題がある。
Further, it has been pointed out that such a process of pulverizing fiber-reinforced plastic may cause dust such as glass fibers generated at the time of pulverization to cause the same problem of carcinogenicity as asbestos. Is quite problematic.

【0010】しかしながら、現在、これらの問題を解決
する適切な処理方法がない。
However, at present, there is no appropriate processing method to solve these problems.

【0011】そこで、本発明は、有毒な分解物を系外に
排出することなく、しかも繊維強化プラスチック廃材中
の強化繊維を損傷することなくかつ効率よく分離し回収
して再利用できる繊維強化プラスチックからの繊維回収
再利用方法を提供するものである。
Accordingly, the present invention provides a fiber reinforced plastic which can be separated, recovered and reused efficiently without discharging toxic decomposition products out of the system and without damaging the reinforcing fibers in the fiber reinforced plastic waste material. And a method for recovering and reusing the fiber from the product.

【0012】[0012]

【課題を解決するための手段】本発明は、反応器内に繊
維強化プラスチックを仕込み、減圧して空気を除去し、
続いてArガスを封入して大気圧にし、繊維強化プラス
チックを反応器内で超臨界水又は亜臨界水と接触・反応
せしめ、繊維強化プラスチックからガラス繊維又は炭素
繊維等の繊維を分離して回収し、再利用する。
According to the present invention , a fiber is provided in a reactor.
Filled with fiber reinforced plastic, decompressed to remove air,
Subsequently, Ar gas is sealed and brought to atmospheric pressure, the fiber-reinforced plastic is contacted and reacted with supercritical water or subcritical water in the reactor, and fibers such as glass fiber or carbon fiber are separated and recovered from the fiber-reinforced plastic. And reuse.

【0013】[0013]

【発明の実施の形態】本発明は、ガラス繊維強化プラス
チック又は炭素繊維強化プラスチック等の繊維強化プラ
スチックに水を加え、系のpHをコントロールし、温度
を上昇させることにより圧力も上昇させて、臨界点(3
74.4°C, 22.1MPa)以下の亜臨界状態又
は温度と圧力がそれ以上の超臨界まで到達させて、前記
繊維強化プラスチック廃材中の熱可塑性プラスチック又
は熱硬化性プラスチック等の有機高分子成分を低分子レ
ベルまで分解する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method of controlling the pH of a system by adding water to a fiber reinforced plastic such as glass fiber reinforced plastic or carbon fiber reinforced plastic, controlling the pH of the system, and increasing the temperature to increase the critical pressure. Point (3
An organic polymer such as a thermoplastic or thermosetting plastic in the fiber reinforced plastic waste material by reaching a subcritical state of 74.4 ° C. or lower than 22.1 MPa) or a supercritical temperature and pressure higher than that. Breaks down components to low molecular levels.

【0014】[0014]

【0015】また、繊維の部分的な加水分解を防止する
ため、超臨界水又は亜臨界水のpHを4〜8とした中性
域にすることが好ましい。
Further, in order to prevent partial hydrolysis of the fiber, it is preferable to set the pH of the supercritical water or the subcritical water to a neutral range of 4 to 8.

【0016】さらに、中性域の反応系において、水素イ
オンを供与する炭酸水素金属塩等のような触媒や熱硬化
性樹脂等の分解物から生じる水素イオンを利用して、加
水分解を促進してもよい。
Further, in a reaction system in a neutral region, hydrolysis is promoted by utilizing a catalyst such as a metal hydrogencarbonate that provides hydrogen ions or hydrogen ions generated from a decomposition product such as a thermosetting resin. You may.

