JP3110922U - CPU cooler sintered heat pipe - Google Patents

CPU cooler sintered heat pipe Download PDF

Info

Publication number
JP3110922U
JP3110922U JP2005000838U JP2005000838U JP3110922U JP 3110922 U JP3110922 U JP 3110922U JP 2005000838 U JP2005000838 U JP 2005000838U JP 2005000838 U JP2005000838 U JP 2005000838U JP 3110922 U JP3110922 U JP 3110922U
Authority
JP
Japan
Prior art keywords
wall
heat pipe
metal tube
copper powder
sintered heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005000838U
Other languages
Japanese (ja)
Inventor
炳煌 楊
志偉 李
Original Assignee
奇宏電子深▲しん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇宏電子深▲しん▼有限公司 filed Critical 奇宏電子深▲しん▼有限公司
Priority to JP2005000838U priority Critical patent/JP3110922U/en
Application granted granted Critical
Publication of JP3110922U publication Critical patent/JP3110922U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】ヒートパイプ内の銅粉固着面積が増え、且つしっかりと固着するCPU冷却器の焼結式ヒートパイプを提供する。
【解決手段】CPU冷却器の焼結式ヒートパイプにおいて、金属管1と、金属管内壁に固着した銅粉3を焼結した構造からなる。金属管内壁に微細な凹凸形状を形成し、金属管内壁の凹部2これらの凹部を含む内面に銅粉を固着して焼結することにより、凹部内の銅粉と金属管内面との接触面積を増して固着力を向上する。
金属管内壁の凹凸構造として、内壁長手方向に多数の微細な凹溝を形成する、内壁面に多数の微細な凸体を形成する、或は微細な凹坑を形成する、のいずれでも良い。
【選択図】図2

To provide a sintered heat pipe for a CPU cooler, in which a copper powder fixing area in a heat pipe is increased and firmly fixed.
A sintered heat pipe of a CPU cooler has a structure in which a metal tube 1 and copper powder 3 fixed to the inner wall of the metal tube are sintered. By forming fine concave and convex shapes on the inner wall of the metal tube, and recessing 2 on the inner wall of the metal tube, and fixing the copper powder on the inner surface including these recesses, the contact area between the copper powder in the recess and the inner surface of the metal tube To increase the adhesion.
As the concavo-convex structure of the inner wall of the metal tube, any one of forming a large number of fine concave grooves in the longitudinal direction of the inner wall, forming a large number of fine convex bodies on the inner wall surface, or forming a fine concave pit.
[Selection] Figure 2

Description

本考案は、CPU冷却器の焼結式ヒートパイプに関するもので、特にヒートパイプの内壁構造に関わるものである。   The present invention relates to a sintered heat pipe of a CPU cooler, and particularly relates to an inner wall structure of the heat pipe.

コンピュータのCPUの放熱に於ける問題で、ヒートパイプは応用範囲が広く、且つ有効に放熱する技術と考えられている。コンピュータの性能が向上するにつれ、その部品から発生する熱量も大きくなり、システムの安定性に大きく関わっている。ヒートパイプとヒートパイプを合せて放熱板が構成されているが、目下この方法が最も普遍的な放熱構造であり、ヒートパイプ内部に沸点の比較的低い、揮発しやすい液体(例として水)を充填するものである。この原理は、真空状態でヒートパイプが一定の熱を受けると、ヒートパイプ内の液体が蒸発し、その蒸気は僅かな圧力差によって他端へ流れる。そして、その熱量が凝縮熱として放出されると、再び液体に戻る。液体は毛細管現象を利用することによって元に戻る。この循環が停止することなく、続くことによって熱量がヒートパイプの一端から他端へ移動する。ヒートパイプには放熱力を高めるため、銅粉をヒートパイプ内壁に焼結させている。しかし、この種の構造は内壁が平滑で、銅粉顆粒とヒートパイプ内壁の接触点が少なく、図1に示すとおり、一つの銅粉顆粒が内壁に接触しているだけである。そのため、この種の構造には下述の問題がある。
特開2002−318085号公報
Due to problems in heat dissipation of the CPU of a computer, the heat pipe is considered to be a technology with a wide range of applications and effective heat dissipation. As the performance of computers improves, the amount of heat generated from the components increases, which greatly contributes to system stability. A heat sink is composed of a heat pipe and a heat pipe, but this method is currently the most universal heat dissipation structure. It is to be filled. According to this principle, when the heat pipe receives a certain amount of heat in a vacuum state, the liquid in the heat pipe evaporates, and the vapor flows to the other end by a slight pressure difference. When the amount of heat is released as condensation heat, it returns to liquid again. The liquid is restored by utilizing capillary action. By continuing this circulation without stopping, the amount of heat moves from one end of the heat pipe to the other end. In order to increase the heat dissipation power of the heat pipe, copper powder is sintered on the inner wall of the heat pipe. However, this type of structure has a smooth inner wall, few contact points between the copper powder granules and the heat pipe inner wall, and only one copper powder granule is in contact with the inner wall as shown in FIG. Therefore, this type of structure has the following problems.
JP 2002-318085 A

