JP3130758B2 - Cloud point measurement method and cloud point meter - Google Patents

Cloud point measurement method and cloud point meter

Info

Publication number
JP3130758B2
JP3130758B2 JP07068979A JP6897995A JP3130758B2 JP 3130758 B2 JP3130758 B2 JP 3130758B2 JP 07068979 A JP07068979 A JP 07068979A JP 6897995 A JP6897995 A JP 6897995A JP 3130758 B2 JP3130758 B2 JP 3130758B2
Authority
JP
Japan
Prior art keywords
cloud point
light
incident
path
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07068979A
Other languages
Japanese (ja)
Other versions
JPH08240544A (en
Inventor
雅之 森
秀一 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP07068979A priority Critical patent/JP3130758B2/en
Publication of JPH08240544A publication Critical patent/JPH08240544A/en
Application granted granted Critical
Publication of JP3130758B2 publication Critical patent/JP3130758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、曇り点測定方法並びに
そのために有用な曇り点計に関するものであり、特には
石油業界で軽油などの石油製品及びその他の化学工業液
体製品における、固形分の析出あるいは分離、水分の除
去その他の状態変化による曇りを測定するための曇り点
測定方法および曇り点計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cloud point measuring method and a cloud point meter useful therefor, and more particularly to a method for measuring the solid content of petroleum products such as light oil and other chemical industrial liquid products in the petroleum industry. The present invention relates to a cloud point measuring method and a cloud point meter for measuring clouding due to precipitation or separation, removal of water and other state changes.

【0002】[0002]

【従来の技術】石油精製工程における製品の一つである
軽油中にはパラフィンが含有されている。パラフィン分
は室温付近で固体であるために軽油中のパラフィン含有
率が上昇すると、冬場の低温条件で軽油の流動性が低下
する。こうした軽油、潤滑油のような石油製品の試料を
規定の方法で冷却していたとき、パラフィンが析出また
は分離して試料容器全体が曇り始める点を曇り点とい
う。可塑剤や界面活性剤においても同様の現象が存在す
る。曇り点測定は冬場の石油製品規格として重要であ
る。この他にも、多くの化学製品において冷却に際して
固体分の析出の測定を必要とする状況が存在する。
2. Description of the Related Art Paraffin is contained in light oil, which is one of products in the oil refining process. Since the paraffin content is solid at around room temperature, when the paraffin content in the gas oil increases, the fluidity of the gas oil decreases under low temperature conditions in winter. When a sample of such a petroleum product such as light oil or lubricating oil is cooled by a prescribed method, a point at which paraffin precipitates or separates and the entire sample container starts to become cloudy is called a cloud point. Similar phenomena exist for plasticizers and surfactants. Cloud point measurements are important as a winter petroleum product standard. In addition, there are situations where many chemical products require measurement of solids precipitation upon cooling.

【0003】JIS K 2269は原油および石油製品の流動点
並びに石油製品曇り点試験方法を規定している。その曇
り点試験方法の概要に従えば、「試験管にとった45mlの
試料を冷却浴の外管にいれて、規定の方法で冷却する。
試料の温度が1℃下がるごとに試験管を取り出し、試料
底部に曇りが生じたときの温度を曇り点とする。」と記
載されている。さらに、備考として、「自動曇り点試験
器を用いてもよい。ただし、本試験方法によって得られ
た結果との間に有意差のないことをJIS Z 8402によって
確認してから用いる。」と記載されている。試験装置と
して、中央に試料用温度計を垂直にコルク栓により固定
した試験管と該試験管を収容するコルクないしまたはフ
ェルト製の底部円板を備える外管及び冷却溶液用温度計
を装備する冷却浴が用意される。試験管はその周囲に密
着した環状ガスケットを介して外管に出し入れされる。
試験管の周囲に密着した環状ガスケットは外管にゆるく
当接して試験管を外管内で垂直に支持する。試験の手順
は次の通りとされる: (1)試料を予期曇り点より14℃以上高い温度に保つ。 (2)試料を試験管の標線(中央)の高さまで注ぐ。 (3)温度計を付けたコルク栓で試験管を密栓する。こ
のとき、温度計は試験管の中央で直立し、その先端は試
験管の底に触れるようにする。 (4)環状ガスケットを付けた試験管を底部円板を底に
入れた外管に入れる。 (5)試験管を入れた外管を第一冷却浴にいれ、外管が
冷却溶液から25mm以上に出ないように垂直に支持す
る。 (6)試料温度が予期曇り点付近に達したら、1℃下が
るごとに試験管を速やかにしかも試料を動揺させないよ
うに外管からとりだし、試料の底部に曇りが生じたかど
うかを調べ、外管にもどす。 (7)この操作を繰り返して、試料の底部に明らかな曇
りやかすみが最初に認められた時の温度計の読みを記録
する。(試料温度が10℃に達しても曇りが認められない
場合は、試験管をもっと低い温度の第2冷却浴の外管に
移し、さらに試料温度が-7℃に達しても曇りが認められ
ない場合は、試験管をもっと低い温度の第3冷却浴の外
管に移す。) このように、手作業により試験管を注意深く外管に入れ
たりそこから出したりする面倒な操作を何回も反復する
ことを必要とする。米国においても、同様の規定があ
る。
[0003] JIS K 2269 specifies a pour point for crude oil and petroleum products and a cloud point test method for petroleum products. According to the outline of the cloud point test method, "a 45 ml sample taken in a test tube is put into an outer tube of a cooling bath and cooled by a specified method.
Each time the temperature of the sample decreases by 1 ° C., the test tube is taken out, and the temperature at which the sample bottom becomes cloudy is defined as the cloud point. It is described. Furthermore, as a remark, it states that "An automatic cloud point tester may be used. However, it is used after confirming that there is no significant difference from the results obtained by this test method according to JIS Z8402." Have been. As a test device, a cooling tube equipped with a test tube in which a sample thermometer is vertically fixed by a cork stopper, an outer tube having a bottom disk made of cork or felt for accommodating the test tube, and a thermometer for cooling solution A bath is provided. The test tube is moved into and out of the outer tube via an annular gasket closely attached to the test tube.
An annular gasket closely attached to the periphery of the test tube loosely abuts the outer tube to vertically support the test tube in the outer tube. The test procedure is as follows: (1) Keep the sample at least 14 ° C above the expected cloud point. (2) Pour the sample up to the height of the marked line (center) of the test tube. (3) Seal the test tube with a cork stopper equipped with a thermometer. At this time, the thermometer stands upright at the center of the test tube, and its tip touches the bottom of the test tube. (4) Place the test tube with the annular gasket in the outer tube with the bottom disk at the bottom. (5) Place the outer tube containing the test tube in the first cooling bath, and vertically support the outer tube so that the outer tube does not come out of the cooling solution by more than 25 mm. (6) When the sample temperature reaches near the expected cloud point, remove the test tube from the outer tube promptly every 1 ° C and not to shake the sample, and check whether the bottom of the sample has fogged. Return. (7) Repeat this operation and record the thermometer reading when the first clear cloud or haze is found on the bottom of the sample. (If no fogging is observed even when the sample temperature reaches 10 ° C, transfer the test tube to the outer tube of the lower temperature second cooling bath. Even if the sample temperature reaches -7 ° C, no fogging is observed. If not, transfer the test tube to the outer tube of the lower temperature third cooling bath.) Thus, the laborious operation of carefully inserting and removing the test tube from the outer tube by hand is repeated many times. It needs to be repeated. Similar regulations exist in the United States.