【0017】反応温度は、320〜500°Cの範囲と
することにより、ガラス繊維又は炭素繊維の表面を再利
用可能な程度まで十分に精製することができる。通常、
300°C以下の温度であっても、熱可塑性プラスチッ
ク又は熱硬化性プラスチックの有機高分子成分を分解す
ることは可能であるが、有機成分が繊維中に残存するた
めに、そのまま再利用することはできない。また、50
0°Cを超える温度へ昇温すると、ガラス繊維又は炭素
繊維自体が部分的に加水分解等の損傷を受けるため、や
はり再利用することができない。したがって、強化繊維
成分を分離・回収して再利用する場合、反応温度を32
0〜500°Cの範囲に設定し、その温度をコントロー
ルすることによって、繊維強化プラスチック廃材からの
ガラス繊維又は炭素繊維のケミカルリサイクルが可能と
なる。
By setting the reaction temperature in the range of 320 to 500 ° C., the surface of the glass fiber or carbon fiber can be sufficiently purified to the extent that it can be reused. Normal,
Even at a temperature of 300 ° C or less, it is possible to decompose the organic polymer component of the thermoplastic or thermosetting plastic, but since the organic component remains in the fiber, it must be reused as it is. Can not. Also, 50
If the temperature is raised to a temperature exceeding 0 ° C., glass fibers or carbon fibers themselves are partially damaged by hydrolysis or the like, and thus cannot be reused. Therefore, when separating and recovering and reusing the reinforcing fiber component, the reaction temperature is set at 32.
By setting the temperature in the range of 0 to 500 ° C. and controlling the temperature, chemical recycling of glass fibers or carbon fibers from waste fiber reinforced plastics becomes possible.

【0018】図1は本発明を適用した超臨界水による繊
維強化プラスチック分解・回収システム図で、反応器と
なる分解槽1の中にガラス繊維強化プラスチック又は炭
素繊維強化プラスチック等の繊維強化プラスチックを入
れるとともに、水シリンダ2から水槽3へ水を供給し、
高圧ポンプ4により分解槽1へ水を仕込んだ後、バルブ
5,6を閉じて分解槽1を完全密封する。この場合、添
加する水の量は分解槽1に対して充填率1〜50容量%
程度が適している。
FIG. 1 is a diagram of a fiber-reinforced plastic decomposition / recovery system using supercritical water to which the present invention is applied. A fiber-reinforced plastic such as glass fiber-reinforced plastic or carbon fiber-reinforced plastic is placed in a decomposition tank 1 serving as a reactor. At the same time, water is supplied from the water cylinder 2 to the water tank 3,
After water is charged into the decomposition tank 1 by the high-pressure pump 4, the valves 5 and 6 are closed to completely seal the decomposition tank 1. In this case, the amount of water to be added is 1 to 50% by volume with respect to the decomposition tank 1.
The degree is suitable.

【0019】その後、恒温槽7により熱交換器8及び分
解槽1を外部から加熱することにより、320〜500
°Cの所定温度まで昇温させ、分解槽1内の水を亜臨界
・超臨界状態にする。
Thereafter, the heat exchanger 8 and the decomposition tank 1 are externally heated by the constant temperature bath 7 so that
The temperature in the decomposition tank 1 is raised to a predetermined temperature of ° C to bring the water in the decomposition tank 1 into a subcritical / supercritical state.

【0020】前記工程において、所定の時間、水を亜臨
界・超臨界状態に保持した後に、常温に戻し、バルブ6
を開け、沸点の低いメタン、エチレン、エタン、プロパ
ンあるいはプロピレン等の炭化水素、二酸化炭素、窒素
等を有する気体部分をトラップ9を通して分離・回収す
る。また、常温では、液体であるメタノール、エタノー
ルあるいはプロパノール等のアルコール類、架橋剤とし
て用いられるアミン系の含窒素化合物から生成するメチ
ルアミン、エチルアミンあるいはプロピルアミン等のア
ミン類、さらにはプラスチックを構成していたスチレン
やフタル酸等のモノマー類及びその分解物等と水の分離
・回収を行う。さらに、所定の反応温度で生成するガラ
ス質又は炭素質の繊維を適当なフィルターによりろ別
し、回収する。
In the above process, after maintaining the water in a subcritical / supercritical state for a predetermined time, the temperature is returned to normal temperature, and the valve 6
Is opened, and a gas portion having a low boiling point such as hydrocarbons such as methane, ethylene, ethane, propane or propylene, carbon dioxide, and nitrogen is separated and collected through the trap 9. At room temperature, alcohols such as methanol, ethanol and propanol which are liquids, amines such as methylamine, ethylamine and propylamine generated from amine-based nitrogen-containing compounds used as a cross-linking agent, and plastics are formed. Separation and recovery of water and monomers such as styrene and phthalic acid and their decomposed products. Further, the vitreous or carbonaceous fibers generated at a predetermined reaction temperature are collected by filtration with a suitable filter.

