JP3132219B2 - Method for producing conductive resin composite - Google Patents

Method for producing conductive resin composite

Info

Publication number
JP3132219B2
JP3132219B2 JP05036553A JP3655393A JP3132219B2 JP 3132219 B2 JP3132219 B2 JP 3132219B2 JP 05036553 A JP05036553 A JP 05036553A JP 3655393 A JP3655393 A JP 3655393A JP 3132219 B2 JP3132219 B2 JP 3132219B2
Authority
JP
Japan
Prior art keywords
component
electrolytic polymerization
conductive
polymerization
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05036553A
Other languages
Japanese (ja)
Other versions
JPH0649184A (en
Inventor
聡 本多
秀昭 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP05036553A priority Critical patent/JP3132219B2/en
Publication of JPH0649184A publication Critical patent/JPH0649184A/en
Application granted granted Critical
Publication of JP3132219B2 publication Critical patent/JP3132219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、導電性樹脂複合体の製
造方法に関する。 【0002】 【従来の技術】汎用樹脂と導電性高分子との複合体を得
る方法として既に種々の提案がある。例えば、特開昭 6
1-157522号公報には、まず酸化剤を含有する汎用樹脂
を、酸化重合によって導電性高分子となるモノマーの溶
液もしくは蒸気に接触させて汎用樹脂上に導電性高分子
層を形成する方法が示されている。 【0003】特開昭 60-105532号公報には、陽極表面を
汎用樹脂で被覆して電解重合により導電性高分子となる
モノマーを含む電解液中で陰極と対向させて電解を行
い、上記汎用樹脂内に導電性高分子を生成して導電性樹
脂複合体を得る方法が示されている。 【0004】特開昭 61-3742号公報には、汎用樹脂シー
ト内に電解重合溶液を含浸させた後、シートの両側から
電極を押し当て電解重合を行ない導電性複合体を得る方
法が示されている。 【0005】 【発明が解決しようとする課題】しかしながら特開昭 6
1-157522号公報の方法では、得られる導電性複合体中の
導電性高分子含有量や厚みを調節が困難であった。特開
昭 60-105532号公報の方法では、フィルム状の複合体し
か得ることはできず厚みの大きい汎用樹脂の表面を導電
化するは困難である。特開昭 61-3742号公報の方法で
は、汎用樹脂シートを電解重合溶液で含浸する必要があ
るため、樹脂を多孔質とすることなどが必要であり、機
械的強度などの本来の汎用樹脂の特性が失われてしま
う。 【0006】本発明は、汎用樹脂の本来の特性例えば、
機械的強度などを損ねる事なく、汎用樹脂と導電性高分
子との複合体を得る方法を提供するものである。しかも
種々の形状の導電性樹脂複合体を製造することが可能で
あり、かつ導電層の厚みの調節も容易な方法を提供する
ものである。 【0007】 【課題を解決するための手段】すなわち本発明は、(a)
縮合系以外の重合性モノマー類に、(b) 電解重合によっ
て導電性高分子となるモノマー類及び(c) 電解質、を溶
解し、該溶液を電解重合セルに注入し、該セルに直流電
圧を印加し(b) 成分の電解重合を行い、続いて(a) 成分
の重合を行なう導電性樹脂複合体の製造方法に関するも
のである。 【0008】本発明の導電性樹脂複合体とは汎用樹脂表
面に導電性高分子よりなる導電層を有しているものであ
る。つまり、該(a) 縮合系以外の重合性モノマーを重合
させて形成された汎用樹脂の層の表面に該(b) 成分のモ
ノマーを電解重合させて形成された導電性高分子よりな
る層が形成されているものである。本発明の導電性樹脂
複合体では、汎用樹脂と導電性樹脂層の厚みは適宜設定
することができ、その比も特に制限されないが、一般に
導電性高分子層と汎用樹脂層の比は概ね0.00000
01から1である。 【0009】本発明における(a) 成分である縮合系以外
の重合性モノマーは、付加重合反応、重付加反応、環化
重合反応、異性化重合反応、開環重合反応など、重合中
に低分子成分の脱離を伴わずに重合体を形成するモノマ
ーをいう。 【0010】該モノマーの代表例を示すと、メタアクリ
ル酸エステル類、アクリル酸エステル類、スチレン、酢
酸ビニル、塩化ビニル、塩化ビニリデン、弗化ビニリデ
ン、及びその誘導体など付加重合性モノマー;の他、ウ
レタン樹脂の原料となるポリオールとポリイソシアネー
ト化合物の混合物、エポキシ樹脂の原料のグリシジル化
合物等も該当する。 中でもアクリル酸エステル、メ
タクリル酸エステル類を50%以上含む付加重合性モノ
マー類が好ましい。 【0011】なお、(a) 成分には、あらかじめ該成分の
重合に適した触媒、開始剤、硬化剤と称されるものをあ
らかじめ混入させて用いる。さらには、必要に応じて着
色剤、光拡散剤、補強剤、充填剤、離型剤、安定剤、紫
外線吸収剤、酸化防止剤、帯電防止剤、難燃化剤などを
加えることも可能である。 【0012】本発明の(b) 成分である電解重合によって
導電性高分子となるモノマーとは、(a) 成分に溶解し、
酸化・還元により高分子化し、しかも導電性となる化合
物である。例えばピロール、チオフェン、フラン、セレ
ノフェン、テルロフェン、イソチアナフテンなどの複素
五員環式化合物及びそのアルキル基、ハロゲン、水酸
基、カルボキシル基、アルキレンオキサイド基、オキシ
アルキル基、アルキルスルホン酸及びその塩等の誘導
体;ベンゼン、ビフェニル、ナフタレン、アントラセ
ン、アズレン、ピレン、カルバゾール、ピリダジン、ア
ニリンなどの芳香族化合物及びそのアルキル基、ハロゲ
ン、水酸基、カルボキシル基、アルキレンオキサイド
基、オキシアルキル基、アルキルスルホン酸及びその塩
等の誘導体が挙げられる。その中でも複素五員環式化合
物及びその誘導体が好ましく、更にピロール及びその誘
導体が特に好ましい。また上記モノマーは2種以上併用
することが出来る。該(b) 成分の使用量は、必要とする
導電膜の面積と厚みによって定めれば良く、概ね(a) 成
分に対し重量比で0.0000001〜1である。 【0013】本発明の(c) 成分である電解質とは、(a)
成分に溶解する電解質が該当し、(b) 成分の電解重合の
際、通電させるためのものである。例えばLiCl
4 ,LiBF4 ,LiCF3 SO3 ,LiPF6 ,L
iAsF6 ,AgClO4 などのような無機イオン塩;
あるいはアルキルスルホン酸ナトリウム、アルキルベン
ゼンスルホン酸ナトリウムなどのようなプロトン酸塩;
(C2 5 4 NClO4 などのような有機第4級アン
ムニウム塩;ポリメタクリル酸ナトリウムのような高分
子の塩;その他プロトン酸、エステルなど種々の化合物
が挙げられる。また上記電解質は2種以上併用すること
が出来る。これらの量は、大概(a) 成分1kg当り0.
0001〜10モルである。更に好ましくは0.001
〜1モルである。 【0014】(a) ,(b) ,(c) 成分を混合した溶液に、
更に(c) 成分の電解質の溶媒(d) を添加しても良い。こ
の溶媒(d) は、該溶液の通電し易くするためのもので、
(c) 成分の電解質を溶解し、(a) ,(b) ,(c) 成分混合
溶液に均一に混ざるものであれば特に制限は無い。例え
ばエチレングリコールジメチルエーテル、ジエチレング
リコールジメチルエーテル、トリエチレングリコールジ
メチルエーテル、テトラエチレングリコールジメチルエ
ーテル等のグライム類、エチレングリコール、ジエチレ
ングリコール、ポリエチレングリコール、プロピレング
リコール、ポリプロピレングリコール等のグリコール
類、プロピレンカーボネート、エチレンカーボネート、
ホルムアミド、ジメチルホルムアミド、ジメチルアセト
アミド、N−メチルピロリドン、テトラメチルウレア、
ジメチルスルホキシド、アセトニトリル、メタノール、
エタノール、水等が挙げられる。また、上記溶媒は2種
以上併用できる。この溶媒の量は(a) 成分100重量部
に対して0.001〜100重量部である。100重量
部を超えると、得られる導電性樹脂複合体の機械的強度
等が低下する。 【0015】(a) ,(b) ,(c) 成分及び更に必要により
(d) 成分を混合し溶解させた液を電解重合セルへ注入す
る。 【0016】本発明の電解重合セルとは、いわゆる樹脂
に所望の形状を転写できる内部形状を有する型枠であ
り、所望の形状の導電膜を形成する形状の作用電極と、
対電極を内蔵し、しかも、前記(a) 成分を重合、硬化す
るに適した加熱、冷却、あるいは、紫外線照射が可能な
ものである。なお、電極の材質としては導電性で耐腐蝕
性であれば特に制限はなく、例えば、ステンレス、銅、
アルミニウム、白金、金、パラジウムなどの金属、酸化
すず、酸化インジウムなどの導電性金属酸化物、及びそ
れらを例えばガラス、各種金属セラミックス、各種合成
樹脂等適当な基盤上にメッキ、蒸着、スパッタリングな
どの方法で堆積したものが挙げられる。 【0017】次に電解重合セルに直流電圧を印加して
(b) 成分の電解重合を行う。(b) 成分が、酸化により導
電性を有する高分子となるのであれば導電膜を形成させ
る電極側を陽極とし、逆に(b) 成分が還元によって導電
性を有する高分子となるのであれば導電膜を形成させる
電極側を陰極とする。印加電圧は、約1mV〜100V
である。電流密度及び電解重合時間は(a) ,(b) ,(c)
各成分とその比率が定まれば導電性高分子層の所望する
層みによって決まる。一般的には電流密度を0.000
01〜1000mA/cm3 程度、好ましくは0.000
1〜100mA/cm3 程度として電解重合を行うのが好
ましい。この条件下で通電電荷量と使用する特定サイズ
の電極のモノマー接触面上に形成される導電性樹脂層の
厚さとの相関関係を求めておくと、これを目安にして電
解重合時間を容易に決定することができる。導電性高分
子層の厚みは、必要とする導電性樹脂複合体の用途によ
って選択できるが、一般的には0.001μm〜1mm
程度である。なお、溶液中の(b) 成分は、完全に電解重
合で消費されても良いし、また電解重合に消費され尽く
さずに、一部分が(a) 成分中又は(a) 成分及び(d) 成分
中に溶解しない、混和したままの状態で残存していても
良い。 【0018】電解重合が終了後、(a) 成分を重合させる
が、この重合方法は、特段のものではなく、該セル中で
用いる(a) 成分の周知の重合方法で行わせればよい。即
ち、上記(b) 成分の電解重合層が終了した時点では、
(a) 成分は未重合の状態で残っている。かかる系を含む
電解重合セルを、慣用されている重合方法の条件下に置
くことにより、(a) 成分の重合反応を起こさせる。例え
ば(a) 成分として前記付加重合性モノマーを使用した場
合には、使用した開始剤ないし触媒に応じて、例えば、
ラジカル重合反応を、使用した(a) 成分が重合するのに
有効な温度(通常0〜150℃程度)で重合を行う。ま
た、(a) 成分として前記ポリオールとポリイソシアネー
トを使用する場合は、使用した触媒に応じて、該二種の
成分が反応するのに有効な温度(通常0〜100℃程
度)で、使用した当該成分の全量をウレタン化反応を行
う。また、(a) 成分として前記グリシジル化合物を使用
した場合は、用いた硬化剤に適した条件で硬化させる。
紫外線を照射する場合は、充分な照射量で重合させる。 【0019】(a) 成分の重合終了後、該セルを解体し