【0004】自動曇り点試験器としては、石油製品の場
合、約50ccのサンプルを納めた容器を冷却槽内に置いて
2℃/分の冷却速度で冷却し、パラフィンの析出状態を光
吸収法あるいは光散乱法で検出している。この自動曇り
点試験方法は、曇り点測定の原理そのものを追従する方
法であるが、サンプル採取容器容量が大きいため被検出
体の温度均一性が必ずしも保証されず、また必要とされ
る室温から-20℃への冷却に時間がかかるため測定時間
が長いことに加えて、サンプルをいちいち大きな容器内
に採取しなければならず、面倒で作業時間および手間の
かかるものであった。ある程度の析出量をもって判定す
る光吸収法あるいは光散乱法での検出は正確性を欠い
た。一回の測定に約60分を要した。本発明の目的は、従
来より簡便にそして迅速に石油製品の曇り点を正確に測
定する新規な技術を開発することである。
As an automatic cloud point tester, in the case of petroleum products, a container containing a sample of about 50 cc is placed in a cooling bath.
After cooling at a cooling rate of 2 ° C / min, the precipitation state of paraffin is detected by a light absorption method or a light scattering method. This automatic cloud point test method is a method that follows the principle of cloud point measurement itself, but the temperature uniformity of the object to be detected is not necessarily guaranteed due to the large capacity of the sample collection container, and the required room temperature- It takes a long time to cool down to 20 ° C., and in addition to a long measurement time, a sample has to be collected in a large container, which is troublesome, requires a long working time, and is troublesome. Detection by the light absorption method or the light scattering method, which is determined based on a certain amount of precipitation, lacked accuracy. Each measurement took about 60 minutes. SUMMARY OF THE INVENTION It is an object of the present invention to develop a new technique for more accurately and conveniently measuring the cloud point of petroleum products more easily and quickly.

【0005】[0005]

【発明が解決しようとする課題】光を利用した精度の高
い微粒子検出法として、レーザ光の回折や散乱現象を利
用した方法がある。この方法は、例えば、半導体製造工
程で使用される超純水や高純度薬品中の不純物粒子計
測、粉体の粒度分布計測等で採用されている。測定対象
となる粒子に単色、平行ビームのレーザ光を照射する
と、空間的に回折/散乱光の光強度パターンが生じる。
この光強度パターンは、粒子の大きさに依存して変化す
る。例えば光散乱を例にとると、粒子径が入射レーザ光
の波長より大きい場合、散乱光は前方成分が支配的にな
り、粒子から発せられる回折/散乱光は前方の小さい範
囲に集中する(前方散乱)。一方、粒子径がレーザ波長
より小さくなってくると、前方散乱以外に側方、後方散
乱が起きるため、粒子から発せられる回折/散乱光は広
がりをもつ。したがって、測定対象中に光を入射し、出
射光の光強度分布パターンをみることで、微粒子の存在
やその粒子径を知ることができる。
As a highly accurate particle detection method utilizing light, there is a method utilizing diffraction or scattering of laser light. This method is employed, for example, for measuring impurity particles in ultrapure water or high-purity chemical used in the semiconductor manufacturing process, measuring the particle size distribution of powder, and the like. When a particle to be measured is irradiated with a monochromatic, parallel beam laser beam, a light intensity pattern of diffracted / scattered light is generated spatially.
This light intensity pattern changes depending on the size of the particles. For example, taking light scattering as an example, when the particle diameter is larger than the wavelength of the incident laser light, the forward component of the scattered light becomes dominant, and the diffracted / scattered light emitted from the particles concentrates in a small area in front (forward). scattering). On the other hand, when the particle diameter becomes smaller than the laser wavelength, lateral and backward scattering occurs in addition to forward scattering, so that the diffracted / scattered light emitted from the particles spreads. Therefore, the existence of the fine particles and the particle diameter thereof can be known by inputting light into the measurement target and observing the light intensity distribution pattern of the emitted light.

【0006】発明者は、透明なサンプルセルに試料油を
入れてこれに可視レーザ光を入射しつつ、サンプルセル
全体を冷却槽中にて曇り点付近まで冷却してみた。その
結果曇り点において、まず、液体中に発生した析出微粒
子による光散乱が生じ、次に、セルの壁面等に析出物の
付着が起こり、その後これが厚く堆積していき、レーザ
光の透過を妨げるまでになった。また、セルの冷却速度
がはやくなっても、この析出微粒子の発生は一定の温度
において起こることがわかった。故に、初期の微粒子の
出現を検知することで曇り点の測定を精密にできること
がわかった。
The inventor tried to put the sample oil in a transparent sample cell and cool the entire sample cell to near the cloud point in a cooling bath while irradiating the sample oil with visible laser light. As a result, at the cloud point, first, light scattering occurs due to the precipitated fine particles generated in the liquid, and then deposits occur on the cell wall and the like, and thereafter, the deposits are thickly deposited, which impedes the transmission of laser light. Up to. It was also found that even when the cooling rate of the cell was increased, the generation of the precipitated fine particles occurred at a constant temperature. Therefore, it was found that the cloud point can be accurately measured by detecting the appearance of the fine particles at an early stage.