【0021】分解槽の中では、少なくとも液相と固相と
に分かれ、油状分とガラス繊維分とを完全に分離・回収
できる。さらに気相分を系外に出さずに回収し、ガスク
ロマトグラフ−質量分析計により分析した結果、数十種
類の気体の化合物に分解していることが確認できた。
In the decomposition tank, at least a liquid phase and a solid phase are separated, and an oily component and a glass fiber component can be completely separated and recovered. Further, the gas phase was recovered without being taken out of the system, and analyzed by a gas chromatograph-mass spectrometer. As a result, it was confirmed that the gas was decomposed into several tens of gaseous compounds.

【0022】図2は未使用の強化繊維と処理後の強化繊
維の走査型電子顕微鏡写真で、図2−(a)及び(b)
に示す未使用の強化繊維と、図2−(c)及び(d)に
示す繊維強化プラスチックを処理して回収した強化繊維
を比較すると、両者の間には差異がなく、元素分析の結
果ではこれらの繊維状化合物には余分な有機物の付着は
全く認められなかった。したがって、処理後に回収され
た強化繊維は、完全に精製された繊維であることが確認
された。なお、回収された強化繊維は強化プラスチック
を構築するための強化繊維に再使用できるだけでなく、
それ以外に断熱材、防音材あるいは吸着剤等への使用が
可能となる。
FIG. 2 is a scanning electron micrograph of an unused reinforcing fiber and a processed reinforcing fiber, and FIGS. 2- (a) and (b)
When the unused reinforcing fiber shown in Fig. 2 is compared with the reinforcing fiber collected by processing the fiber-reinforced plastic shown in Figs. 2- (c) and (d), there is no difference between the two. No extra organic matter was attached to these fibrous compounds. Therefore, it was confirmed that the reinforcing fibers recovered after the treatment were completely purified fibers. In addition, the collected reinforcing fibers can not only be reused as reinforcing fibers for building reinforced plastics,
In addition, it can be used as a heat insulating material, a soundproofing material, or an adsorbent.

【0023】したがって、本発明においては、これら繊
維強化プラスチックを低分子レベルまで分解することが
十分可能であるが、複合した材料は、繊維のみでなく、
どのような形態の材料にも対応でき、例えば、無機材料
又は金属粉体材料−有機材料の複合材料の分解にも応用
可能である。
Therefore, in the present invention, it is possible to decompose these fiber reinforced plastics to a low molecular level, but the composite material is not only fiber but also fiber.
It can be applied to any form of material, for example, it can be applied to decomposition of an inorganic material or a composite material of a metal powder material and an organic material.

【0024】[0024]

【実施例】【Example】

実施例1 バルブ付きの分解槽にpH7の水を50%充填し、ガラ
ス繊維強化プラスチックを仕込み、バルブを閉めて分解
槽を完全に閉め、真空ポンプにより減圧して空気を除去
し、続いてArガスを封入しながら圧力を大気圧に戻
す。次いで、330°Cの恒温槽に分解槽を浸漬し、亜
臨界状態で30分間浸漬したまま放置する。その後、分
解槽を取り出し、常温に戻す。バルブを開け、はじめに
気相部を回収し、ガスクロマトグラフ−質量分析を行っ
た。
Example 1 A decomposition tank equipped with a valve was filled with 50% of water at pH 7 and charged with glass fiber reinforced plastic. The valve was closed to completely close the decomposition tank, and the pressure was reduced by a vacuum pump to remove air. The pressure is returned to atmospheric pressure while filling the gas. Next, the decomposition bath is immersed in a constant-temperature bath at 330 ° C., and left for 30 minutes in a subcritical state. Thereafter, the decomposition tank is taken out and returned to room temperature. The valve was opened, and the gas phase was collected first, and subjected to gas chromatography-mass spectrometry.