て、導電性樹脂複合体を取り出す。 【0020】 【発明の効果】本発明によれば、各種汎用樹脂本来の特
性を損なうことなく、導電性を有した複合体を得ること
ができる。また本発明では種々の形状の導電性複合体を
製造することが可能であり、導電層の厚み制御も容易に
行える。本発明によって得られる導電性樹脂複合体は、
帯電防止材料、電磁波遮蔽材料、電極等に適用すること
が出来る。 【0021】 【実施例】以下、実施例によって本発明を更に詳しく説
明するが 本発明はこれら実施例によってなんら制限さ
れるものではない。実施例における方法の過程を図面に
沿って説明する。まず、上記(a) 成分(触媒、開始剤、
硬化剤を含む)、(b) 成分及び(c) 成分及び必要に応じ
て(d) 成分及び添加剤を混合して電解質溶液を作成す
る。次いで、(1−1)に示されるように得られた溶液
4を電解重合セルに注入する。その後、直流電源1を用
いて作用電極3の間に直流電流を通過させ、(b) 成分を
電解重合する。こうして(1−2)に示すように、(b)
成分の電解重合により生じた導電性高分子層6が、作用
電極3の表面に均一に形成される。もし(b) 成分として
2種以上のモノマーを使用した場合、それぞれのモノマ
ーは異なった電解重合条件で重合され、2層以上の導電
性高分子層が得られる。この状態で、電解重合セルを
(a) 成分の重合のための条件下に置くことにより、(a)
成分の重合を行う。これにより、上記導電性高分子の層
6に密着した状態で(a) 成分の重合により生成した重合
体の層が形成され、本発明の導電性樹脂複合体が得られ
る。その後、電解重合セルを解体すると、(1−3)に
示す様に汎用樹脂層7に導電性高分子層が形成された導
電性樹脂複合体が得られる。 【0022】実施例における評価項目は以下の方法によ
る。 ・導電膜の表面抵抗率は、株式会社カスタム製デジタル
マルチメーター型式CDM-200 を用いて二端子法で測定し
た。 ・機械的強度は曲げ強度、曲げ弾性率をJIS K7203 に従
って測定した。 ・導電膜の厚みは、ERICHSEN GMBH &COKG(エリシェン社)製
PAINT INSPECTION GAGE(ペイントインスペクションゲ
イジ) P.I.G455 型を用いて測定した。 【0023】実施例 1 メタクリル酸メチル0.1リットルにLiClO4 0.
01モル、ピロール0.005モル、アゾビスイソブチ
ロニトリル0.5ミリモルを溶解した。この溶液を厚さ
3mmのポリ塩化ビニル製ガスケットをはさんだ二枚の酸
化インジウム−スズ(ITO)を被膜したガラス板(表
面抵抗率100Ω、12cm×12cm)からなる電解重合
セルに注入し、直流電源装置としてGOOD WILL INSTRUME
NT CO.,LTDグッドウイルインストルメント社の型式 GPR
-1830 を用いてITOを電極とし両電極間に10Vの定
電圧を5分間印加し、電解重合を行なった。電流密度は
電解重合初期0.17mA/cm2 、終了時0.13mA/cm2 であっ
た。その後、電解重合セルを水浴中に75℃で3時間、
空気浴中に120℃で1時間入れ、メタクリル酸メチル
のラジカル重合を行った。その後、電解重合セルを解体
し、厚さ3mmのメタクリル酸メチル重合体−ポリピロー
ル複合体を得た。ポリピロール層の厚みは1.5μm、
表面抵抗率は1.4×105 Ω、曲げ強度は1320kg
f/cm2 、曲げ弾性率は34000kgf/cm2 であっ
た。 【0024】実施例 2 実施例1においてLiClO4 0.01モルに代えてL
iBF4 0.01モルとした以外は同様に行い、厚さ3
mmのメタクリル酸メチル重合体−ポリピロール複合体を
得た。電流密度は電解重合初期0.14mA/cm2 、終了時0.
10mA/cm2 であった。ポリピロール層の厚みは1.3μ
m、表面抵抗率は6.0×104 Ω、曲げ強度は125
0kgf/cm2 、曲げ弾性率は33600kgf/cm2 であ
った。 【0025】実施例 3 実施例1においてLiClO4 0.01モルに代えてL
iCF3 SO3 0.01モルを使用した以外は同様に行
い、厚さ3mmのメタクリル酸メチル重合体−ポリピロー
ル複合体を得た。電流密度は電解重合初期0.14mA/c
m2 、終了時0.10mA/cm2 であった。ポリピロール層の
厚みは1.3μm、表面抵抗率は1.0×105 Ω、曲
げ強度は1280kgf/cm2 、曲げ弾性率は33800
kgf/cm2 であった。 【0026】実施例 4 実施例1においてITOガラスに代えてステンレス板を
用いた以外は同様に行って厚さ3mmのメタクリル酸メチ
ル重合体−ポリピロール複合体を得た。電流密度は電解
重合初期0.35mA/cm2 、終了時0.26mA/cm2 であった。
ポリピロール層の厚みは3μm、表面抵抗率は1.4×
105 Ω、曲げ強度は、1320kgf/cm2 、曲げ弾性
率は33000kgf/cm2 であった。 【0027】実施例 5 実施例1においてピロール0.005モルにかえてチオ
フェン0.005モルを使用し、電解重合を20Vで5
分間行った以外は同様に行って、厚さ3mmのメタクリル
酸メチル重合体−ポリチオフェン複合体を得た。電流密
度は電解重合初期0.31mA/cm2 、終了時0.24mA/cm2
あった。表面抵抗率は5×109 Ω、曲げ強度は130
0kgf/cm2 、曲げ弾性率は33000kgf/cm2 であ
った。 【0028】実施例 6 実施例1においてピロール0.005モルにかえてN−
メチルピロール0.005モルを使用し、電解重合を1
0Vで5分間行った以外は同様に行って、厚さ3mmのメ
タクリル酸メチル重合体−ポリN−メチルピロール複合
体を得た。電流密度は電解重合初期0.17mA/cm2 、終了
時0.13mA/cm2 であった。表面抵抗率は2.5×109
Ω、曲げ強度は1270kgf/cm2 、曲げ弾性率は33
200kgf/cm2 であった。 【0029】実施例 7 実施例1においてメタクリル酸メチルを0.2リット
ル、LiClO4 0.02モル、ピロール0.01モ
ル、アゾビスイソブチロニトリル1ミリモルとし、ポリ
塩化ビニル製ガスケットを厚さ5mmとし、及びラジカル
重合条件を水浴中に60℃で7時間、空気浴中に120
℃で1時間とした以外は同様に行って、厚さ5mmのメタ
クリル酸メチル重合体−ポリピロール複合体を得た。電
流密度は電解重合初期0.17mA/cm2 、終了時0.13mA/cm
2 であった。ポリピロール層の厚みは1.5μm、表面
抵抗率は5×105 Ω、曲げ強度は、1250kgf/cm
2 、曲げ弾性率は34000kgf/cm2 であった。 【0030】実施例 8 実施例1においてメタクリル酸メチルを0.4リット
ル、LiClO4 0.04モル、ピロール0.02モ
ル、アゾビスイソブチロニトリル2ミリモルとし、ポリ
塩化ビニル製ガスケットを厚さ10mmとし、及びラジカ
ル重合条件を水浴中に40℃で10時間、60℃で5時
間、80℃で5時間、空気浴中に120℃で1時間とし
た以外は同様に行って、厚さ10mmのメタクリル酸メチ
ル重合体−ポリピロール複合体を得た。電流密度は電解
重合初期0.17mA/cm2 、終了時0.13mA/cm2 であった。
ポリピロール層の厚みは1.5μmであった。表面抵抗
率は、1.2×106Ωであった。曲げ強度は、120
0kgf/cm2 、曲げ弾性率は34000kgf/cm2 であ
った。 【0031】実施例 9 実施例1において、電解重合時間を、3分とした以外は
同様に行って、厚さ3mmのメタクリル酸メチル重合体−
ポリピロール複合体を得た。電流密度は電解重合初期0.
17mA/cm2 、終了時0.14mA/cm2 であった。ポリピロー
ル層の厚みは1μm、表面抵抗率は3×105 Ω、曲げ
強度は1300kgf/cm2 、曲げ弾性率は34000kg
f/cm2 であった。 【0032】実施例 10 実施例1において、電解重合時間を、10分とした以外
は同様に行って、厚さ3mmのメタクリル酸メチル重合体
−ポリピロール複合体を得た。電流密度は電解重合初期
0.17mA/cm2 、終了時0.10mA/cm2 であった。ポリピロ
ール層の厚みは3μm、表面抵抗率は2.5×10
4 Ω、曲げ強度は、1300kgf/cm2 、曲げ弾性率は
34000kgf/cm2 であった。 【0033】実施例 11 実施例1において、該溶液に水0.24ミリリットルを
加え、電解重合電圧を8Vとした以外は同様に行って、
厚さ3mmのメタクリル酸メチル重合体−ポリピロール複
合体を得た。電流密度は電解重合初期0.10mA/cm2 、終
了時0.08mA/cm2 であった。ポリピロール層の厚みは
1.0μm、表面抵抗率は8.5×104 Ω、曲げ強度
は1140kgf/cm2 、曲げ弾性率は35600kgf/
cm2 であった。 【0034】実施例 12 実施例1において、該溶液にアセトニトリル3.6ミリ
リットルを加え、電解重合電圧を6Vとした以外は同様
に行って、厚さ3mmのメタクリル酸メチル重合体−ポリ
ピロール複合体を得た。電流密度は電解重合初期0.10mA
/cm2 、終了時0.08mA/cm2 であった。ポリピロール層
の厚みは1.0μm、表面抵抗率は2.9×104 Ω、
曲げ強度は1010kgf/cm2 、曲げ弾性率は3000
0kgf/cm2 であった。 【0035】実施例 13 実施例1において、該溶液にテトラエチレングリコール
ジメチルエーテル2.3ミリリットルを加え、電解重合
電圧を6.5Vとした以外は同様に行って、厚さ3mmの
メタクリル酸メチル重合体−ポリピロール複合体を得
た。電流密度は電解重合初期0.10mA/cm2 、終了時0.08
mA/cm2 であった。ポリピロール層の厚みは1.0μ
m、表面抵抗率は1.8×105 Ω、曲げ強度は、12
70kgf/cm2 、曲げ弾性率は33100kgf/cm2
あった。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive resin composite. [0002] There have already been various proposals as a method for obtaining a composite of a general-purpose resin and a conductive polymer. For example, JP
No. 1-157522 discloses a method of forming a conductive polymer layer on a general-purpose resin by first contacting a general-purpose resin containing an oxidizing agent with a solution or vapor of a monomer that becomes a conductive polymer by oxidative polymerization. It is shown. [0003] Japanese Patent Application Laid-Open No. Sho 60-105532 discloses that the surface of an anode is coated with a general-purpose resin and electrolysis is performed by facing the cathode in an electrolyte solution containing a monomer that becomes a conductive polymer by electrolytic polymerization. A method is disclosed in which a conductive polymer is formed in a resin to obtain a conductive resin composite. Japanese Patent Application Laid-Open No. 61-3742 discloses a method of impregnating a general-purpose resin sheet with an electrolytic polymerization solution and then pressing electrodes from both sides of the sheet to perform electrolytic polymerization to obtain a conductive composite. ing. [0005] However, Japanese Unexamined Patent Publication No.