【0007】従来のレーザ回折/散乱法に用いられてい
る測定装置は、光強度の強いレーザ光源、レーザ光を平
行ビームにするための光学レンズ(コリメータ)、粒子
群を含む液体等のサンプルを収納するための透明なサン
プルセル、サンプルセルからの出射光の検出を行なうた
めの検出光学系等の部分からなる比較的大型のオフライ
ン計が主に使用されている。このような装置において
は、各種光学系の精密な光軸合わせが必要となる。ま
た、光源からの光はサンプルセルに入射し、そのサンプ
ルセルからの出射光を検出することから、十分な入、出
射光強度の確保が精度良い測定を実現するため重要であ
り、例えば、レーザ光を細く絞るための光学系、サンプ
ルセル/試料界面での散乱防止策等が必要となってく
る。また、石油製品の曇り点測定においては、試料油中
に析出微粒子を生じる温度まで、サンプルセル全体を精
密に温度制御しつつ冷却するための機構を付与する必要
がある。
The measuring apparatus used in the conventional laser diffraction / scattering method includes a laser light source having a high light intensity, an optical lens (collimator) for converting a laser beam into a parallel beam, and a sample such as a liquid containing particles. A relatively large off-line meter mainly including a transparent sample cell for storage, a detection optical system for detecting light emitted from the sample cell, and the like is mainly used. Such an apparatus requires precise optical axis alignment of various optical systems. In addition, since the light from the light source enters the sample cell and detects the light emitted from the sample cell, it is important to secure sufficient input and output light intensities to achieve accurate measurement. An optical system for narrowing the light, measures to prevent scattering at the sample cell / sample interface, and the like are required. In the cloud point measurement of petroleum products, it is necessary to provide a mechanism for cooling the entire sample cell while precisely controlling the temperature to a temperature at which fine particles are precipitated in the sample oil.

【0008】本発明者等は、上記のような従来のオフラ
イン測定機のもつ機能をより小型化し、かつ高精度の温
度制御を実現でき、オフラインのみならずオンラインで
も使用できるセンサヘッドを開発すべく検討を重ねた。
その結果、光ファイバを接続した導波路型センサと、冷
却機構または加熱機構の組み合わせがこの目的に最適と
の結論に達し、試作の結果、良好な動作性能を確認し
た。
The present inventors have developed a sensor head which can further reduce the functions of the above-mentioned conventional offline measuring instrument, realize high-precision temperature control, and can be used not only offline but also online. The examination was repeated.
As a result, it was concluded that the combination of the waveguide type sensor to which the optical fiber was connected and the cooling mechanism or the heating mechanism was optimal for this purpose. As a result of the trial production, good operation performance was confirmed.

【0009】すなわち、本発明は、測定対象試料へ入射
路から光を入射しながら測定対象試料を所定の温度範囲
で冷却または加熱し、測定対象試料中の析出物の析出に
よる入射光の前方散乱光を出射路から検知することによ
り曇り点を測定し、入射路と出射路が基板上の導波構造
の導波路であることを特徴とする曇り点測定方法であ
り、測定対象試料と接液する検出エリアに光を入射する
入射路、及び検出エリアからの前方散乱光を検出するた
めの複数の出射路を具備し、入射路と出射路が基板上の
導波構造の導波路であり、その導波路に当接して冷却手
段または加熱手段を備えていることを特徴とする曇り点
計であり、この検出エリアが凹形状であることを特徴と
する曇り点計であって、この冷却手段または加熱手段が
ヒートシンク上に載置されたペルチェ素子、循環冷媒に
よる熱交換器、あるいはクライオスタットであることを
特徴とする曇り点計を提供する。
That is, according to the present invention, a sample to be measured is cooled or heated in a predetermined temperature range while light is incident on the sample to be measured, and forward scattering of incident light due to precipitation of a precipitate in the sample to be measured. A cloud point is measured by detecting light from an exit path, and the entrance path and the exit path are waveguides having a waveguide structure on a substrate. Includes a plurality of exit paths for detecting the forward scattered light from the detection area, and an entrance path for entering light into the detection area, wherein the entrance path and the exit path are waveguides having a waveguide structure on the substrate, A cloud point meter comprising a cooling means or a heating means in contact with the waveguide, wherein the detection area is concave. Or the heating means is placed on the heat sink By Peltier elements, to provide a cloud point meter, wherein the heat exchanger by circulating a refrigerant, or a cryostat.

【0010】この曇り点計は、基板上において交差する
入射路6および複数の出射路7、7'、7"からなる導波構
造の導波路を備えており、試料との接液部は、入射路お
よび出射路の交差点を含んだ領域を凹形状に形成されて
いる(図1)。この曇り点計においては、検出面上の凹形
状部分が検出エリアとなる。即ち、入射光ファイバより
入射し入射路を伝搬してきた入射光は凹形状部分におけ
る入射路端面から該検出エリアへある広がりを持って入
射する。入射光は、曇り点以上では、試料中を透過して
しまう(図1(a))が、試料を冷却していき曇り点に達
し、該検出エリア内に析出微粒子が発生すると、入射光
は光散乱等により出射路に再び入射し検知される(図1
(b))。例えば、光散乱の場合、前方散乱光成分は入射
路と対面方向に配置した出射路に入射し、出射光ファイ
バから検出される。同様にして、側方散乱光成分は入射
路に対して側方に配置した出射路、後方散乱成分は入射
路と同じ側に位置する出射路からそれぞれ検出されるこ
とになる。この出射光を検知することにより、析出微粒
子の存在、つまり曇り点を検出し、かつ、散乱光の前
方、側方、後方成分の光強度分布も測定できる。この時
点の温度は冷却または加熱手段とセンサ基板との接合部
に取り付けた測温体から判読する。
This cloud point meter has a waveguide having a waveguide structure composed of an incident path 6 and a plurality of output paths 7, 7 ', 7 "that intersect on a substrate. The region including the intersection of the entrance path and the exit path is formed in a concave shape (FIG. 1) .In this cloud point meter, the concave portion on the detection surface becomes a detection area. Incident light that has entered and propagated through the incident path enters the detection area with a certain spread from the end face of the incident path in the concave portion.The incident light passes through the sample above the cloud point (FIG. 1). (a)), the sample is cooled and reaches the cloud point, and when precipitated fine particles are generated in the detection area, the incident light is again incident on the exit path by light scattering or the like and is detected (FIG. 1).
(b)). For example, in the case of light scattering, a forward scattered light component is incident on an output path arranged in a direction opposite to the incident path, and is detected from the output optical fiber. Similarly, the side scattered light component is detected from the outgoing path located on the side of the incident path, and the backscattered component is detected from the outgoing path located on the same side as the incident path. By detecting the emitted light, the presence of the precipitated fine particles, that is, the cloud point can be detected, and the light intensity distribution of the front, side, and rear components of the scattered light can be measured. The temperature at this point is read from a temperature measuring element attached to the junction between the cooling or heating means and the sensor substrate.