【0025】分解槽の内部ではガラス繊維、水・油状物
質の2相に分かれており、ガラス繊維、水・油状物質を
分離・回収した。
The inside of the decomposition tank is divided into two phases of glass fiber and water / oil, and the glass fiber and water / oil are separated and recovered.

【0026】回収した液相及び気相には数十種類の気体
の化合物に分解していることが確認された。また、得ら
れたガラス繊維には余分な有機物の吸着がなく、元素分
析より完全に精製されたガラス繊維であることが確認さ
れた。
It was confirmed that the recovered liquid phase and gas phase decomposed into several tens of gaseous compounds. Further, the obtained glass fiber did not adsorb excess organic substances, and it was confirmed by elemental analysis that it was a completely purified glass fiber.

【0027】実施例2 実施例1の場合と同様な方法で、バルブ付きの分解槽に
水を5.0%充填し、ガラス繊維強化プラスチックを仕
込み、分解槽を完全に締めた。
Example 2 In the same manner as in Example 1, a decomposition tank with a valve was filled with 5.0% of water, charged with glass fiber reinforced plastic, and the decomposition tank was completely closed.

【0028】330°Cの恒温槽に分解槽を浸漬し、亜
臨界状態で30分間浸漬したまま放置する。その後、分
解槽を取り出し、常温に戻す。バルブを開け、はじめに
気相部を回収し、ガスクロマトグラフ−質量分析を行っ
た。
The decomposition bath is immersed in a constant temperature bath at 330 ° C., and is left immersed in a subcritical state for 30 minutes. Thereafter, the decomposition tank is taken out and returned to room temperature. The valve was opened, and the gas phase was collected first, and subjected to gas chromatography-mass spectrometry.

【0029】分解槽の内部で2相に分かれていたガラス
繊維、水・油状物質を分離・回収した。回収された気相
には数十種類の気体の化合物に分解していることが確認
された。油状物質が付着したガラス繊維をテトラヒドロ
フランで洗浄したところ、得られたガラス繊維には余分
な有機物の吸着がなく、元素分析により完全に精製され
たガラス繊維であることが確認された。
Glass fiber, water and oily substances separated into two phases inside the decomposition tank were separated and recovered. It was confirmed that the recovered gas phase was decomposed into tens of gaseous compounds. The glass fiber to which the oily substance had adhered was washed with tetrahydrofuran. As a result, no excess organic matter was adsorbed to the obtained glass fiber, and it was confirmed by elemental analysis that the glass fiber was completely purified.

【0030】実施例3〜6 実施例2と同じ手順で、表1に示す水の充填率、反応温
度及び処理時間に変化させてガラス繊維強化プラスチッ
クを処理した。
Examples 3 to 6 Glass fiber reinforced plastics were treated in the same procedure as in Example 2 except that the filling rate of water, reaction temperature and treatment time shown in Table 1 were changed.

【0031】[0031]

【表1】 [Table 1]

【0032】なお、実施例3は亜臨界状態で、実施例4
〜6は超臨界状態で処理した。その結果、実施例2と同
じく、回収された液相及び気相には数十種類の化合物に
分解していることが確認された。油状物質が付着したガ
ラス繊維をテトラヒドロフランで洗浄したところ、得ら
れたガラス繊維には余分な有機物の吸着がなく、元素分
析より完全に精製されたガラス繊維であることが確認さ
れた。
The third embodiment is in a subcritical state, and the fourth embodiment is different from the fourth embodiment.
~ 6 were processed in a supercritical state. As a result, as in Example 2, it was confirmed that the recovered liquid phase and gas phase decomposed into several tens of compounds. The glass fiber to which the oily substance had adhered was washed with tetrahydrofuran. As a result, no excess organic matter was adsorbed on the obtained glass fiber, and it was confirmed by elemental analysis that the glass fiber was completely purified.

