JP3115894B2 - Control method for large two-stroke turbocharged engine and engine used for this method - Google Patents

Control method for large two-stroke turbocharged engine and engine used for this method

Info

Publication number
JP3115894B2
JP3115894B2 JP06505784A JP50578494A JP3115894B2 JP 3115894 B2 JP3115894 B2 JP 3115894B2 JP 06505784 A JP06505784 A JP 06505784A JP 50578494 A JP50578494 A JP 50578494A JP 3115894 B2 JP3115894 B2 JP 3115894B2
Authority
JP
Japan
Prior art keywords
engine
exhaust gas
reactor
turbocharger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06505784A
Other languages
Japanese (ja)
Other versions
JPH08500170A (en
Inventor
クイェムトルプ,ニエルズ
グルーン,オレ・ステウン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel AS
Original Assignee
MAN B&W Diesel AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN B&W Diesel AS filed Critical MAN B&W Diesel AS
Publication of JPH08500170A publication Critical patent/JPH08500170A/en
Application granted granted Critical
Publication of JP3115894B2 publication Critical patent/JP3115894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】 本発明は、ターボチャージャの上流側に接続され排気
ガスのNOx(窒素酸化物)成分を減少させるための反応
装置と、この反応装置が排気ガスを冷却しているか否か
を決定するために少なくとも1つのエンジンパラメータ
を測定する手段とを有する大型2ストロークターボチャ
ージエンジンを制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reactor connected to the upstream side of a turbocharger for reducing the NOx (nitrogen oxide) component of exhaust gas, and whether or not the reactor cools the exhaust gas. Means for measuring at least one engine parameter to determine whether the engine is a large two-stroke turbocharged engine.

環境保護を考慮して、NOx流出のしきい値を一層低い
値に決めた法律を採用する国が年々増加している。それ
故、大型船舶用エンジンに排気ガス純化装置を設けて連
続的に運転させるようにすることが望ましい。自動車産
業において既知の触媒は船舶用エンジンに使用できな
い。その理由は、船舶用エンジンが大量の空気を用いて
作動し、かなりの量の重金属及び硫黄を含む燃料重油を
燃焼させるからである。ターボチャージャを有する自動
車においては、タービンの上流側に触媒装置を設けて、
排気ガス中のCO(一酸化炭素)及びHC(炭化水素)をO2
(酸素)と反応させ、それと同時に熱を発生させ、反応
装置を通過中の排気ガスを加熱することができる。従っ
て、このようなエンジンの作動条件は排気ガスのNOx成
分を減少させるための反応装置を有するエンジンの作動
条件とは異なる。
More and more countries are adopting laws that set lower NOx emission thresholds in consideration of environmental protection. Therefore, it is desirable to provide an exhaust gas purifying device in a large marine engine so as to operate continuously. Catalysts known in the automotive industry cannot be used in marine engines. This is because marine engines operate with large amounts of air and burn fuel heavy oils containing significant amounts of heavy metals and sulfur. In a car having a turbocharger, a catalyst device is provided upstream of the turbine,
CO (carbon monoxide) and HC (hydrocarbon) in exhaust gas are converted to O 2
(Oxygen), and at the same time, generate heat to heat the exhaust gas passing through the reactor. Therefore, the operating conditions of such an engine are different from those of an engine having a reactor for reducing the NOx component of the exhaust gas.

排気ガスが反応装置へ供給されるときの排気ガスの温
度を最低300℃にする必要があるので、エンジンが船舶
推進用エンジンとして使用される大型2ストロークエン
ジンである場合は、反応装置をターボチャージャの前に
排気装置に接続しなければならない。反応装置は、排気
ガスをアンモニウムと混合させ、この混合物を300℃な
いし400℃の温度で特殊な触媒中を通過させる所謂「選
択的触媒還元方法」(SCR)を利用する。触媒はNOxをN2
(窒素)と水とに還元する。アンモニウムを完全に消費
させ排気ガス中のNOx成分を十分な程度まで減少させる
のを保証するために、触媒の体積を十分大きくしなけれ
ばならない。
When the exhaust gas is supplied to the reactor, the temperature of the exhaust gas must be at least 300 ° C. Therefore, if the engine is a large two-stroke engine used as a ship propulsion engine, the reactor should be turbocharged. Must be connected to the exhaust system before. The reactor utilizes a so-called "selective catalytic reduction method" (SCR) in which the exhaust gas is mixed with ammonium and the mixture is passed through a special catalyst at a temperature of 300 ° C to 400 ° C. The catalyst converts NOx to N 2
(Nitrogen) and water. The volume of the catalyst must be large enough to ensure that ammonium is completely consumed and the NOx content in the exhaust gas is reduced to a sufficient extent.