解決しようとする問題点は、銅粉をヒートパイプに焼結する時、銅粉がヒートパイプ内壁に固着しにくく、また銅粉がヒートパイプ内壁に焼結した時、銅粉とヒートパイプ内壁の固着面積が小さいため、接着力が弱く、剥がれやすい点である。     The problem to be solved is that when copper powder is sintered to the heat pipe, the copper powder is difficult to adhere to the inner wall of the heat pipe, and when the copper powder is sintered to the inner wall of the heat pipe, Since the fixing area is small, the adhesive force is weak and it is easy to peel off.

本考案は、金属管と、金属管内壁に固着する銅粉を含む。金属管内壁には凹凸形状を形成し、金属管内壁の凹部にも銅粉が固着する。金属管内壁の凹凸構造は、内壁に一個もしくは一個以上の凹溝を設置し、その凹溝内に銅粉が固着する。また金属管内壁に一個もしくは一個以上の凸体を設置し、凸体と凸体間には凹溝が形成される。この凹溝に銅粉が固着する。また、金属管内壁に一個もしくは一個以上の凹抗を成形し、凹抗内に銅粉が固着する。これらの方法によって、銅粉のヒートパイプ内壁の接触面積が増加し、銅粉が固着しやすく、しっかりと固着することを最も主要な特徴とする。   The present invention includes a metal tube and copper powder that adheres to the inner wall of the metal tube. An uneven shape is formed on the inner wall of the metal tube, and the copper powder adheres to the recess of the inner wall of the metal tube. In the concavo-convex structure of the inner wall of the metal tube, one or more concave grooves are provided on the inner wall, and the copper powder is fixed in the concave grooves. In addition, one or more convex bodies are provided on the inner wall of the metal tube, and a concave groove is formed between the convex bodies. Copper powder adheres to the concave groove. In addition, one or more recesses are formed on the inner wall of the metal tube, and the copper powder is fixed in the recesses. By these methods, the contact area of the inner wall of the copper powder heat pipe is increased, the copper powder is easily fixed, and the main feature is that it is firmly fixed.

本考案のCPU冷却器の焼結式ヒートパイプは、ヒートパイプ内の銅粉固着面積が増え、且つしっかりと固着するという利点がある。     The sintered heat pipe of the CPU cooler of the present invention has the advantage that the copper powder fixing area in the heat pipe is increased and it is firmly fixed.

[実施例1]
金属管1は銅管とするが、アルミ管もしくはその他金属管でもよい。図2に示すとおり、金属管1内壁に凹凸型の凹溝2を成形する。凹溝2の長さ、方向は、金属管1の軸方向に沿い、且つ金属管1の円周方向に均一に分布する。更に凹溝2は金属管1軸方向に垂直に断面形状で梯子形であるが、矩形、半円形、扇形、鋸歯形、三角形もしくは不規則形状でもよい。焼結後、銅粉3が金属管1内壁の凹溝2内及び内壁表面に固着する。凹溝2内の銅粉顆粒は、凹溝2底面に接触している他に凹溝2側面にも接触しており、銅粉顆粒とヒートパイプ内壁の固着面積が増える。そのため、銅粉は、金属管1内壁に固着しやすいだけでなく、しっかりと固着する。
[Example 1]
The metal tube 1 is a copper tube, but may be an aluminum tube or other metal tube. As shown in FIG. 2, a concave and convex groove 2 is formed on the inner wall of the metal tube 1. The length and direction of the concave groove 2 are uniformly distributed along the axial direction of the metal tube 1 and in the circumferential direction of the metal tube 1. Further, the concave groove 2 has a ladder shape in cross section perpendicular to the axial direction of the metal tube, but may be rectangular, semi-circular, fan-shaped, saw-toothed, triangular or irregular. After sintering, the copper powder 3 adheres to the inside of the groove 2 and the inner wall surface of the inner wall of the metal tube 1. The copper powder granule in the concave groove 2 is in contact with the side of the concave groove 2 in addition to being in contact with the bottom surface of the concave groove 2, and the fixing area between the copper powder granule and the inner wall of the heat pipe is increased. Therefore, the copper powder not only easily adheres to the inner wall of the metal tube 1 but also firmly adheres.