【0011】図2は、本発明に従う曇り点計の具体例の
分解透視図である。曇り点計1は、導波路型センサ2
と、それと接触して配置した冷却または加熱手段3とか
ら構成される(ここでは明示のため分離して示す)。導
波路型センサ2は測定の対象となる軽油等の石油製品そ
の他の化学製品Mに対する凹状検出面(接液面)4を有
している。そして基板5上に、入射路6と複数の出射路
7、7'、7"と、凹状検出面4に形成される光入射端面6a
と光出射端面7aとを形成した導波層9を具備している。
複数の出射路は、入射光の析出微粒子による前方散乱光
成分を検出する入射路6と対面方向に配置した出射路
7"、側方散乱光成分を検出する入射路6に対して側方に
配置した出射路7'、後方散乱成分を検出する入射路6と
同じ側に位置する出射路7からなる。
FIG. 2 is an exploded perspective view of a specific example of the cloud point meter according to the present invention. Cloud point meter 1 is a waveguide type sensor 2
And cooling or heating means 3 arranged in contact therewith (here shown separately for clarity). The waveguide sensor 2 has a concave detection surface (liquid contact surface) 4 for petroleum products such as light oil and other chemical products M to be measured. Then, on the substrate 5, an incident path 6, a plurality of output paths 7, 7 ′, and 7 ″, and a light incident end face 6 a formed on the concave detection surface 4.
And a light-emitting end face 7a.
The plurality of outgoing paths are disposed in a direction opposite to the incoming path 6 for detecting the forward scattered light component of the incident light due to the precipitated fine particles.
7 ", an emission path 7 'arranged laterally to the incidence path 6 for detecting the side scattered light component, and an emission path 7 located on the same side as the incidence path 6 for detecting the back scattered component.

【0012】この入射路6の入口には入射路6に光を入
射するための入射光ファイバ10及びそれぞれの出射路出
口にはそれぞれの出射路からの出射光を受け取るための
出射光ファイバ11、11'、11"が取り付けられている。入
射光ファイバ10及び出射光ファイバ11、11'、11"はそれ
ぞれの光ファイバ接続ベース12及び光ファイバアレイ接
続ベース12’を介して導波層9における入射路6及び出
射路7、7'、7"にそれぞれ接続される。入射光ファイバ
10は、例えば半導体レーザ光源やHe-Neレーザや半導体
レーザのようなレーザ光源に接続される。出射光ファイ
バ11、11'、11"は光パワーメータなどの適宜の光検出手
段に接続される。
At the entrance of the entrance path 6, an entrance optical fiber 10 for entering light into the entrance path 6, and at the exit of each exit path, an exit optical fiber 11, for receiving exit light from each exit path, 11 ', 11 "are attached. The input optical fiber 10 and the output optical fiber 11, 11', 11" are connected to the waveguide layer 9 via the respective optical fiber connection base 12 and the optical fiber array connection base 12 '. They are connected to the entrance path 6 and the exit paths 7, 7 ', 7 ", respectively. Incident optical fiber
Reference numeral 10 is connected to a laser light source such as a semiconductor laser light source, a He-Ne laser, or a semiconductor laser. The outgoing optical fibers 11, 11 ', 11 "are connected to appropriate light detecting means such as an optical power meter.

【0013】こうした導波路8は、基板の上に光ファイ
バのコアやクラッドに相当する薄膜を形成して光を導波
させるものであり、(a)リッジ型、(b)埋め込み型、及び
(c)裝荷型等の周知の型式で作製することができる。導
波路の作製には、エピタキシャル成長による方法、CVD
やPVDのような分子、粒子堆積による方法、イオンドー
プによる方法などを用いることができる。本発明におい
ては、SiO2薄膜にGeO2をドープする方法が実用的であ
る。光ファイバ(アレイ)の接続ベース12、12’は、光
ファイバ用の溝を有する基板上に光ファイバを挿通して
熱硬化型や紫外線硬化型樹脂のような接着剤にて貼り付
けることにより形成される。
The waveguide 8 forms a thin film corresponding to a core or a clad of an optical fiber on a substrate and guides light, and includes (a) a ridge type, (b) a buried type, and
(c) It can be manufactured by a known type such as a loading type. For the production of waveguides, a method by epitaxial growth, CVD
And a method such as PVD, molecules, particle deposition, and ion doping. In the present invention, a method of doping the SiO 2 thin film with GeO 2 is practical. Optical fiber (array) connection bases 12 and 12 'are formed by inserting optical fibers into a substrate having grooves for optical fibers and attaching them with an adhesive such as a thermosetting resin or an ultraviolet curing resin. Is done.