船舶からのNOxの流出に関するしきい値は数種の近海
水域にのみ適用している。既知のエンジン装置は、カッ
トオフ手段を備えたバイパス導管により、船舶の主要航
行中は反応装置が完全に切り離され、そして、エンジン
作動条件が許す限り、船舶が近海水域を蛇行していると
きには反応装置が完全に接続されて、NOxの流出に関す
る上限しきい値が適用されるように設計されている。従
って、バイパス導管のカットオフ手段は通常完全に開い
ているか完全に閉じている。
The thresholds for NOx emissions from ships apply only to some types of inshore waters. Known engine systems include a bypass conduit with cut-off means that completely disconnects the reactor during the main voyage of the vessel and, when the engine operating conditions permit, reacts when the vessel is meandering in the inshore waters. The device is designed to be fully connected and an upper threshold for NOx outflow applied. Thus, the cutoff means of the bypass conduit is usually completely open or completely closed.

上述のエンジンについての本出願人による試験の結
果、エンジン負荷が急激に増大した場合(例えば船舶の
加速時又は緊急停船(制動)時)に、ターボチャージャ
が増大した瞬間的なエンジン負荷に対応するパワーを受
けることができないので、反応装置を完全に切り離す必
要があることが判明した。
As a result of tests by the applicant of the above-described engine, when the engine load increases rapidly (for example, when the ship is accelerating or emergency stopping (braking)), the turbocharger responds to the increased instantaneous engine load. Since it was not possible to receive power, it turned out that the reactor had to be completely disconnected.

本発明の目的は、エンジンの通常の連続作動状態を保
証しながら排気ガスの純化をも行うように大型2ストロ
ークターボチャージエンジンを制御する方法を提供する
ことである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for controlling a large two-stroke turbocharged engine to also purify exhaust gases while guaranteeing normal continuous operation of the engine.

上記目的を達成するため、本発明に係る方法の特徴と
するところは、測定されたエンジンパラメータが所定の
しきい値以下になったときに、反応装置の下流側の排気
ガスの一部をターボチャージャに対してバイパスさせ、
エンジンパラメータが反応装置によって排気ガスを冷却
している状態を示すしきい値を越えたときには、一層多
量の空気又はガスをタービンの上流側へ供給するように
上記一部の排気ガスをターボチャージャのタービンへ全
体的又は部分的に送るようにしたことである。
In order to achieve the above object, the method according to the present invention is characterized in that a part of the exhaust gas downstream of the reactor is turbocharged when the measured engine parameter falls below a predetermined threshold value. Bypass the charger,
When the engine parameters exceed a threshold value indicating that the exhaust gas is being cooled by the reactor, the partial exhaust gas is supplied to the turbocharger so as to supply more air or gas to the upstream side of the turbine. That is, it is sent to the turbine in whole or in part.

これは、エンジン負荷が増大した場合でさえも、すべ
ての排気ガスが反応装置を通るという点で環境上最適な
構成である。
This is an environmentally optimal configuration in that all exhaust gases pass through the reactor, even at increased engine loads.

エンジン負荷が増大したとき、排気ガスの温度が増大
し、反応装置を加熱する。反応装置は大きな熱容量を有
するので、反応装置を高い温度まで加熱するのに長い時
間を要し、この加熱時間中、反応装置の後方の排気ガス
温度は反応装置の前方の温度より幾分低くなり、このこ
とは、反応装置の後方の排気ガスのエネルギがターボチ
ャージャのコンプレッサにとって瞬間的なエンジン負荷
に対応するパワーを受け取るのに十分なほど大きくない
ことを意味する。換言すれば、反応装置の大なる熱容量
及びターボチャージャの上流側への反応装置の接続は、
ターボチャージャに対する増大するエンジン負荷の影響
にある時間遅れを生じさせ、この遅れはエンジン負荷の
変化に従って増大する。
When the engine load increases, the temperature of the exhaust gas increases and heats the reactor. Since the reactor has a large heat capacity, it takes a long time to heat the reactor to a high temperature, during which time the exhaust gas temperature behind the reactor becomes somewhat lower than the temperature in front of the reactor. This means that the energy of the exhaust gas behind the reactor is not large enough for the turbocharger compressor to receive power corresponding to the instantaneous engine load. In other words, the large heat capacity of the reactor and the connection of the reactor upstream of the turbocharger
There is a time delay in the effect of increasing engine load on the turbocharger, which delay increases with changes in engine load.