【0033】[0033]

【発明の効果】【The invention's effect】

(1) 従来、産業廃棄物として埋立て、焼却されてい
た繊維強化プラスチック廃材を効率よく、分解し、回収
することができる。 (2) 有毒な分解物を系外に排出せずに、回収・精製
できるため、社会的・法的にも有用である。 (3) ガラス繊維を粉砕せず、さらに系外に排出せず
に精製・回収できるため、人体や環境に対して安全なプ
ロセスである。 (4) 高価な炭素繊維等を損傷させることなく、回収
・再利用できるため、経済的な効果が大きい。
(1) Conventionally, waste fiber-reinforced plastics that have been landfilled and incinerated as industrial waste can be efficiently decomposed and recovered. (2) It is socially and legally useful because toxic decomposition products can be collected and purified without discharging them outside the system. (3) It is a process that is safe for the human body and the environment because it can be purified and recovered without crushing and discharging the glass fiber out of the system. (4) Since it can be collected and reused without damaging expensive carbon fibers and the like, it has a great economic effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の方法を実施するための繊維強化プラ
スチック分解・回収システム図である。
FIG. 1 is a diagram of a fiber-reinforced plastic decomposition / recovery system for carrying out the method of the present invention.

【図2】 未使用の強化繊維と処理後の強化繊維の走査
型電子顕微鏡写真で、図2−(a)(15.0kV×
1.79K)及び図2−(b)(15.0 kV×5
0.0)は未使用の強化繊維、図2−(c)(15.0
kV ×1.80K)及び図2−(d)(15.0 k
V×50.0)は処理後の強化繊維を示す走査型電子顕
微鏡写真である。
FIG. 2 is a scanning electron micrograph of an unused reinforcing fiber and a processed reinforcing fiber, and FIG. 2- (a) (15.0 kV ×
1.79K) and FIG. 2- (b) (15.0 kV × 5)
0.0) is an unused reinforcing fiber, and FIG. 2- (c) (15.0).
kV × 1.80K) and FIG. 2- (d) (15.0 k
(V × 50.0) is a scanning electron micrograph showing the reinforcing fibers after the treatment.

【符号の説明】[Explanation of symbols]

1 分解層 2 水シリンダ 3 水槽 4 高圧ポンプ 5,6 バルブ 7 恒温槽 8 熱交換器 9 トラップ DESCRIPTION OF SYMBOLS 1 Decomposition layer 2 Water cylinder 3 Water tank 4 High pressure pump 5, 6 Valve 7 Constant temperature bath 8 Heat exchanger 9 Trap

フロントページの続き (72)発明者 佐古 猛 茨城県つくば市東1−1 工業技術院物 質工学工業技術研究所内 (72)発明者 大竹 勝人 茨城県つくば市東1−1 工業技術院物 質工学工業技術研究所内 (72)発明者 上野 勝彦 茨城県つくば市東1−1 工業技術院物 質工学工業技術研究所内 (72)発明者 佐藤 眞士 茨城県つくば市東1−1 工業技術院物 質工学工業技術研究所内 (72)発明者 永岡 昭二 熊本県熊本市東町3−11−38 熊本県工 業技術センター内 (72)発明者 永田 正典 熊本県熊本市東町3−11−38 熊本県工 業技術センター内 (72)発明者 永山 賛平 熊本県熊本市東町3−11−38 熊本県工 業技術センター内 (72)発明者 上村 誠 熊本県熊本市東町3−11−38 熊本県工 業技術センター内 審査官 増田 亮子 (56)参考文献 特開 平5−31000(JP,A) 特開 平5−271328(JP,A) 国際公開95/4796(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C08J 11/10 B29B 17/00 C10G 1/10 Continued on the front page (72) Inventor Takeshi Sako 1-1 Higashi Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Katsuhito Otake 1-1 Higashi 1-1, Tsukuba, Ibaraki Pref. Inside the Technical Research Institute (72) Katsuhiko Ueno 1-1, Higashi, Tsukuba, Ibaraki Pref.Institute of Materials Science and Technology, National Institute of Industrial Science (72) Inventor Shinji Sato 1-1, Higashi 1-1, Tsukuba, Ibaraki Pref. (72) Inventor Shoji Nagaoka 3-11-38 Higashicho, Kumamoto City, Kumamoto Prefecture Inside the Industrial Technology Center of Kumamoto (72) Inventor Masanori Nagata 3-11-38 Higashicho, Kumamoto City, Kumamoto Prefecture Inside the Industrial Technology Center Kumamoto ( 72) Inventor Shohei Nagayama 3-11-38 Higashicho, Kumamoto City, Kumamoto Prefecture Inside the Kumamoto Prefectural Industrial Technology Center (72) Inventor Makoto Uemura 3-11-38 Higashicho, Kumamoto City, Kumamoto Pref. Ryoko Masuda (56) References JP-A-5-31000 (JP, A) JP-A-5-2713 28 (JP, A) WO 95/4796 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) C08J 11/10 B29B 17/00 C10G 1/10