According to the method disclosed in JP-A 1-157522, it was difficult to control the content and thickness of the conductive polymer in the obtained conductive composite. In the method disclosed in JP-A-60-105532, only a film-like composite can be obtained, and it is difficult to make the surface of a general-purpose resin having a large thickness conductive. In the method of JP-A-61-3742, it is necessary to impregnate a general-purpose resin sheet with an electrolytic polymerization solution, so that it is necessary to make the resin porous and the like. Characteristics are lost. [0006] The present invention relates to the essential properties of general-purpose resins, for example,
An object of the present invention is to provide a method for obtaining a composite of a general-purpose resin and a conductive polymer without impairing mechanical strength or the like. Moreover, the present invention provides a method capable of manufacturing conductive resin composites of various shapes and easily adjusting the thickness of the conductive layer. [0007] The present invention provides (a)
In a polymerizable monomer other than the condensation system, (b) a monomer that becomes a conductive polymer by electrolytic polymerization and (c) an electrolyte are dissolved, the solution is injected into an electrolytic polymerization cell, and a DC voltage is applied to the cell. The present invention relates to a method for producing a conductive resin composite in which the component (b) is subjected to electrolytic polymerization by application, followed by the polymerization of the component (a). The conductive resin composite of the present invention has a conductive layer made of a conductive polymer on the surface of a general-purpose resin. That is, on the surface of the general-purpose resin layer formed by polymerizing a polymerizable monomer other than the (a) condensation type, a layer made of a conductive polymer formed by electrolytic polymerization of the monomer of the component (b) is provided. It has been formed. In the conductive resin composite of the present invention, the thickness of the general-purpose resin and the conductive resin layer can be appropriately set, and the ratio is not particularly limited, but the ratio of the conductive polymer layer to the general-purpose resin layer is generally about 0. 0.0000000
It is 01 to 1. The polymerizable monomer other than the condensation type, which is the component (a) in the present invention, has a low molecular weight during polymerization, such as an addition polymerization reaction, a polyaddition reaction, a cyclization polymerization reaction, an isomerization polymerization reaction, or a ring-opening polymerization reaction. A monomer that forms a polymer without elimination of components. Representative examples of the monomer include addition polymerizable monomers such as methacrylates, acrylates, styrene, vinyl acetate, vinyl chloride, vinylidene chloride, vinylidene fluoride, and derivatives thereof; A mixture of a polyol and a polyisocyanate compound as raw materials of a urethane resin, a glycidyl compound as a raw material of an epoxy resin, and the like are also applicable. Above all, addition polymerizable monomers containing 50% or more of acrylic acid esters and methacrylic acid esters are preferable. The component (a) is preliminarily mixed with a so-called catalyst, initiator and curing agent suitable for the polymerization of the component. Furthermore, it is also possible to add a coloring agent, a light diffusing agent, a reinforcing agent, a filler, a mold release agent, a stabilizer, an ultraviolet absorber, an antioxidant, an antistatic agent, a flame retardant, etc., if necessary. is there. The component (b) of the present invention, which is a monomer which becomes a conductive polymer by electrolytic polymerization, is dissolved in the component (a),
It is a compound that becomes polymerized by oxidation and reduction and becomes conductive. For example, pyrrole, thiophene, furan, selenophene, tellurophene, isothianaphthene and other five-membered heterocyclic compounds and their alkyl groups, halogens, hydroxyl groups, carboxyl groups, alkylene oxide groups, oxyalkyl groups, alkylsulfonic acids and salts thereof Derivatives: aromatic compounds such as benzene, biphenyl, naphthalene, anthracene, azulene, pyrene, carbazole, pyridazine, and aniline and their alkyl groups, halogens, hydroxyl groups, carboxyl groups, alkylene oxide groups, oxyalkyl groups, alkylsulfonic acids, and salts thereof. And the like. Among them, a 5-membered heterocyclic compound and a derivative thereof are preferable, and pyrrole and a derivative thereof are particularly preferable. Further, two or more of the above monomers can be used in combination. The amount of the component (b) used may be determined according to the required area and thickness of the conductive film, and is generally 0.0000001 to 1 in weight ratio to the component (a). The electrolyte which is the component (c) of the present invention includes (a)
This is an electrolyte that dissolves in the component, and is used to supply electricity during the electropolymerization of the component (b). For example, LiCl
O 4 , LiBF 4 , LiCF 3 SO 3 , LiPF 6 , L