反応装置が冷却されこれと同時に排気ガスが冷却され
る時間を本発明に従って決定し、この時間中に一層多量
の空気又はガスをターボチャージャへ供給することによ
り、エンジン負荷のチャージの直後の期間においても、
エンジンがエンジン負荷に正確に適応した掃気用及びチ
ャージ用空気を受け取ることを保証できる。
The time during which the reactor is cooled and at the same time the exhaust gas is cooled is determined in accordance with the present invention, during which time more air or gas is supplied to the turbocharger so that during the period immediately following the charging of the engine load, Also,
It can be ensured that the engine receives scavenging and charging air precisely adapted to the engine load.

補充空気は、55%及びそれ以上のエンジン負荷で空気
を送給する補助ブロワにより、チャージ用空気として適
当に供給できる。既知の補助ブロワは約50%のエンジン
負荷で作動停止されていた。一層大きな負荷用にブロワ
を寸法決めすることにより、補助ブロワがエンジン始動
時に反応装置の加熱を補償するのに十分な容量を有し、
加速中にエンジン負荷が50%を越えた場合に、補助ブロ
ワが作動状態となるような効果を得ることができる。
Make-up air can be suitably supplied as charging air by an auxiliary blower that delivers air at 55% and above engine load. Known auxiliary blowers were shut down at about 50% engine load. By sizing the blower for a larger load, the auxiliary blower has sufficient capacity to compensate for the heating of the reactor at engine start,
When the engine load exceeds 50% during acceleration, an effect that the auxiliary blower is activated can be obtained.

一層多量の空気/ガスを供給すべき作動点の決定は、
エンジンの瞬間的な負荷の記憶、及び一層多量の空気/
ガスを供給しない場合の負荷の変化の早さに関して経験
的に知られた値との比較に基づいて行われる。
Determining the operating point where more air / gas should be supplied
Memory of the instantaneous load of the engine and more air /
The determination is made based on a comparison with an empirically known value regarding the speed of change of the load when the gas is not supplied.

代わりに、作動点は、反応装置の両側の温度差が所定
のしきい値を越えた時点としてもよい。
Alternatively, the operating point may be when the temperature difference across the reactor exceeds a predetermined threshold.

本発明は更に、上述の方法に使用されるエンジンに関
し、このエンジンは、排気ガスのNOx成分を減少させる
ための反応装置に出力側で接続された排気ガスレシーバ
と、タービンを備え、反応装置のガス出口に接続された
ガス入口を有するターボチャージャと、エンジンパラメ
ータを測定するための少なくとも1つのセンサと、掃気
用及びチャージ用空気を供給するための補助ブロワとか
ら成る。本発明によれば、このエンジンの特徴とすると
ころは、反応装置とターボチャージャのタービンとの間
の排気通路をタービンの下流側の排気通路に接続できる
バイパス導管と、バイパス導管を全体的又は部分的にカ
ットオフできる制御手段と、センサから受け取った信号
に基づき、反応装置が排気ガスを冷却したか否かを決定
し、排気ガスが反応装置により冷却されたときに、閉位
置の方へ制御手段を調整する制御ユニットから成ること
である。
The present invention further relates to an engine used in the above method, the engine comprising an exhaust gas receiver connected on the output side to a reactor for reducing the NOx content of the exhaust gas, a turbine, the turbine of the reactor. It comprises a turbocharger having a gas inlet connected to a gas outlet, at least one sensor for measuring engine parameters, and an auxiliary blower for supplying scavenging and charging air. According to the invention, this engine is characterized by a bypass conduit which can connect the exhaust passage between the reactor and the turbocharger turbine to an exhaust passage downstream of the turbine, and the bypass conduit being entirely or partially Based on the control means that can cut off the gas and the signal received from the sensor, determine whether the reactor has cooled the exhaust gas, and when the exhaust gas is cooled by the reactor, control toward the closed position It consists of a control unit that regulates the means.

以下、本発明の実施例を添付図面を参照して更に詳細
に説明する。図は、本発明の一実施例に係るエンジンの
概略構成図である。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an engine according to one embodiment of the present invention.