[実施例2]
金属管1は銅管とするが、アルミ管もしくはその他の金属管を使用してもよい。金属管1の内壁に凹凸形状の凸体4を形成する。この凸体4は、金属管内壁上で、図3に示すとおり、金属管に接着してもよく、図4に示すとおり、金属管と一体成型してもよい。凸体4の長さ方向は金属管1の軸方向に沿い、且つ凸体4は金属管1の円周方向に均一に分布する。凸体4は、金属管1軸方向に垂直に断面形状で梯子形であるが、矩形、半円形、扇形、鋸歯形、三角形もしくは不規則形状でもよい。凸体と凸体の間には凹溝が形成される。焼結すると、銅粉3は凸体と凸体の間に形成された凹溝及び凸体表面に固着し、銅粉の固着面積が増え、金属管1内壁に固着しやすいだけでなく、しっかりと固着する。
[Example 2]
The metal tube 1 is a copper tube, but an aluminum tube or other metal tube may be used. An uneven convex body 4 is formed on the inner wall of the metal tube 1. This convex body 4 may be adhered to the metal tube as shown in FIG. 3 on the inner wall of the metal tube, or may be integrally formed with the metal tube as shown in FIG. The length direction of the convex body 4 is along the axial direction of the metal tube 1, and the convex body 4 is uniformly distributed in the circumferential direction of the metal tube 1. The convex body 4 has a ladder shape in cross-section perpendicular to the axial direction of the metal tube, but may be rectangular, semicircular, fan-shaped, saw-toothed, triangular, or irregularly shaped. A concave groove is formed between the convex bodies. When sintered, the copper powder 3 adheres to the concave grooves formed between the convex bodies and the convex body surface, the fixing area of the copper powder increases, and not only easily adheres to the inner wall of the metal tube 1 but also firmly And stick.

[実施例3]
金属管1は銅管とするが、アルミ管もしくはその他の金属管を使用してもよい。図5に示すとおり、金属管1内壁に凹凸形状の凹坑5を成形する。凹抗5は円錐台形状であるが、その他規則的な凹抗でもよく、例えば方形、半球形もしくは蜂の巣形状、又は不規則形状の凹抗でもよい。凹抗5は、金属管1内壁に均一に分布する。焼結すると、銅粉は金属管内壁の凹抗5内に固着し、凹抗5内の銅粉は、凹抗5底面に接触する他に、凹抗5側面にも接触し、銅粉顆粒とヒートパイプ内壁の固着面積が増加し、固着しやすいだけでなく、しっかりと固着する。
[Example 3]
The metal tube 1 is a copper tube, but an aluminum tube or other metal tube may be used. As shown in FIG. 5, the concave and convex pit 5 is formed on the inner wall of the metal tube 1. The recess 5 has a truncated cone shape, but may be a regular recess, for example, a square, hemispherical or honeycomb shape, or an irregular shape. The recesses 5 are uniformly distributed on the inner wall of the metal tube 1. When sintered, the copper powder adheres to the concave wall 5 of the inner wall of the metal tube, and the copper powder in the concave wall 5 contacts the bottom surface of the concave wall 5 as well as the side surface of the concave wall 5 to form a copper powder granule. And the fixing area of the inner wall of the heat pipe increases, not only it is easy to fix but also firmly fixed.

公知のヒートパイプ内壁及びその上部に焼結した銅粉構造指示図である。It is a copper powder structure instruction | indication figure sintered to the well-known heat pipe inner wall and its upper part. 本考案のヒートパイプ内壁及びその上部に焼結した銅粉構造指示図である。It is a copper powder structure instruction | indication figure sintered to the heat pipe inner wall of this invention, and its upper part. 本考案の別実施例のヒートパイプ内壁その上部に焼結した銅粉構造指示図である。It is a copper powder structure instruction | indication figure sintered to the upper part of the heat pipe inner wall of another Example of this invention. 本考案の別実施例のヒートパイプ内壁その上部に焼結した銅粉構造指示図である。It is a copper powder structure instruction | indication figure sintered to the upper part of the heat pipe inner wall of another Example of this invention. 本考案の更に別の別実施例のヒートパイプ内壁その上部に焼結した銅粉構造指示図であるFIG. 6 is a structure diagram of a copper powder structure sintered on the inner wall of a heat pipe according to still another embodiment of the present invention.