inorganic ionic salts such as iAsF 6 , AgClO 4 and the like;
Or a protic acid salt such as sodium alkyl sulfonate, sodium alkylbenzene sulfonate;
Organic quaternary ammonium salts such as (C 2 H 5 ) 4 NClO 4 ; polymer salts such as polysodium methacrylate; and other compounds such as protonic acids and esters. Further, two or more of the above electrolytes can be used in combination. These amounts are generally in the range of 0.1 kg / kg of component (a).
0001 to 10 mol. More preferably 0.001
11 mol. The solution obtained by mixing the components (a), (b) and (c)
Further, a solvent (d) for the electrolyte of the component (c) may be added. This solvent (d) is for facilitating the energization of the solution,
There is no particular limitation as long as the electrolyte of the component (c) is dissolved and uniformly mixed with the mixed solution of the components (a), (b) and (c). For example, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, glymes such as tetraethylene glycol dimethyl ether, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, glycols such as polypropylene glycol, propylene carbonate, ethylene carbonate,
Formamide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, tetramethylurea,
Dimethyl sulfoxide, acetonitrile, methanol,
Ethanol, water and the like can be mentioned. Further, two or more of the above solvents can be used in combination. The amount of the solvent is 0.001 to 100 parts by weight based on 100 parts by weight of the component (a). If it exceeds 100 parts by weight, the mechanical strength and the like of the obtained conductive resin composite will decrease. The components (a), (b) and (c) and, if necessary,
(d) The solution in which the components are mixed and dissolved is poured into the electrolytic polymerization cell. The electrolytic polymerization cell of the present invention is a mold having an internal shape capable of transferring a desired shape to a so-called resin, and a working electrode having a shape for forming a conductive film having a desired shape;
It has a built-in counter electrode and can be heated, cooled, or irradiated with ultraviolet light suitable for polymerizing and curing the component (a). The material of the electrode is not particularly limited as long as it is conductive and corrosion-resistant. For example, stainless steel, copper,
Metals such as aluminum, platinum, gold, and palladium; tin oxide; conductive metal oxides such as indium oxide; and, for example, glass, various metal ceramics, and various synthetic resins on a suitable base such as plating, evaporation, and sputtering. And those deposited by the method. Next, a DC voltage is applied to the electrolytic polymerization cell.
(b) The component is subjected to electrolytic polymerization. If the component (b) becomes a polymer having conductivity by oxidation, the electrode side on which the conductive film is formed is used as an anode, and if the component (b) becomes a polymer having conductivity by reduction, The electrode on which the conductive film is formed is used as a cathode. Applied voltage is about 1mV ~ 100V
It is. The current density and electropolymerization time are (a), (b), (c)
Once the components and their ratios are determined, the desired layer of the conductive polymer layer is determined. Generally, the current density is 0.000
About 0.01 to 1000 mA / cm 3 , preferably 0.000
It is preferable to perform electrolytic polymerization at about 1 to 100 mA / cm 3 . Under this condition, if the correlation between the amount of electric charge and the thickness of the conductive resin layer formed on the monomer contact surface of the electrode of a specific size to be used is obtained, the electrolytic polymerization time can be easily determined using this as a guide. Can be determined. The thickness of the conductive polymer layer can be selected depending on the required application of the conductive resin composite, but is generally 0.001 μm to 1 mm.
It is about. The component (b) in the solution may be completely consumed by the electrolytic polymerization, or may be partially consumed in the component (a) or the component (a) and the component (d) without being consumed by the electrolytic polymerization. It may not be dissolved therein, and may remain in a mixed state. After the completion of the electrolytic polymerization, the component (a) is polymerized. This polymerization method is not particularly limited, and may be a known polymerization method of the component (a) used in the cell. That is, at the time when the electropolymerized layer of the component (b) is completed,
(a) The component remains in an unpolymerized state. The polymerization reaction of the component (a) is caused by placing the electrolytic polymerization cell containing such a system under the conditions of a commonly used polymerization method. For example, when the addition polymerizable monomer is used as the component (a), depending on the used initiator or catalyst, for example,
The radical polymerization reaction is carried out at a temperature (usually about 0 to 150 ° C.) effective for polymerizing the component (a) used. When the polyol and the polyisocyanate are used as the component (a), the polyol and the polyisocyanate are used at a temperature (usually about 0 to 100 ° C.) effective for the reaction of the two components depending on the catalyst used. The entire amount of the component is subjected to a urethanization reaction. When the glycidyl compound is used as the component (a), the composition is cured under conditions suitable for the curing agent used.