図は、例えば40MWのパワーを生じさせることのできる
大型2ストロークエンジンを示す。ターボチャージャの
コンプレッサC及び、エンジンへ空気を流入させる空気
クーラー(図示せず)へ空気を送給する補助ブロワABを
介して、空気がエンジンに供給され、排気ガスは排気弁
を通って排気ガスレシーバERへ排出され、レシーバは排
気通路1を介して反応装置Rに接続され、反応装置は排
気ガスのNOx成分の90%以上を除去できる。反応装置の
出口から延びた排気通路2はターボチャージャのタービ
ン部分Tの入口に通じ、タービン部分の出口は排気通路
3を介して外部に通じている。
The figure shows a large two-stroke engine capable of producing, for example, 40 MW of power. Air is supplied to the engine via a compressor C of the turbocharger and an auxiliary blower AB which supplies air to an air cooler (not shown) for flowing air into the engine, and the exhaust gas passes through an exhaust valve to exhaust gas. After being discharged to the receiver ER, the receiver is connected to the reactor R via the exhaust passage 1, and the reactor can remove 90% or more of the NOx component of the exhaust gas. The exhaust passage 2 extending from the outlet of the reactor communicates with the inlet of the turbine portion T of the turbocharger, and the outlet of the turbine portion communicates with the outside via the exhaust passage 3.

バイパス導管4はタービンTの上流側の排気通路2か
らタービンの下流側の排気通路へ延びている。バイパス
導管は全開位置から全閉位置まで連続的に調整できる制
御手段Vを有する。
The bypass conduit 4 extends from the exhaust passage 2 upstream of the turbine T to an exhaust passage downstream of the turbine T. The bypass conduit has control means V which can be continuously adjusted from a fully open position to a fully closed position.

エンジンの静止作動の場合は、ターボチャージャT/C
は過剰のパワーを供給できるような高い効率を有する。
従って、必要量の掃気用及びチャージ用空気をエンジン
Eへ送給するためにターボチャージャはすべての排気ガ
スを必要としないので、制御手段Vは部分的に開いた位
置へ調整されて、ターボチャージャのコンプレッサCが
所望量の空気を正確に送給する。バイパス導管4を通っ
て流れる排気ガスは例えばパワータービン(図示せず)
に利用することができるが、排気通路3内へ排気ガスを
直接送ることも、もちろん、可能である。ターボチャー
ジャの効率に関しては、反応装置を伴わないエンジンの
作動に対して、約64%の効率ηが必要とされるようなも
のである。今日、73%の効率ηを有するターボチャージ
ャを得ることが可能である。
Turbocharger T / C for stationary engine operation
Has a high efficiency so that it can supply excess power.
Thus, since the turbocharger does not require all the exhaust gas to deliver the required amount of scavenging and charging air to the engine E, the control means V is adjusted to a partially open position and the turbocharger is adjusted. Compressor C accurately delivers the desired amount of air. The exhaust gas flowing through the bypass conduit 4 is, for example, a power turbine (not shown).
However, it is of course possible to directly send exhaust gas into the exhaust passage 3. Regarding the efficiency of the turbocharger, it is such that for an operation of the engine without a reactor, an efficiency η of about 64% is required. Today, it is possible to obtain a turbocharger with an efficiency η of 73%.

反応装置はダニッシュ・カンパニー・ハンドル・トプ
ソー・エイ/エス(Danish company Hardor Topse A/
S)により製造された所謂SCR(選択的触媒還元)反応装
置である。それ自体既知のこの反応装置に関しては、40
MWのパワーを有するエンジンは約13.5トンの触媒材料を
含んだ反応装置を必要とする。一層少量の触媒材料を使
用することも可能であるが、この場合は、純化された排
気ガスと一緒に一層多量のアンモニアが流出することと
なる。
The reactor is Danish company Hardor Topse A / S
This is a so-called SCR (selective catalytic reduction) reactor manufactured by S). For this reactor known per se, 40
An engine with MW power requires a reactor containing about 13.5 tonnes of catalytic material. It is possible to use a smaller amount of catalyst material, but in this case a larger amount of ammonia will flow out together with the purified exhaust gas.

反応装置Rは大きな熱容量を有するので、エンジン負
荷が増大すると、上述のように、反応装置を通過中にガ
スが冷却され、ある時間が経過しなければ、増大した負
荷がターボチャージャのタービンTへ増大したエネルギ
を供給できない。
Since the reactor R has a large heat capacity, when the engine load increases, as described above, the gas is cooled while passing through the reactor, and if a certain time does not elapse, the increased load is applied to the turbine T of the turbocharger. Inability to supply increased energy.

制御ユニットCUはそれぞれのワイヤ(電線)5、6、
7を介して3つのセンサS1、S2、S3に接続される。これ
らのセンサはエンジンパラメータ(作動即ち性能パラメ
ータ)を測定し、これらのエンジンパラメータに基づ
き、制御ユニットは、所望量の空気を送給できるように
補充エネルギをターボチャージャに供給する程度まで排
気ガスにより反応装置が加熱されたか否かを判断する。
The control unit CU has the wires (electric wires) 5, 6,
7 are connected to three sensors S1, S2, S3. These sensors measure engine parameters (operating or performance parameters) and, based on these engine parameters, the control unit uses the exhaust gas to the extent that it supplies supplemental energy to the turbocharger to deliver the desired amount of air. Determine if the reactor has been heated.