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応器内に繊維強化プラスチックを仕込
み、減圧して空気を除去し、続いてArガスを封入して
大気圧にし、繊維強化プラスチックを反応器内で超臨界
水又は亜臨界水と接触・反応させ、繊維を分離・回収
し、再利用することを特徴とする繊維強化プラスチック
からの繊維回収再利用方法。
1. A fiber reinforced plastic is charged in a reactor.
And remove the air by reducing the pressure, and then fill in Ar gas.
A method for recovering and reusing fiber from fiber-reinforced plastic, which comprises bringing the fiber-reinforced plastic into contact with and reacting with supercritical water or subcritical water in a reactor at atmospheric pressure, separating and recovering the fiber, and reusing the fiber. .
【請求項2】 反応器内で繊維強化プラスチックを30
0〜500℃の反応温度で処埋することを特徴とする請
求項1記載の繊維強化プラスチックからの繊維回収再利
用方法。
2. In a reactor, 30 fiber-reinforced plastics are added.
The method for recovering and recycling fibers from a fiber-reinforced plastic according to claim 1, wherein the method is carried out at a reaction temperature of 0 to 500C.
【請求項3】 超臨界水又は亜臨界水のpHを4〜8の
中性域にしてガラス繊維の部分的な加水分解を防止する
ことを特徴とする請求項1又は2記載の繊維強化プラス
チックからの繊維回収再利用方法。
3. The fiber reinforced plastic according to claim 1, wherein the pH of the supercritical water or the subcritical water is adjusted to a neutral range of 4 to 8 to prevent partial hydrolysis of the glass fiber. For fiber recovery and reuse from fiber.
【請求項4】 繊維強化プラスチックの有機高分子成分
の加水分解反応を促進する炭酸水素金属塩等の触媒を加
えて処理することを特徴とする請求項1、2又は3記載
の繊維強化プラスチックからの繊維回収再利用方法。
4. An organic polymer component of a fiber reinforced plastic.
A catalyst such as metal bicarbonate to promote the hydrolysis of
4. The method for recovering and recycling fibers from fiber-reinforced plastic according to claim 1, wherein the fibers are treated .
【請求項5】 分離・回収した繊維の表面を精製するこ
とを特徴とする請求項1、2、3又は4記載の繊維強化
プラスチックからの繊維回収再利用方法。
5. A method for refining the surface of separated and recovered fibers.
The method for recovering and reusing fibers from a fiber-reinforced plastic according to claim 1 , characterized in that:
JP26124096A 1996-09-09 1996-09-09 Fiber recovery and reuse method from fiber reinforced plastic Expired - Lifetime JP3134095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26124096A JP3134095B2 (en) 1996-09-09 1996-09-09 Fiber recovery and reuse method from fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26124096A JP3134095B2 (en) 1996-09-09 1996-09-09 Fiber recovery and reuse method from fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JPH1087872A JPH1087872A (en) 1998-04-07
JP3134095B2 true JP3134095B2 (en) 2001-02-13

Family

ID=17359092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26124096A Expired - Lifetime JP3134095B2 (en) 1996-09-09 1996-09-09 Fiber recovery and reuse method from fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP3134095B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020128587A1 (en) 2020-10-30 2022-05-05 Hanseatic Rohr Gmbh Reactor arrangement and method for dismantling objects made of plastic-based composite materials