【0014】冷却手段または加熱手段3は測定時試料及
び導波路型センサを曇り点の検出ができる所定の温度範
囲で冷却または加熱するためのもので導波路型センサに
接触して取り付けられる。冷却手段または加熱手段3
は、例えばヒートシンク上に載置されたペルチェ素子、
循環冷媒による熱交換器、あるいはクライオスタット等
であり、好ましくは、ペルチェ素子として知られるもの
である。これは、II−VI族化合物半導体、即ちBi2Te3
Sb2Te3、Bi2Se3及びこれらの固溶体で、これに不純物を
添加したp型及びn型半導体を接続して構成され、冷却
部と放熱部とを上下に備えているものである。こうした
冷却手段または加熱手段は、クリーニングユニットある
いはサーモモジュールの商品名で市販されている。図2
ではペルチェ素子13を銅製のヒートシンク14上に配置し
たものとして示してある。半導体への通電のための電極
ケーブル17が接続されている。こうした冷却手段または
加熱手段は、可動部がなく、極めて小型であり簡単な構
成で局部冷却が行なえる点で本発明目的に最適である。
使用する導波路構造とペルチェ素子のような小型の局部
的冷却手段または加熱手段との組み合わせが装置の熱容
量を低減し、伝熱の良好な基板を用いることにより温度
制御・計測制御を高めることができる。例えば、ペルチ
ェ素子を2段にカスケード状に組み立てた構造では本発
明に必要とされる30〜-15℃範囲の温度制御を行なうこ
とができる。冷却手段または加熱手段の上面は導波路型
センサと接触して置かれ、その下面は銅板のようなヒー
トシンク上に載置される。但し、導波路型センサ全体を
その他の手段で冷却する冷却手段または加熱手段、例え
ば循環冷媒による熱交換器や圧縮気体を開放する際に生
じる断熱膨張を利用したクライオスタットなどを使用あ
るいは併用することもできる。なお、ペルチェ素子13と
センサ基板5との接合部に熱電対16のような測温体が取
り付けられている。
The cooling means or heating means 3 is for cooling or heating the sample and the waveguide type sensor at the time of measurement within a predetermined temperature range in which a cloud point can be detected, and is attached in contact with the waveguide type sensor. Cooling means or heating means 3
Is, for example, a Peltier element placed on a heat sink,
It is a heat exchanger using a circulating refrigerant, a cryostat, or the like, and is preferably one known as a Peltier element. This is a II-VI compound semiconductor, namely Bi 2 Te 3 ,
It is composed of Sb 2 Te 3 , Bi 2 Se 3 and their solid solutions, connected to p-type and n-type semiconductors to which impurities are added, and is provided with a cooling unit and a heat radiating unit above and below. Such cooling means or heating means are commercially available under the trade name cleaning unit or thermomodule. FIG.
Here, the Peltier element 13 is shown as being arranged on a copper heat sink 14. An electrode cable 17 for supplying electricity to the semiconductor is connected. Such a cooling means or heating means is optimal for the purpose of the present invention in that it has no moving parts, is extremely small, and can perform local cooling with a simple configuration.
The combination of the waveguide structure used and a small local cooling or heating means such as a Peltier element can reduce the heat capacity of the device and increase the temperature and measurement control by using a substrate with good heat transfer. it can. For example, in a structure in which Peltier elements are assembled in two stages in a cascade, it is possible to control the temperature in the range of 30 to -15 ° C. required for the present invention. The upper surface of the cooling means or the heating means is placed in contact with the waveguide type sensor, and its lower surface is mounted on a heat sink such as a copper plate. However, it is also possible to use or use a cooling means or a heating means for cooling the entire waveguide type sensor by other means, for example, a heat exchanger using a circulating refrigerant or a cryostat utilizing adiabatic expansion generated when releasing a compressed gas. it can. A thermometer such as a thermocouple 16 is attached to a joint between the Peltier element 13 and the sensor substrate 5.

【0015】接液部の凹形状は、V型のように汚れが溜
まりやすい形状よりも、緩やかな曲線で形成するほうが
良い。図3にこの部分を円の一部にて形成する場合を説
明する。入射、出射導波路の交差点をO、凹形状をなす
円の中心をO'、半径をRとし、OとO'のずれをaとい
うパラメータでそれぞれ表す。接液面の凹形状をなす円
の半径Rは、加工のし易い大きさとして0.5〜数ミリ程
度である。入射路の入射端形状は実際は円弧の一部であ
るが、実際導波路コア径が10μm程度であるのに対し、
接液面の凹形状をなす円の半径Rは1〜数ミリ程度と大
きいので、この入射端形状をその部分における凹形状を
なす円の接線で近似しても構わない。入射路の入射端へ
θ1の角度で入射した光は、θ2なる角度で被測定対象の
液体中に屈折して入射する。導波路コアの屈折率を
1、液体屈折率をn2とするとθ2は、n1×sinθ1=n
2×sinθ2で決まる。この時、θ2>θ1であれば屈折光
は入り、出射導波路の交差点Oよりも内側に進む。この
ように入射側導波路からの光が液中に入る際、屈折によ
りその進路がよりセンサヘッド側(つまり凹形状部分の
内側)へと向かうことにより、単にフラットな形状の端
面からセンサヘッド前面に光を出す場合と比べ、検知エ
リアが出射導波路に近づくから、より散乱光が検出しや
すい状態になる。また、この微小部分の温度のみ制御す
ればよく、温度制御性も向上する。注意すべき点として
は、θ1がθc=arcsin(n2/n1)で求められる臨界角θc
よりも大きいと、入射路の入射端にて全反射が生じ光が
被測定対象の液体中に入らなくなってしまうことであ
る。そのため、曇り点付近における液体の屈折率範囲に
おいて全反射が起きないような、導波路屈折率、a/R
の値にしておく必要がある。なお、導波路の設計に当た
っては、隣接する出射路どうしが互いにモード結合しな
いよう、それぞれの出射端の距離は10μm以上保つよう
に配置する。
The concave shape of the liquid contact portion is preferably formed with a gentle curve rather than a shape in which dirt easily accumulates, such as a V-shape. FIG. 3 illustrates a case where this portion is formed as a part of a circle. The intersection of the input and output waveguides is represented by O, the center of the concave circle is represented by O ', the radius is represented by R, and the deviation between O and O' is represented by a parameter. The radius R of the concave circle of the liquid contact surface is about 0.5 to several millimeters as a size that can be easily processed. The incident end shape of the incident path is actually a part of an arc, whereas the actual waveguide core diameter is about 10 μm,
Since the radius R of the circle forming the concave surface of the liquid contact surface is as large as about 1 to several millimeters, the shape of the incident end may be approximated by the tangent of the concave circle at that portion. Light incident at theta 1 angle to the entrance end of the entrance road is incident is refracted into the object to be measured liquid theta 2 becomes an angle. Assuming that the refractive index of the waveguide core is n 1 and the liquid refractive index is n 2 , θ 2 is n 1 × sin θ 1 = n
It is determined by 2 × sin θ 2 . At this time, if θ 2 > θ 1 , the refracted light enters and travels inside the intersection O of the output waveguide. As described above, when the light from the incident side waveguide enters the liquid, the light travels further toward the sensor head side (in other words, inside the concave portion) due to refraction, so that the sensor head front surface simply moves from the flat end face. As compared with the case where the light is emitted, the detection area is closer to the emission waveguide, so that the scattered light is more easily detected. In addition, only the temperature of the minute portion needs to be controlled, and the temperature controllability is also improved. It should be noted that θ 1 is the critical angle θ c obtained by θ c = arcsin (n 2 / n 1 )
If it is larger than this, total reflection occurs at the incident end of the incident path, and light does not enter the liquid to be measured. Therefore, the waveguide refractive index, a / R, is such that total reflection does not occur in the liquid refractive index range near the cloud point.
Must be set to In designing the waveguides, the distances between the emission ends are set to be 10 μm or more so that adjacent emission paths are not mode-coupled to each other.