適当なエンジンパラメータについては、センサS1は動
作中のシリンダに供給された燃料量に基づき瞬間的なエ
ンジン負荷を測定できる。センサS2は反応装置Rの上流
側の排気通路内の排気ガスの温度を測定でき、センサS3
はタービンTへの入口のすぐ上流側の排気ガスの温度を
測定できる。代わりに、センサにより測定されるエンジ
ンパラメータはコンプレッサCの下流側及びタービンT
の上流側に位置した測定地点におけるエンジンの空気/
ガス装置内の圧力でよい。
For the appropriate engine parameters, sensor S1 can measure the instantaneous engine load based on the amount of fuel supplied to the operating cylinder. The sensor S2 can measure the temperature of the exhaust gas in the exhaust passage on the upstream side of the reactor R, and the sensor S3
Can measure the temperature of the exhaust gas immediately upstream of the inlet to the turbine T. Instead, the engine parameters measured by the sensors are downstream of the compressor C and the turbine T
Engine air at a measurement point located upstream of
The pressure in the gas device may be used.

制御ユニットCUは時間の関数として測定された1つの
みの測定エンジンパラメータに基づき補充空気の必要性
を判定でき、次いで、時間の関数としてのエンジンパラ
メータの変化をパラメータの時間変化毎の所定のしきい
値と比較して、反応装置が補充空気/ガスを供給すべき
量だけ排気ガスからエネルギを吸収したか否かを決定で
きる。時間の関数としてのエンジン負荷の変化は、制御
ユニットにおいて、例えば、負荷の変化のための所定の
しきい値と比較される。これに相当する比較は、センサ
S2により測定された反応装置Rの上流側の排気ガスの温
度T1に基づき行ってもよい。代わりに、制御ユニットが
両方のセンサS2及びセンサS3から温度信号を受け取り、
これに基づき、反応装置の上流側の温度T1と下流側の温
度T2との間の温度差を計算してもよい。
The control unit CU can determine the need for make-up air based on only one measured engine parameter measured as a function of time, and then determine the change in engine parameter as a function of time for each parameter change over time. Compared to the threshold value, it can be determined whether the reactor has absorbed energy from the exhaust gas by the amount to supply make-up air / gas. The change in engine load as a function of time is compared in the control unit, for example, with a predetermined threshold value for the change in load. The corresponding comparison is the sensor
The measurement may be performed based on the temperature T1 of the exhaust gas on the upstream side of the reactor R measured by S2. Instead, the control unit receives temperature signals from both sensors S2 and S3,
Based on this, the temperature difference between the upstream temperature T1 and the downstream temperature T2 of the reactor may be calculated.

測定したエンジンパラメータが所定のしきい値を越え
た場合、制御ユニットCUは一層多量の空気/ガスを供給
するための信号をエンジンEへ伝達する。この信号はワ
イヤ9を介して補助ブロワABのモータ制御子へ伝達さ
れ、補助ブロワを始動させるか、補助ブロワの出力を増
大させる。代わりに、制御ユニットはワイヤ8を介して
制御手段へ信号を伝達してこの制御手段を閉位置の方へ
調整し、バイパス導管へ少量の排気ガスを流入させ、タ
ービンTへ多量の排気ガスを流入させるようにしてもよ
い。
If the measured engine parameter exceeds a predetermined threshold, the control unit CU sends a signal to the engine E to supply more air / gas. This signal is transmitted to the motor controller of the auxiliary blower AB via the wire 9 to start the auxiliary blower or increase the output of the auxiliary blower. Alternatively, the control unit transmits a signal via wire 8 to the control means to adjust the control means towards the closed position, to allow a small amount of exhaust gas to flow into the bypass conduit and to provide a large amount of exhaust gas to the turbine T. You may make it flow in.

制御ユニットはまた、第1のしきい値を越えたときに
補助ブロワを始動させ、第2のしきい値を越えたときに
バイパス導管4を通るガス流を減少させるように構成す
ることもできる。第1図の実施例において、好ましく
は、第2のしきい値は第1のしきい値より小さく、補助
ブロワの始動前に、制御ユニットがバイパス導管4を閉
じる。しかし、パワータービンを導管4に接続した場合
は、補助ブロワを先に始動させるのが望ましい。例え
ば、第1のしきい値はT2/T1=0.5に設定し、第2のしき
い値はT2/T1=0.25に設定する。
The control unit can also be configured to start the auxiliary blower when a first threshold is exceeded and to reduce the gas flow through the bypass conduit 4 when a second threshold is exceeded. . In the embodiment of FIG. 1, preferably, the second threshold value is smaller than the first threshold value, and the control unit closes the bypass line 4 before starting the auxiliary blower. However, when a power turbine is connected to the conduit 4, it is desirable to start the auxiliary blower first. For example, the first threshold is set to T2 / T1 = 0.5, and the second threshold is set to T2 / T1 = 0.25.