符号の説明Explanation of symbols

1 金属管
2 凹溝
3 銅粉
4 凸体
5 凹抗
1 Metal pipe 2 Groove 3 Copper powder 4 Convex 5 Concave resistance

Claims (11)

金属管及び金属管内壁に焼結により固着した銅粉層から構成されたCPU冷却器の焼結式ヒートパイプにおいて、
金属管内壁に凹凸構造を形成し、該凹部に銅粉を埋め込むことにより固着力を向上したことを特徴とするCPU冷却器の焼結式ヒートパイプ。
In the sintered heat pipe of the CPU cooler composed of a metal powder and a copper powder layer fixed to the inner wall of the metal pipe by sintering,
A sintered heat pipe for a CPU cooler characterized in that a concave-convex structure is formed on the inner wall of a metal tube and copper powder is embedded in the concave portion to improve the fixing force.
前記金属管は、上記の内壁の凹凸構造として、金属管内壁上に一個もしくは一個以上の凹溝を形成し、凹溝内に銅粉が固着してなることを特徴とする請求項1記載のCPU冷却器の焼結式ヒートパイプ。   2. The metal pipe according to claim 1, wherein one or more concave grooves are formed on the inner wall of the metal pipe as the concave-convex structure of the inner wall, and copper powder is fixed in the concave grooves. Sintered heat pipe for CPU cooler. 前記金属管は、上記の内壁の凹凸構造として、内壁上に一個もしくは一個以上の凸体を形成し、凸体と凸体の間に凹溝が形成され、その凹溝に銅粉が固着してなることを特徴とする請求項1記載のCPU冷却器の焼結式ヒートパイプ。   The metal tube has one or more convex bodies on the inner wall as the concave-convex structure of the inner wall, and a concave groove is formed between the convex body and the convex body, and copper powder is fixed to the concave groove. The sintered heat pipe for a CPU cooler according to claim 1, wherein the heat pipe is a sintered heat pipe. 前記金属管内壁の凸体は、金属管内壁上に接着して設置、もしくは金属管と一体成型で形成してなることを特徴とする請求項3記載のCPU冷却器の焼結式ヒートパイプ。   4. A sintered heat pipe for a CPU cooler according to claim 3, wherein the convex body of the inner wall of the metal tube is formed by being bonded to the inner wall of the metal tube or integrally formed with the metal tube. 前記金属管内壁に設置する凹溝もしくは凸体は、長さ方向が金属管軸方向であることを特徴とする請求項2又は3若しくは4記載のCPU冷却器の焼結式ヒートパイプ。   The sintered heat pipe for a CPU cooler according to claim 2, wherein a length direction of the concave groove or the convex body installed on the inner wall of the metal tube is a metal tube axial direction. 前記金属管内壁に形成した凹溝若しくは凸体は、金属管円周方向に沿って均一に分布することを特徴とする請求項5記載のCPU冷却器の焼結式ヒートパイプ。   6. The sintered heat pipe for a CPU cooler according to claim 5, wherein the concave grooves or convex bodies formed on the inner wall of the metal pipe are uniformly distributed along the circumferential direction of the metal pipe. 前記金属管内壁の凹溝もしくは凸体は、断面形状が規則形状の矩形、半円形、扇形、鋸歯形、三角形、若しくは不規則形状であることを特徴とする請求項5記載のCPU冷却器の焼結式ヒートパイプ。   6. The CPU cooler according to claim 5, wherein the groove or the convex of the inner wall of the metal pipe has a rectangular, semicircular, fan-shaped, saw-toothed, triangular, or irregular shape with a regular cross-sectional shape. Sintered heat pipe. 上記の内壁の凹凸構造として、、金属管内壁に一個もしくは一個以上の凹抗を形成し、その凹抗に銅粉を固着してなることを特徴とする請求項1記載のCPU冷却器の焼結式ヒートパイプ。   2. The CPU cooler as claimed in claim 1, wherein the concave-convex structure of the inner wall is formed by forming one or more recesses on the inner wall of the metal tube and fixing copper powder to the recesses. Combined heat pipe. 前記凹抗は、規則形状の長方形、半球形、蜂の巣形、もしくは不規則形状であることを特徴とする請求項8記載のCPU冷却器の焼結式ヒートパイプ。   The sintered heat pipe of a CPU cooler according to claim 8, wherein the concave shape is a regular rectangular shape, a hemispherical shape, a honeycomb shape, or an irregular shape. 前記凹抗は、金属管内壁上に均一に分布することを特徴とする請求項8もしくは9記載のCPU冷却器の焼結式ヒートパイプ。   The sintered heat pipe for a CPU cooler according to claim 8 or 9, wherein the recesses are uniformly distributed on the inner wall of the metal tube. 金属管及び金属管内壁に固着した銅粉を含むCPU冷却器の焼結式ヒートパイプにおいて、
金属管内壁は凹凸構造で、且つ金属管内壁上の凹凸形状表面に銅粉が固着してなることを特徴とする請求項1記載のCPU冷却器の焼結式ヒートパイプ。