When irradiating with ultraviolet rays, polymerization is performed with a sufficient irradiation amount. After the completion of the polymerization of the component (a), the cell is disassembled to take out the conductive resin composite. According to the present invention, a composite having conductivity can be obtained without deteriorating the inherent properties of various general-purpose resins. Further, according to the present invention, it is possible to produce conductive composites of various shapes, and the thickness of the conductive layer can be easily controlled. The conductive resin composite obtained by the present invention,
It can be applied to antistatic materials, electromagnetic wave shielding materials, electrodes and the like. Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. The steps of the method in the embodiment will be described with reference to the drawings. First, the component (a) (catalyst, initiator,
(Including a curing agent), component (b) and component (c), and if necessary, component (d) and additives to prepare an electrolyte solution. Next, the solution 4 obtained as shown in (1-1) is injected into the electrolytic polymerization cell. Thereafter, a DC current is passed between the working electrodes 3 using the DC power supply 1 to subject the component (b) to electrolytic polymerization. Thus, as shown in (1-2), (b)
The conductive polymer layer 6 generated by the electrolytic polymerization of the components is uniformly formed on the surface of the working electrode 3. If two or more monomers are used as component (b), each monomer is polymerized under different electrolytic polymerization conditions to obtain two or more conductive polymer layers. In this state, the electrolytic polymerization cell is
(a) by subjecting it to conditions for the polymerization of the components,
The components are polymerized. As a result, a layer of a polymer formed by polymerization of the component (a) is formed in a state in which the layer is in close contact with the conductive polymer layer 6, and the conductive resin composite of the present invention is obtained. Thereafter, when the electrolytic polymerization cell is disassembled, a conductive resin composite in which a conductive polymer layer is formed on the general-purpose resin layer 7 as shown in (1-3) is obtained. Evaluation items in the embodiment are based on the following method. -The surface resistivity of the conductive film was measured by a two-terminal method using a digital multimeter model CDM-200 manufactured by Custom Co., Ltd.・ Mechanical strength was measured for flexural strength and flexural modulus according to JIS K7203.・ The thickness of the conductive film is ERICHSEN GMBH & COKG (Erichen)
PAINT INSPECTION GAGE (Paint Inspection Gage) It measured using PIG455 type. EXAMPLE 1 LiClO 4 0.1 g in 0.1 liter of methyl methacrylate
01 mol, 0.005 mol of pyrrole and 0.5 mmol of azobisisobutyronitrile were dissolved. This solution was injected into an electrolytic polymerization cell consisting of two glass plates (surface resistivity: 100Ω, 12 cm × 12 cm) coated with indium-tin oxide (ITO) sandwiching a 3 mm-thick polyvinyl chloride gasket. GOOD WILL INSTRUME as power supply
Model GPR of NT CO., LTD Goodwill Instrument Company
Using -1830, a constant voltage of 10 V was applied between the electrodes using ITO as an electrode for 5 minutes to carry out electrolytic polymerization. Current density electrolytic polymerization Initial 0.17 mA / cm 2, was at the end 0.13 mA / cm 2. Thereafter, the electrolytic polymerization cell was placed in a water bath at 75 ° C. for 3 hours,
It was put in an air bath at 120 ° C. for 1 hour to perform radical polymerization of methyl methacrylate. Thereafter, the electrolytic polymerization cell was disassembled to obtain a methyl methacrylate polymer-polypyrrole composite having a thickness of 3 mm. The thickness of the polypyrrole layer is 1.5 μm,
The surface resistivity is 1.4 × 10 5 Ω and the bending strength is 1320 kg
f / cm 2 , and the flexural modulus was 34000 kgf / cm 2 . Example 2 In Example 1, L was used instead of 0.01 mol of LiClO 4.
The same procedure was repeated except that iBF 4 was 0.01 mol.
mm of a methyl methacrylate polymer-polypyrrole complex was obtained. The current density is 0.14 mA / cm 2 at the beginning of electropolymerization and 0.
It was 10 mA / cm 2 . The thickness of the polypyrrole layer is 1.3μ
m, surface resistivity 6.0 × 10 4 Ω, bending strength 125
0 kgf / cm 2, a flexural modulus of 33600kgf / cm 2. Example 3 In Example 1, L was used instead of 0.01 mol of LiClO 4.
The same operation was performed except that 0.01 mol of iCF 3 SO 3 was used to obtain a methyl methacrylate polymer-polypyrrole composite having a thickness of 3 mm. Current density is 0.14mA / c at the beginning of electrolytic polymerization
m 2 , and 0.10 mA / cm 2 at the end. The thickness of the polypyrrole layer is 1.3 μm, the surface resistivity is 1.0 × 10 5 Ω, the flexural strength is 1280 kgf / cm 2 , and the flexural modulus is 33800.
kgf / cm 2 . Example 4 A 3 mm thick methyl methacrylate polymer-polypyrrole composite was obtained in the same manner as in Example 1, except that a stainless steel plate was used instead of the ITO glass. Current density electrolytic polymerization Initial 0.35 mA / cm 2, was at the end 0.26 mA / cm 2.