反応装置Rの加熱が終了に近づいたとき、そのエネル
ギ吸収量が減少する。それ故、制御ユニットはエンジン
がその安定作動状態に戻ったときに補充空気/ガスの供
給量を減少させることができる。
When the heating of the reactor R approaches the end, the energy absorption amount decreases. Thus, the control unit can reduce the make-up air / gas supply when the engine returns to its stable operating state.

また、バイパス導管を例えばターボチャージャのコン
プレッサの下流側に接続して過剰な空気を排出するため
に大気に連通させ、又はターボチャージャのタービンの
入口に接続することもできる。これらの場合、ターボチ
ャージャの過剰な空気はエンジンを通らず、それ故、バ
イパス導管を通る空気流を減少させることにより、エン
ジンへ一層多量の空気を供給することが可能となる。
Also, a bypass conduit can be connected, for example, downstream of the compressor of the turbocharger to communicate with the atmosphere to exhaust excess air, or connected to the inlet of a turbine of the turbocharger. In these cases, the excess air of the turbocharger does not pass through the engine, thus reducing the airflow through the bypass conduit, thereby allowing more air to be supplied to the engine.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02B 37/02 F02B 37/12 F02B 37/04 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) F02B 37/02 F02B 37/12 F02B 37/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ターボチャージャ(T/C)の上流側に接続
され、排気ガスのNOx成分を減少させる反応装置(R)
と、この反応装置(R)が排気ガスを冷却しているか否
かを決定するために少なくとも1つのエンジンパラメー
タを測定するための手段とを有する大型2ストロークタ
ーボチャージエンジン(E)を制御する方法において、 測定したエンジンパラメータが所定のしきい値より小さ
くなったときに、上記反応装置(R)の下流側の排気ガ
スの一部を上記ターボチャージャ(T/C)に対してバイ
パスさせ、 測定したエンジンパラメータが当該反応装置により排気
ガスを冷却していることを示すしきい値を越えたとき
に、上記一部の排気ガスを全体的又は部分的に当該ター
ボチャージャ(T/C)のタービン(T)へ流入させて、
一層多量の空気又はガスを上記タービンの上流側へ供給
することを特徴とするエンジン制御方法。
A reactor (R) connected upstream of a turbocharger (T / C) for reducing the NOx component of exhaust gas.
A method for controlling a large two-stroke turbocharged engine (E), comprising: means for measuring at least one engine parameter to determine whether the reactor (R) is cooling exhaust gas. In the above, when the measured engine parameter becomes smaller than a predetermined threshold value, a part of the exhaust gas on the downstream side of the reactor (R) is bypassed to the turbocharger (T / C). When the engine parameters exceed the threshold value indicating that the exhaust gas is being cooled by the reactor, the partial exhaust gas is totally or partially removed from the turbine of the turbocharger (T / C). (T)
An engine control method comprising: supplying a larger amount of air or gas to an upstream side of the turbine.
【請求項2】請求の範囲第1項に記載の方法において、
55%及びそれ以上のエンジン負荷において空気を送給す
る補助ブロワ(AB)により、補助空気をチャージ用空気
として供給することを特徴とするエンジン制御方法。
2. The method according to claim 1, wherein
An engine control method characterized in that auxiliary air is supplied as charging air by an auxiliary blower (AB) that supplies air at an engine load of 55% or more.
【請求項3】請求の範囲第1項又は第2項に記載の方法
において、制御ユニット(CU)により上記エンジンの瞬
間的な負荷を測定し、記憶し、時間の関数としてのエン
ジン負荷の変化を負荷変化用の所定のしきい値と比較
し、この比較の結果に基づき、一層多量の空気/ガスの
供給を上記制御ユニットにより制御することを特徴とす
るエンジン制御方法。
3. The method according to claim 1, wherein the instantaneous load of the engine is measured and stored by a control unit (CU) and the change of the engine load as a function of time. A predetermined threshold value for changing the load, and controlling the supply of a larger amount of air / gas by the control unit based on a result of the comparison.
【請求項4】請求の範囲第1項ないし第3項のいずれか
に記載の方法において、制御ユニット(CU)により、排
気レシーバにおける排気ガスの温度(T1)及び上記ター
ボチャージャ(T/C)の入口における排気ガスの温度(T
2)を測定、記憶し、これら2つの温度の温度差を上記
制御ユニットにより決定し、この温度差が所定のしきい
値を越えた場合に、当該制御ユニットにより、一層多量
の空気/ガスの供給を開始させることを特徴とするエン
ジン制御方法。