In the sintered heat pipe of the CPU cooler containing copper powder fixed to the metal tube and the inner wall of the metal tube,
The sintered heat pipe for a CPU cooler according to claim 1, wherein the inner wall of the metal tube has an uneven structure, and copper powder is fixed to the uneven surface on the inner wall of the metal tube.


JP2005000838U 2005-02-22 2005-02-22 CPU cooler sintered heat pipe Expired - Lifetime JP3110922U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000838U JP3110922U (en) 2005-02-22 2005-02-22 CPU cooler sintered heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000838U JP3110922U (en) 2005-02-22 2005-02-22 CPU cooler sintered heat pipe

Publications (1)

Publication Number Publication Date
JP3110922U true JP3110922U (en) 2005-07-07

Family

ID=43273439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000838U Expired - Lifetime JP3110922U (en) 2005-02-22 2005-02-22 CPU cooler sintered heat pipe

Country Status (1)

Country Link
JP (1) JP3110922U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011139005A1 (en) * 2010-05-07 2011-11-10 잘만테크㈜ Heat pipe production method, a heat pipe produced by means of the production method and a cooling device comprising the heat pipe
US8453718B2 (en) 2009-07-31 2013-06-04 Zhongshan Weiqiang Technology Co., Ltd. Sintered heat pipe, manufacturing method thereof and manufacturing method for groove tube thereof
CN114131016A (en) * 2021-12-01 2022-03-04 联德电子科技(常熟)有限公司 Method for processing coreless rod sintered heat pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453718B2 (en) 2009-07-31 2013-06-04 Zhongshan Weiqiang Technology Co., Ltd. Sintered heat pipe, manufacturing method thereof and manufacturing method for groove tube thereof
WO2011139005A1 (en) * 2010-05-07 2011-11-10 잘만테크㈜ Heat pipe production method, a heat pipe produced by means of the production method and a cooling device comprising the heat pipe
CN114131016A (en) * 2021-12-01 2022-03-04 联德电子科技(常熟)有限公司 Method for processing coreless rod sintered heat pipe

Similar Documents

Publication Publication Date Title
US20060175044A1 (en) Heat dissipating tube sintered with copper powders
US10923411B2 (en) Method for manufacturing an ultrathin heat dissipation structure
US20090020269A1 (en) Heat pipe with composite wick structure
US7213637B2 (en) Heat pipe operating fluid, heat pipe, and method for manufacturing the heat pipe
US10976112B2 (en) Heat pipe
US10077945B2 (en) Heat dissipation device
EP2713132A1 (en) A vapor-based heat transfer apparatus
JP3110922U (en) CPU cooler sintered heat pipe
EP0910235A1 (en) Composite heat sink
US9170058B2 (en) Heat pipe heat dissipation structure
US20050225943A1 (en) Heat dissipation module
US20100326644A1 (en) Plane-type heat-dissipating structure with high heat-dissipating effect and method for manufacturing the same
US20100155032A1 (en) Heat pipe and method of making the same
US20070068656A1 (en) Flat plate heat transfer device
US20110067844A1 (en) Planar heat pipe
US20060137859A1 (en) Heat pipe with high heat dissipating efficiency
JP3164517U (en) Heat pipe composite wick structure
US20060164809A1 (en) Heat dissipation module
WO2008153089A1 (en) Mechanism and x-ray tube apparatus
WO2016084751A1 (en) Heat-dissipating structure and method for manufacturing same
US9062920B2 (en) Heat pipe with sealed vesicle
US9746249B2 (en) Heat pipe structure
US20100229394A1 (en) Method for fabricating wick microstructures in heat pipes
US20110290451A1 (en) Heat cooler
TWM558388U (en) Heat-dissipation module

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 6

A624 Registrability report (other person)

Free format text: JAPANESE INTERMEDIATE CODE: A624

Effective date: 20090701

A623 Registrability report

Free format text: JAPANESE INTERMEDIATE CODE: A623

Effective date: 20090701

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 6