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464797B1 (en) 1999-07-28 2002-10-15 Ricoh Company, Ltd. Method of separating electrophotographic carrier compositions and recycling the compositions
JP4766501B2 (en) * 2000-12-15 2011-09-07 三菱レイヨン株式会社 Carbon fiber processing method
WO2004041917A1 (en) 2002-11-07 2004-05-21 Matsushita Electric Works, Ltd. Depolymerization process
JP4863827B2 (en) * 2005-09-27 2012-01-25 パナソニック電工株式会社 Resin exterior material
JP4736841B2 (en) * 2006-02-21 2011-07-27 パナソニック電工株式会社 Collection method of inorganic filler
JP4706587B2 (en) * 2006-07-26 2011-06-22 パナソニック電工株式会社 Gas adsorbent and method for producing the same
JP2008156171A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Inorganic molded product
US20110136057A1 (en) 2009-12-08 2011-06-09 Kazumi Ohtaki Method for treating electrophotographic carrier, method for producing electrophotographic carrier, core material and carrier
JP5816898B2 (en) * 2012-03-28 2015-11-18 国立大学法人静岡大学 Recycled fiber manufacturing method and recycled fiber manufacturing system
DE102013200482A1 (en) * 2013-01-15 2014-07-17 Siemens Aktiengesellschaft Process for recovering reinforcing fibers from fiber-reinforced plastics
DE102016105966B4 (en) * 2016-04-01 2019-04-25 Michael Brühl-Saager Process and plant for recycling carbon fiber reinforced polymers
KR102396506B1 (en) * 2020-07-30 2022-05-12 한국과학기술연구원 Method for recycling fiber reinforced composite material through single depolymerization and fiber material with enhanced conductivity recovered therefrom
CN117355566A (en) 2021-07-19 2024-01-05 东丽株式会社 Method for separating polyarylene sulfide and method for producing polyarylene sulfide resin composition
WO2023074433A1 (en) * 2021-10-29 2023-05-04 東レ株式会社 METHOD FOR RECOVERING FIBROUS FILLER AND ε-CAPROLACTAM, AND METHOD FOR PRODUCING POLYAMIDE 6

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020128587A1 (en) 2020-10-30 2022-05-05 Hanseatic Rohr Gmbh Reactor arrangement and method for dismantling objects made of plastic-based composite materials
WO2022090079A1 (en) 2020-10-30 2022-05-05 Hanseatic Rohr Gmbh Reactor arrangement and method for decomposing objects consisting of plastic-based composite materials

Also Published As

Publication number Publication date
JPH1087872A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JP3134095B2 (en) Fiber recovery and reuse method from fiber reinforced plastic
US5756871A (en) Treating method for converting wastes into resources and its equipment
JP2003055498A (en) Method for decomposing thermosetting resin
JP2006241380A (en) Method for decomposing plastic
JP2002248455A (en) Harmful substance treating system and pcb treating method
JPH05245463A (en) Treatment of mixed plastic waste and device therefor
JP2011246721A (en) Method and device for treating product containing hydrocarbon
JP3405904B2 (en) Waste ion exchange resin treatment method
JP2019522717A (en) Recycling and material recovery system
JP4648213B2 (en) Plasticizer recovery method
WO1994024194A1 (en) Polystyrene-dissolving agent
CN110947262B (en) Hydrate-based particle/waste gas collaborative removal system and method
JP4752777B2 (en) Plastic disassembly / recovery method
JP2998734B2 (en) Recovery method of inorganic substances using supercritical water
JP3382082B2 (en) Waste treatment method and treatment device
WO2009111791A2 (en) Landfill waste remediation process
JP3847632B2 (en) Treatment method of low-level radioactive waste using supercritical water
JP4067477B2 (en) Method for decomposing resin components
US6273923B1 (en) Catalytic vacuum distillation process
JPH1072587A (en) Method for treating waste plastics
HUT77569A (en) Method and device for recycling waste by pyrolisys and reduction
US20230330723A1 (en) Process for recycling contaminated solid materials and purification of gases
CN205556357U (en) Organic waste water safety processing apparatus
JP2007169305A (en) Method for recovering rubber from organic waste liquid
JPH1161149A (en) Removal of halogen compound in heat-decomposed gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term