4. The method according to claim 1, wherein a temperature of exhaust gas at an exhaust receiver (T1) and the turbocharger (T / C) are controlled by a control unit (CU). Exhaust gas temperature at the inlet of the
2) is measured and stored, and the temperature difference between these two temperatures is determined by the control unit, and when the temperature difference exceeds a predetermined threshold value, a larger amount of air / gas is An engine control method characterized by starting supply.
【請求項5】請求の範囲第4項及び第2項に記載の方法
において、上記温度差が第1のしきい値を越えたとき
に、上記制御ユニット(CU)により上記補助ブロワ(A
B)を作動させ、当該温度差が上記第1のしきい値より
大きい第2のしきい値を越えたときには、当該制御ユニ
ットにより更なる排気ガスを上記ターボチャージャ(T/
C)へ流入させることを特徴とするエンジン制御方法。
5. A method according to claim 4, wherein said auxiliary blower (A) is controlled by said control unit (CU) when said temperature difference exceeds a first threshold value.
B), and when the temperature difference exceeds a second threshold value that is larger than the first threshold value, the control unit sends more exhaust gas to the turbocharger (T / T).
C) An engine control method characterized by flowing into the engine.
【請求項6】請求の範囲第1項ないし第5項のいずれか
に記載の方法に使用する大型2ストロークターボチャー
ジエンジンであって、排気ガスのNOx成分を減少させる
ための反応装置(R)に出力側で接続された排気ガスレ
シーバ(ER)と、タービン(T)を備え、上記反応装置
のガス出口に接続されたガス入口を有するターボチャー
ジャ(T/C)と、エンジンパラメータを測定するための
少なくとも1つのセンサ(S1;S2;S3)と、掃気用及びチ
ャージ用空気を供給するための補助ブロワ(AB)とから
成るエンジンにおいて、 上記反応装置と上記ターボチャージャのタービン(T)
との間の排気通路(2)を当該タービンの下流側の排気
通路(3)に接続できるバイパス導管(4)と、 このバイパス導管を全体的又は部分的にカットオフでき
る制御手段(V)と、 上記センサから受け取った信号に基づき、上記反応装置
(R)が排気ガスを冷却したか否かを決定し、排気ガス
が当該反応装置により冷却されたときに、閉位置の方へ
上記制御手段を調整する制御ユニット(CU)と、 から成ることを特徴とするエンジン。
6. A large-sized two-stroke turbocharged engine for use in the method according to any one of claims 1 to 5, wherein the reaction device (R) reduces an NOx component of exhaust gas. An exhaust gas receiver (ER) connected on the output side to a turbocharger (T / C) comprising a turbine (T) and having a gas inlet connected to the gas outlet of the reactor, and measuring engine parameters An engine comprising at least one sensor (S1; S2; S3) and an auxiliary blower (AB) for supplying scavenging and charging air, the reaction device and the turbocharger turbine (T).
And a control means (V) that can cut off the bypass conduit in whole or in part. Determining whether the reactor (R) has cooled the exhaust gas based on the signal received from the sensor, and when the exhaust gas has been cooled by the reactor, the control means moves toward the closed position; An engine, comprising: a control unit (CU) for adjusting the pressure;
JP06505784A 1992-08-13 1993-08-12 Control method for large two-stroke turbocharged engine and engine used for this method Expired - Lifetime JP3115894B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DK101292A DK169185B1 (en) 1992-08-13 1992-08-13 Process for controlling a large two-stroke turbocharged internal combustion engine and engine for use in the practice of the method
DK1012/92 1992-08-13
PCT/DK1993/000260 WO1994004804A1 (en) 1992-08-13 1993-08-12 A method of controlling a large two-stroke turbocharged internal combustion engine and an engine for use in this method

Publications (2)

Publication Number Publication Date
JPH08500170A JPH08500170A (en) 1996-01-09
JP3115894B2 true JP3115894B2 (en) 2000-12-11

Family

ID=8100009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06505784A Expired - Lifetime JP3115894B2 (en) 1992-08-13 1993-08-12 Control method for large two-stroke turbocharged engine and engine used for this method

Country Status (5)