The thickness of the polypyrrole layer is 3 μm, and the surface resistivity is 1.4 ×
10 5 Ω, flexural strength was 1320 kgf / cm 2 , and flexural modulus was 33000 kgf / cm 2 . Example 5 In Example 1, 0.005 mol of thiophene was used instead of 0.005 mol of pyrrole, and electropolymerization was carried out at 20 V for 5 minutes.
The procedure was repeated in the same manner except that the reaction was carried out for 1 minute to obtain a methyl methacrylate polymer-polythiophene composite having a thickness of 3 mm. Current density electrolytic polymerization Initial 0.31 mA / cm 2, was at the end 0.24 mA / cm 2. Surface resistivity 5 × 10 9 Ω, bending strength 130
0 kgf / cm 2, a flexural modulus of 33000kgf / cm 2. Example 6 N-type was prepared in the same manner as in Example 1 except that 0.005 mol of pyrrole was used.
Using 0.005 mol of methylpyrrole, 1
The same operation was performed except that the operation was performed at 0 V for 5 minutes to obtain a methyl methacrylate polymer-poly (N-methylpyrrole) composite having a thickness of 3 mm. Current density electrolytic polymerization Initial 0.17 mA / cm 2, was at the end 0.13 mA / cm 2. Surface resistivity is 2.5 × 10 9
Ω, flexural strength 1270 kgf / cm 2 , flexural modulus 33
It was 200 kgf / cm 2 . Example 7 In Example 1, 0.2 liter of methyl methacrylate, 0.02 mol of LiClO 4 , 0.01 mol of pyrrole and 1 mmol of azobisisobutyronitrile were used. 5 mm, and the radical polymerization conditions were 60 ° C. for 7 hours in a water bath, 120 minutes in an air bath.
The same procedure was repeated except that the temperature was changed to 1 hour at a temperature of 1 ° C. to obtain a methyl methacrylate polymer-polypyrrole composite having a thickness of 5 mm. The current density is 0.17 mA / cm 2 at the beginning of electropolymerization and 0.13 mA / cm at the end.
Was 2 . The thickness of the polypyrrole layer is 1.5 μm, the surface resistivity is 5 × 10 5 Ω, and the bending strength is 1250 kgf / cm.
2. The flexural modulus was 34000 kgf / cm 2 . Example 8 In Example 1, 0.4 liter of methyl methacrylate, 0.04 mol of LiClO 4 , 0.02 mol of pyrrole and 2 mmol of azobisisobutyronitrile were used. 10 mm, and 10 minutes at 40 ° C. in a water bath, 5 hours at 60 ° C., 5 hours at 80 ° C., and 1 hour at 120 ° C. in an air bath. A methyl methacrylate polymer-polypyrrole complex of the formula (1) was obtained. Current density electrolytic polymerization Initial 0.17 mA / cm 2, was at the end 0.13 mA / cm 2.
The thickness of the polypyrrole layer was 1.5 μm. The surface resistivity was 1.2 × 10 6 Ω. Flexural strength is 120
0 kgf / cm 2, a flexural modulus of 34000kgf / cm 2. Example 9 A 3 mm-thick methyl methacrylate polymer was prepared in the same manner as in Example 1 except that the electrolytic polymerization time was changed to 3 minutes.
A polypyrrole complex was obtained. The current density is 0 at the beginning of electrolytic polymerization.
17mA / cm 2, it was at the end of 0.14mA / cm 2. The thickness of the polypyrrole layer is 1 μm, the surface resistivity is 3 × 10 5 Ω, the flexural strength is 1300 kgf / cm 2 , and the flexural modulus is 34000 kg.
f / cm 2 . Example 10 A 3 mm-thick methyl methacrylate polymer-polypyrrole composite was obtained in the same manner as in Example 1 except that the electrolytic polymerization time was changed to 10 minutes. Current density is at the beginning of electrolytic polymerization
0.17mA / cm 2, it was at the end of 0.10mA / cm 2. The thickness of the polypyrrole layer is 3 μm, and the surface resistivity is 2.5 × 10
4 Ω, flexural strength was 1300 kgf / cm 2 , and flexural modulus was 34000 kgf / cm 2 . Example 11 The procedure of Example 1 was repeated, except that 0.24 ml of water was added to the solution and the electropolymerization voltage was changed to 8 V.
A 3 mm thick methyl methacrylate polymer-polypyrrole composite was obtained. Current density electrolytic polymerization initial 0.10mA / cm 2, was at the end 0.08 mA / cm 2. The thickness of the polypyrrole layer is 1.0 μm, the surface resistivity is 8.5 × 10 4 Ω, the flexural strength is 1140 kgf / cm 2 , and the flexural modulus is 35600 kgf /
It was cm 2. Example 12 The procedure of Example 1 was repeated, except that 3.6 ml of acetonitrile was added to the solution, and the electrolytic polymerization voltage was changed to 6 V, to obtain a 3 mm-thick methyl methacrylate polymer-polypyrrole composite. Obtained. Current density is 0.10 mA at the beginning of electrolytic polymerization
/ Cm 2 and 0.08 mA / cm 2 at the end. The thickness of the polypyrrole layer is 1.0 μm, the surface resistivity is 2.9 × 10 4 Ω,
Flexural strength is 1010 kgf / cm 2 , flexural modulus is 3000
It was 0 kgf / cm 2 . Example 13 The procedure of Example 1 was repeated except that 2.3 ml of tetraethylene glycol dimethyl ether was added to the solution, and the electropolymerization voltage was changed to 6.5 V. A methyl methacrylate polymer having a thickness of 3 mm was obtained. -A polypyrrole complex was obtained. The current density is 0.10 mA / cm 2 at the beginning of electrolytic polymerization and 0.08 at the end
mA / cm 2 . The thickness of the polypyrrole layer is 1.0μ
m, surface resistivity 1.8 × 10 5 Ω, bending strength 12
70 kgf / cm 2, a flexural modulus of 33100kgf / cm 2.