【0016】こうして、析出微粒子の発生が起こった時
点を2値(オンーオフ)方式で示す曇り点計が得られ
る。曇り点計を測定すべき石油その他の化学製品に接触
状態としておき、温度制御を迅速に行なうことにより、
連続的に各温度サイクル毎に曇り点の検出が可能であ
る。こうして小型で且つ高速応答が可能な曇り点計が得
られる。従来の方法では1回の測定に約60分を要してい
たのが本発明によるセンサの定常状態では約10秒と非常
に短縮され、極めて効率的な測定を可能ならしめる。ま
た軽油のみならず、その他の石油製品や多くの化学製品
についても本発明を利用した同様の測定を実施すること
ができるし、液体中の微粒子計測や混濁液体の濁度測定
装置としても利用できる。なお、使用する光源として
は、通常出力(数ミリワット以上)の可視〜近赤外レー
ザであれば、散乱光を問題なく検知できる。
In this way, a cloud point meter is obtained which indicates the point at which the generation of precipitated fine particles occurs in a binary (on-off) system. By keeping the cloud point meter in contact with the petroleum and other chemicals to be measured and quickly controlling the temperature,
The cloud point can be detected continuously for each temperature cycle. Thus, a cloud point meter that is small and capable of high-speed response is obtained. In the conventional method, about 60 minutes were required for one measurement, but in the steady state of the sensor according to the present invention, it is greatly reduced to about 10 seconds, which enables extremely efficient measurement. In addition to light oil, similar measurements using the present invention can be performed for other petroleum products and many chemical products, and can also be used as a device for measuring fine particles in a liquid or a turbidity measuring device for a turbid liquid. . As a light source to be used, a visible to near-infrared laser having a normal output (several milliwatts or more) can detect scattered light without any problem.

【0017】[0017]

【実施例】厚さ1mmのシリコン基板上にクラッドとして
厚さ20μmのSiO2(屈折率:1.458)、そしてコアとして
厚さ6μmのSiO2・GeO2(屈折率:1.51)をCVD法により
成膜させて導波路を構成した。フォトリソグラフィー及
び反応性イオンエッチングによりコアのパターン形成を
行ない、厚み6μm、幅6μmの導波路パターンを作製し
た。この上に再度CVD法によりクラッド層(厚さ20μm、
屈折率1.458)を形成し、埋め込み型導波路とした。導
波路は、入射路とし入射角80°のものを1本設けた。出
射路は、入射路と同じ側に入射角70°のものを1本設け
るとともに、接液面と直角方向に1本、凹状形状部分を
はさんで入射路の対面に、低角側から72°、75°、78
°、81°、84°、と3°おきに5本配置した。これら
は、それぞれ後方、測方、前方から散乱光を入れるため
のものであり、図3のように直線にて中心Oで交差する
ようなパターンとなっている。
EXAMPLE A 20 μm thick SiO 2 (refractive index: 1.458) as a clad and a 6 μm thick SiO 2 .GeO 2 (refractive index: 1.51) as a core were formed on a 1 mm thick silicon substrate by CVD. The film was formed to form a waveguide. A core pattern was formed by photolithography and reactive ion etching to produce a waveguide pattern having a thickness of 6 μm and a width of 6 μm. A cladding layer (thickness: 20 μm,
A refractive index of 1.458) was formed to obtain a buried waveguide. As the waveguide, one waveguide having an incident angle of 80 ° was provided as an incident path. One exit path is provided on the same side as the entrance path, one with an incident angle of 70 °, one in the direction perpendicular to the liquid contact surface, and across the concave section, 72 °, 75 °, 78
°, 81 °, 84 °, and 5 at 3 ° intervals. These are for entering scattered light from the rear, the measurement, and the front, respectively, and have a pattern of intersecting at the center O with a straight line as shown in FIG.