Country Link
JP (1) JP3115894B2 (en)
KR (1) KR100291803B1 (en)
DK (1) DK169185B1 (en)
FI (1) FI106882B (en)
WO (1) WO1994004804A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006516A1 (en) * 2007-06-22 2008-12-24 ABB Turbo Systems AG Exhaust gas turbo charger
EP2098708A1 (en) * 2008-03-06 2009-09-09 Wärtsilä Schweiz AG A method for the operation of a longitudinally scavenged two-stroke large diesel engine and a longitudinally scavenged two stroke large diesel engine
DK177631B1 (en) * 2010-05-10 2014-01-06 Man Diesel & Turbo Deutschland Large two-stroke diesel engine with exhaust gas purification system
KR20180079472A (en) 2011-09-20 2018-07-10 히다치 조센 가부시키가이샤 Turbo charger control system and control method
JP5753485B2 (en) * 2011-12-13 2015-07-22 日立造船株式会社 Urea water spray structure
FI20125820A (en) 2012-07-30 2014-01-31 Waertsilae Finland Oy COMBUSTION ENGINE
JP5711315B2 (en) * 2013-07-26 2015-04-30 ヤンマー株式会社 Engine exhaust gas purification system for ships
JP2015091699A (en) * 2014-12-25 2015-05-14 ヤンマー株式会社 Exhaust gas purification system for engine of ship
DK201670345A1 (en) * 2016-05-24 2017-12-11 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Method for operating a two-stroke engine system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516401A (en) * 1983-11-04 1985-05-14 General Motors Corporation Supercharged engine charge control
JPS61108822A (en) * 1984-11-01 1986-05-27 Nissan Motor Co Ltd Engine with turbo-charger
JPS61201828A (en) * 1985-03-05 1986-09-06 Nissan Motor Co Ltd Turbo-charging device of internal-combustion engine

Also Published As

Publication number Publication date
WO1994004804A1 (en) 1994-03-03
KR100291803B1 (en) 2001-09-17
FI945506A (en) 1995-01-03
DK101292A (en) 1994-02-14
FI106882B (en) 2001-04-30
DK101292D0 (en) 1992-08-13
DK169185B1 (en) 1994-09-05
FI945506A0 (en) 1994-11-23
JPH08500170A (en) 1996-01-09
KR950702277A (en) 1995-06-19

Similar Documents

Publication Publication Date Title
CN100485170C (en) Method and device for controlling temp. range of NOx accumulator in exhaust system of internal combustion engine
US9057302B2 (en) Internal combustion engine with exhaust-gas aftertreatment arrangement and intake air arrangement and method for operating an internal combustion engine of said type
US10738672B2 (en) Methods and systems for catalyst heating
US5709081A (en) Exhaust gas system for a combustion engine with exhaust driven turbo charge
CN109477414B (en) Method and device for exhaust gas aftertreatment of an internal combustion engine
US9328642B2 (en) Internal combustion engine with selective catalytic converter for the reduction of nitrogen oxides and method for operating an internal combustion engine of said type
JP3565035B2 (en) NOx reduction system for combustion exhaust gas
CN107762591B (en) Device and method for regenerating a particle filter
US9080486B2 (en) Method and device for regenerating a particle filter
US8404011B2 (en) Method and device for the regeneration of a particle filter arranged in the exhaust gas tract of an internal combustion engine
US9574482B2 (en) Method for operating components for exhaust gas after-treatment and exhaust gas after-treatment apparatus
JP3115894B2 (en) Control method for large two-stroke turbocharged engine and engine used for this method
CN108952896B (en) Regeneration of a particle filter or a quaternary catalyst in an exhaust system of an internal combustion engine
US3785151A (en) Exhaust gas recirculation system
CN117028042A (en) Engine control method, engine system and vehicle
GB2383004A (en) An exhaust gas cleaning apparatus
CN111561400B (en) System and method for controlling emissions of a spark-ignition internal combustion engine of a motor vehicle
JP3735169B2 (en) Diesel engine with denitration equipment
JP2005510652A (en) Method and apparatus for a combustion engine having a catalyst and a diesel engine
JP2005042672A (en) Control device of internal combustion engine
CN113574257A (en) Method and device for regenerating a coated particle filter in the exhaust gas system of a motor vehicle operated with gasoline
US20230332527A1 (en) Method for Introducing Heat Into at Least One Component of an Exhaust-Gas Aftertreatment Device, Software and Open-Loop or Closed-Loop Control Device
JP2020094530A (en) Purification system
EP1801377A2 (en) Method and system of exhaust gas treatment of an internal combustion engine, system and vehicle equipped with said system
JPH08226319A (en) Exhaust gas nox removing device for diesel engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

EXPY Cancellation because of completion of term