【図面の簡単な説明】 【図1】本発明の方法の概略図である。 【符号の説明】 図中、(1−1)は、電解重合セルに注液を終えた状況
を示す。図中、(1−2)は、電解重合を終えた時の状
況を示す。図中、(1−3)は、生成した導電性樹脂複
合体を示す。図中1は、直流電源を示す。2は、ガスケ
ットを示す。3は、電極を示す。4は、(a) 、(b) 、
(c) 成分の混合溶液を示す。5は、セルの外枠を示す。
6は、生成した導電性高分子層を示す。7は、汎用樹脂
部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of the method of the present invention. [Description of Signs] In the figure, (1-1) shows a state in which the injection into the electrolytic polymerization cell has been completed. In the figure, (1-2) shows the situation when the electrolytic polymerization is completed. In the figure, (1-3) shows the generated conductive resin composite. In the figure, reference numeral 1 denotes a DC power supply. 2 shows a gasket. Reference numeral 3 denotes an electrode. 4 is (a), (b),
(c) Shows a mixed solution of the components. Reference numeral 5 denotes an outer frame of the cell.
Reference numeral 6 denotes the formed conductive polymer layer. 7 shows a general-purpose resin part.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B32B 27/00 - 27/42 C08G 61/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B32B 27/00-27/42 C08G 61/12