【0018】導波路形成した基板に紫外線硬化型樹脂で
パイレックス板ガラスを貼り付け、補強板とした。この
基板の前後(接液面と光ファイバとの接続面)をダイシ
ングマシーンにより切断した。この時、接液部とする面
については、入射路と複数の出射路の交差点O上を含む
ように切断を行なった。接液面については、入射、出射
導波路の交差点Oと凹形状をなす円の中心O’のずれを
a、凹形状をなす円の半径をRとすると、a/R=0.75
の凹形状の接液部を形成した。この場合の入射路の入射
端への入射角θ1は47.6°となり、この時の全反射臨界
角は、被測定対象の屈折率が1.50で83°、1.45で74°、
1.40で68°となり、いずれも入射路の入射端への入射角
より大きくなり、入射端において全反射することなく光
は、屈折光として液体中に入る。今回光源としては、波
長677nmの赤色レーザを使用した。これは光導波の様子
が肉眼にて観察しやすく、センサヘッドと光ファイバの
接続が容易になること、曇り点における散乱光の存在が
観察しやすい等の理由からであり、光パワーメータ等を
使用すれば近赤外レーザでも構わない。
Pyrex sheet glass was adhered to the substrate on which the waveguide was formed with an ultraviolet-curing resin to form a reinforcing plate. The front and rear of this substrate (the connection surface between the liquid contact surface and the optical fiber) were cut by a dicing machine. At this time, the surface to be in contact with the liquid was cut so as to include the intersection O between the entrance path and the plurality of exit paths. As for the liquid contact surface, a / R = 0.75, where a is a shift between the intersection O of the incident and output waveguides and the center O ′ of the concave circle and R is the radius of the concave circle.
A liquid contact portion having a concave shape was formed. In this case, the incident angle θ 1 to the incident end of the incident path is 47.6 °, and the critical angle for total reflection at this time is 83 ° at a refractive index of 1.50, 74 ° at 1.45, and
At 1.40, the angle is 68 °, which is larger than the incident angle at the incident end of the incident path, and the light enters the liquid as refracted light without being totally reflected at the incident end. This time, a red laser with a wavelength of 677 nm was used as a light source. This is because it is easy to observe the state of optical waveguide with the naked eye, it is easy to connect the sensor head to the optical fiber, and it is easy to observe the presence of scattered light at the cloud point. If used, a near-infrared laser may be used.

【0019】光ファイバとの接続面は、導波路端面を光
学研磨した後、光ファイバを接続した。光ファイバは入
射路接続用にシングルモードファイバ、出射路接続用に
マルチモードファイバ(コア径50μm)を用いた。これ
らの光ファイバを光ファイバアレイの形で一括接続し
た。光ファイバアレイは、シリコンやセラミックスの基
板にダイシングマシーン等による切削でV型の溝を導波
路と等ピッチで形成し、そこに光ファイバを納め、上か
らパイレックスガラスを補強板として接着したものを用
いた。この導波路センサにペルチェ素子を取り付け、30
〜-10℃の温度範囲で4種類の油の曇り点を測定した結
果を表1に示す。
As for the connection surface with the optical fiber, the optical fiber was connected after optically polishing the end face of the waveguide. As the optical fiber, a single mode fiber was used for connecting the incident path, and a multimode fiber (core diameter 50 μm) was used for connecting the output path. These optical fibers were connected together in the form of an optical fiber array. An optical fiber array is formed by forming V-shaped grooves at the same pitch as the waveguide by cutting with a dicing machine or the like on a silicon or ceramic substrate, placing optical fibers therein, and bonding Pyrex glass as a reinforcing plate from above. Using. Attach a Peltier element to this waveguide sensor, and
Table 1 shows the results of measuring the cloud points of the four types of oils in a temperature range of up to -10 ° C.

【0020】[0020]

【表1】 [Table 1]

【0021】なお、室温から曇り点に至る時間は約10秒
であり、繰り返し測定の結果、±0.1℃以内の精度での
測定が可能であることが確認された。
The time from the room temperature to the cloud point is about 10 seconds. As a result of repeated measurement, it was confirmed that the measurement could be performed with an accuracy within ± 0.1 ° C.

【0022】[0022]

【発明の効果】このように、入射路より凹形状の接液部
に光を入射させながら、接液部を所要の温度範囲で冷却
または加熱しつつ、接液部での試料中の析出粒子による
入射光の散乱光を複数の出射路により検出することで、
高精度、高速の曇り点測定が可能となる。
As described above, while the light is incident on the concave liquid contact portion from the incident path, the liquid contact portion is cooled or heated in a required temperature range, and the precipitated particles in the sample at the liquid contact portion are cooled. By detecting the scattered light of the incident light by a plurality of exit paths,
High-precision, high-speed cloud point measurement is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の石油製品に応用した場合の原理を示
した説明図である。(a)は石油製品が曇り点にまだ達し
ておらず入射光が石油製品中を透過している状態、(b)
は析出微粒子の発生により入射光が散乱されその散乱光
が出射路を通して出射ファイバに出力される状態を示し
た説明図である。
FIG. 1 is an explanatory view showing the principle when applied to a petroleum product of the present invention. (a) is a state in which the petroleum product has not yet reached the cloud point and the incident light is transmitted through the petroleum product; (b)
FIG. 4 is an explanatory view showing a state where incident light is scattered due to generation of precipitated fine particles and the scattered light is output to an output fiber through an output path.

【図2】 本発明による曇り点計の一例の分解透視図を
示した図である。
FIG. 2 is an exploded perspective view of an example of a cloud point meter according to the present invention.

【図3】 接液部の凹形状を円の一部にて形成する場合
の説明図である。(a)は符号の説明、(b)は入射導波路
端の詳細の説明図である。
FIG. 3 is an explanatory diagram in a case where a concave shape of a liquid contact part is formed as a part of a circle. (a) is an illustration of a reference numeral, and (b) is an explanatory diagram of details of an incident waveguide end.

【符号の説明】[Explanation of symbols]

1 :曇り点計 2 :光導波路型センサ 3 :冷却手段または加熱手段 4 :検出面 5 :基板 6 :入射路 6a:入射路から液体への光入射端面 7 :後方散乱光検出用出射路 7':測方散乱光検出用出射路 7":後方散乱光検出用出射路 7a:液体から出射路への光出射端面 8 :導波路 9 :導波層 10 :入射光ファイバ 11 :後方散乱光検出用出射光ファイバ 11':測方散乱光検出用出射光ファイバ 11":後方散乱光検出用出射光ファイバ 12 :接続ベース(光ファイバアレイ) 13 :ペルチェ素子 14 :ヒートシンク 15 :電力ケーブル 16 :熱電対 O :入、出射導波路の交差点 O':凹形状をなす円の中心 R :凹形状をなす円の半径 a :OとO'のずれ θ1:入射路の入射端への光入射角 θ2:被測定対象への屈折光の屈折角1: Cloud point meter 2: Optical waveguide sensor 3: Cooling or heating means 4: Detection surface 5: Substrate 6: Incident path 6a: Light incident end face from incident path to liquid 7: Exit path for backscattered light detection 7 ': Outgoing path for measuring scattered light detection 7 ": Outgoing path for backscattered light detection 7a: Light emitting end face from liquid to emission path 8: Waveguide 9: Waveguide layer 10: Incident optical fiber 11: Backscattered light Outgoing optical fiber for detection 11 ': Outgoing optical fiber for measuring scattered light 11 ": Outgoing optical fiber for detecting backscattered light 12: Connection base (optical fiber array) 13: Peltier element 14: Heat sink 15: Power cable 16: thermocouple O: input intersection O of the output waveguide shift of ': the center of the circle forming the concave R:: radius a of the circle forming the concave O and O' theta 1: light incident on the incident end of the incident path Angle θ 2 : Angle of refraction of refracted light to measurement object

フロントページの続き (56)参考文献 特開 昭58−7550(JP,A) 特開 昭61−17941(JP,A) 特開 平6−109629(JP,A) 実開 平2−50673(JP,U) 実公 昭53−12232(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) G01N 25/00 - 25/72 G01N 21/47 Continuation of the front page (56) References JP-A-58-7550 (JP, A) JP-A-61-17941 (JP, A) JP-A-6-109629 (JP, A) JP-A-2-50673 (JP) , U) Jikken Sho 53-12232 (JP, Y1) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 25/00-25/72 G01N 21/47

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定対象試料へ入射路から光を入射しな
がら測定対象試料を所定の温度範囲で冷却または加熱
し、測定対象試料中の析出物の析出による入射光の前方
散乱光を出射路から検知することにより曇り点を測定
し、入射路と出射路が基板上の導波構造の導波路である
ことを特徴とする曇り点測定方法。
1. A sample to be measured is cooled or heated in a predetermined temperature range while light is incident on the sample to be measured from an incident path, and forward scattered light of incident light due to precipitation of a precipitate in the sample to be measured is output. A cloud point is measured by detecting a cloud point, and the incident path and the output path are waveguides having a waveguide structure on a substrate.
【請求項2】 測定対象試料と接液する検出エリアに光
を入射する入射路、及び検出エリアからの前方散乱光を
検出するための複数の出射路を具備し、入射路と出射路
が基板上の導波構造の導波路であり、その導波路に当接
して冷却手段または加熱手段を備えていることを特徴と
する曇り点計。
2. An apparatus according to claim 1, further comprising an incident path for entering light into a detection area in contact with the sample to be measured, and a plurality of exit paths for detecting forward scattered light from the detection area, wherein the entrance path and the exit path are substrates. A cloud point meter, which is a waveguide having an upper waveguide structure and provided with a cooling means or a heating means in contact with the waveguide.
【請求項3】 請求項2記載の検出エリアが、凹形状で
あることを特徴とする曇り点計。
3. The cloud point meter according to claim 2, wherein the detection area has a concave shape.
【請求項4】 請求項2記載の冷却手段または加熱手段
が、ヒートシンク上に載置されたペルチェ素子、循環冷
媒による熱交換器、あるいはクライオスタットであるこ
とを特徴とする曇り点計。
4. A cloud point meter according to claim 2, wherein said cooling means or heating means is a Peltier element mounted on a heat sink, a heat exchanger using a circulating refrigerant, or a cryostat.
JP07068979A 1995-03-03 1995-03-03 Cloud point measurement method and cloud point meter Expired - Lifetime JP3130758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07068979A JP3130758B2 (en) 1995-03-03 1995-03-03 Cloud point measurement method and cloud point meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07068979A JP3130758B2 (en) 1995-03-03 1995-03-03 Cloud point measurement method and cloud point meter

Publications (2)

Publication Number Publication Date
JPH08240544A JPH08240544A (en) 1996-09-17
JP3130758B2 true JP3130758B2 (en) 2001-01-31

Family

ID=13389304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07068979A Expired - Lifetime JP3130758B2 (en) 1995-03-03 1995-03-03 Cloud point measurement method and cloud point meter

Country Status (1)

Country Link
JP (1) JP3130758B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69732405D1 (en) * 1996-07-03 2005-03-10 Japan Energy Corp FREEZER MEASUREMENT DEVICE AND METHOD OF MEASURING THE FREEZING POINT
US7168850B2 (en) 2004-03-30 2007-01-30 Yamatake Corporation Mirror surface state detection device and moisture detection device

Also Published As

Publication number Publication date
JPH08240544A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
JP3064313B2 (en) Optical interface means
US7245379B2 (en) Device and method for investigating analytes in liquid suspension or solution
US5726751A (en) Silicon microchannel optical flow cytometer
US5565978A (en) Total-reflection type refractive index sensor
US6455004B1 (en) Optical sensor and optical method for characterizing a chemical or biological substance
US6312961B1 (en) Optical sensor using an immunological reaction and a fluorescent marker
US6487349B2 (en) Method and apparatus for improved fiber optic light management
CN107924027A (en) Integrated target spot waveguide device and system for optical coupling
JP3330948B2 (en) Cloud point measurement method and cloud point meter
JPS62274238A (en) Gel for optical bonding used for flow sight metry device
US8149413B2 (en) Surface plasmon resonance sensing device
JP3130758B2 (en) Cloud point measurement method and cloud point meter
EP0851220B1 (en) Freezing point meter and freezing point measuring method
US7218401B2 (en) Surface plasmon sensor, surface plasmon resonance measurement device, and detection chip
JPH08114547A (en) Oil kind judging sensor
US8749792B2 (en) Device for optical measurement of materials, using multiplexing of light
JPH11153723A (en) Member for use in fixing optical fiber, optical fiber array, optical guidewave module and dimensional accuracy measuring method for member for use in fixing optical fiber
JP3631221B2 (en) Fiber spectroscopic detector and manufacturing method thereof
RU2071056C1 (en) Device for assaying milk and dairy products for content of fat and protein
JPH0868753A (en) Refractive index sensor
JPH1038801A (en) Total reflection type refractive index sensor
Weaver Astudy OF OPTICAL WAVEGUIDES
JPS60202330A (en) Refractive index measuring element utilizing optical fiber
JPH0258587B2 (en)
JPH04274220A (en) Acousto-optical optical switch

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term