Claims (1)

(57)【特許請求の範囲】 【請求項1】 (a) 縮合系以外の重合性モノマー類に、
(b) 電解重合によって導電性高分子となるモノマー類、
及び(c) 電解質、を溶解し、該溶液を電解重合セルに注
入し、該セルに直流電圧を印加して(b) 成分を電解重合
し、続いて(a) 成分の重合を行なう導電性樹脂複合体の
製造方法。 【請求項2】 該溶液に、さらに(c) 成分の溶媒(d) を
含ませることを特徴とする〔請求項1〕記載の製造方
法。
(57) [Claims] [Claim 1] (a) The polymerizable monomers other than the condensation system include:
(b) monomers that become a conductive polymer by electrolytic polymerization,
And (c) dissolving the electrolyte, injecting the solution into an electropolymerization cell, applying a DC voltage to the cell to electropolymerize the component (b), and then polymerize the component (a). A method for producing a resin composite. 2. The method according to claim 1, wherein the solution further comprises a solvent (d) as the component (c).
JP05036553A 1992-03-10 1993-02-25 Method for producing conductive resin composite Expired - Fee Related JP3132219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05036553A JP3132219B2 (en) 1992-03-10 1993-02-25 Method for producing conductive resin composite

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5136392 1992-03-10
JP4-51363 1992-03-10
JP05036553A JP3132219B2 (en) 1992-03-10 1993-02-25 Method for producing conductive resin composite

Publications (2)

Publication Number Publication Date
JPH0649184A JPH0649184A (en) 1994-02-22
JP3132219B2 true JP3132219B2 (en) 2001-02-05

Family

ID=26375615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05036553A Expired - Fee Related JP3132219B2 (en) 1992-03-10 1993-02-25 Method for producing conductive resin composite

Country Status (1)

Country Link
JP (1) JP3132219B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298764A (en) * 2004-04-15 2005-10-27 Eamex Co Method for preparing polypyrrole film
JP2008120981A (en) * 2006-11-15 2008-05-29 Eintesla Inc Process for forming multilayered thin film
EP2182574B1 (en) * 2008-10-29 2014-03-05 Samsung Electronics Co., Ltd. Electrolyte composition and catalyst ink used to form solid electrolyte membrane

Also Published As

Publication number Publication date
JPH0649184A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
US4987042A (en) Polythiophenes, process for their preparation and their use
EP1551847B1 (en) 3,4-alkylenedioxythiophene compounds and polymers thereof
EP0099984B1 (en) Electrically conductive pyrrole copolymers and process for their preparation
EP0123827B1 (en) Method of manufacturing fine electrically conductive pyrrole polymers
JP2647705B2 (en) Conductive polymers derived from aromatic heterocyclic compounds substituted with ether-type groups, processes for their preparation, devices containing these polymers and monomers making it possible to obtain such polymers
JP2777440B2 (en) Substituted thiophenes, conductive polymers derived from these thiophenes, methods for their preparation and devices containing these polymers
Sakmeche et al. Usefulness of aqueous anionic micellar media for electrodeposition of poly-(3, 4-ethylenedioxythiophene) films on iron, mild steel and aluminium
EP0804497B1 (en) Soluble, electroconductive polypyrrole and method for preparing the same
Roncali et al. Enhancement of the mean conjugation length in conducting polythiophenes
DE10004725A1 (en) Process for the preparation of water-soluble pi-conjugated polymers
EP0098988A1 (en) Electrically conductive copolymers of pyrroles, and process for their preparation
JP3234638B2 (en) Fluorinated thiophenes, polymers derived from these thiophenes and conductive polymers containing these polymers
JP3132219B2 (en) Method for producing conductive resin composite
US5281327A (en) Method of producing conductive polymer composites
DE3720321A1 (en) POLYMERS CONTAINING UNITS DERIVABLE FROM AMINO FLAVORS
US5676814A (en) Method of producing conductive polymer composites
Roncali et al. Electroactive conducting composites from poly (3-methylthiophene) and poly (methylmethacrylate)
DE3510031A1 (en) METHOD FOR PRODUCING ELECTRICALLY CONDUCTIVE FOAMS
DE3938094A1 (en) Prodn. of high conductivity, high strength polymers - by (co)polymerising 5-membered N-,O-or S-heterocyclic(s) or aniline(s) in presence of polymeric sulphonic acids or salts
US4804568A (en) Electromagnetic shielding material
JPH0985876A (en) Electromagnetic wave shielding material and its manufacture
WO2002010251A1 (en) Method for making polypyrrole
DE3246319A1 (en) Copolymers of pyrroles with quadratic acid, process for their preparation, and their use
DE3338904A1 (en) Amino aromatic copolymers of pyrroles, process for preparing them, and their use
JP2000003619A (en) Magnesium-ion conductive solid electrolyte and solid electrolyte battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees