JP3109917B2 - Decay heat removal system for nuclear reactor - Google Patents

Decay heat removal system for nuclear reactor

Info

Publication number
JP3109917B2
JP3109917B2 JP04237858A JP23785892A JP3109917B2 JP 3109917 B2 JP3109917 B2 JP 3109917B2 JP 04237858 A JP04237858 A JP 04237858A JP 23785892 A JP23785892 A JP 23785892A JP 3109917 B2 JP3109917 B2 JP 3109917B2
Authority
JP
Japan
Prior art keywords
heat
heat pipe
reactor
removal system
decay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04237858A
Other languages
Japanese (ja)
Other versions
JPH0688893A (en
Inventor
喬雄 林
正夫 山田
一孝 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokai University Educational Systems
Original Assignee
Fuji Electric Co Ltd
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Tokai University Educational Systems filed Critical Fuji Electric Co Ltd
Priority to JP04237858A priority Critical patent/JP3109917B2/en
Publication of JPH0688893A publication Critical patent/JPH0688893A/en
Application granted granted Critical
Publication of JP3109917B2 publication Critical patent/JP3109917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、モジュラー高温ガス炉
プラントなどを実施対象とした原子炉の崩壊熱除去シス
テムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decay heat removal system for a nuclear reactor, for example, a modular HTGR plant.

【0002】[0002]

【従来の技術】頭記の原子炉では、主冷却系のほかに炉
の安全対策として、主冷却系の異常,故障などによる運
転停止後も継続して炉心より発生する崩壊熱を系外に除
熱する崩壊熱除去システムを装備するようにしている。
一方、前記の崩壊熱除去システムとして、原子炉圧力容
器を包囲して冷却パネルを配し、ここに輻射熱の形で受
熱した原子炉の崩壊熱を放熱器へ導いた上で冷却空気な
どにより冷却して系外のヒートシンク側に放熱するよう
にした方式のほかに、原子炉圧力容器の周域と系外のヒ
ートシンク(大気通風ダクト,あるいは冷却水プールな
ど)との間にヒートパイプ(密封パイプ内に少量の純粋
な作動液(例えば水)を封入したヒートパイプ)を配備
し、ヒートパイプの蒸発部で受熱した原子炉の崩壊熱を
ヒートパイプの蒸発/凝縮サイクルにより凝縮部へ潜熱
の形で熱移送し、凝縮部を通じて系外のヒートシンクに
放熱させるようにしたヒートパイプ応用の崩壊熱除去シ
ステムが特開平4−72597号で既に提案されてい
る。
2. Description of the Related Art In reactors mentioned above, in addition to the main cooling system, as a safety measure for the reactor, the decay heat generated from the reactor core is continuously output even after shutdown due to abnormality or failure of the main cooling system. It is equipped with a decay heat removal system that removes heat.
On the other hand, as the decay heat removal system, a cooling panel is arranged around the reactor pressure vessel, and the decay heat of the reactor received in the form of radiant heat is led to a radiator, and then cooled by cooling air or the like. In addition to the method in which heat is dissipated to the heat sink outside the system, a heat pipe (sealed pipe) is inserted between the surrounding area of the reactor pressure vessel and the heat sink (air ventilation duct or cooling water pool, etc.) outside the system. A heat pipe filled with a small amount of pure working fluid (eg, water) is placed inside the reactor, and the decay heat of the reactor received at the evaporator of the heat pipe is converted into latent heat by the heat pipe evaporation / condensation cycle to the condenser. Japanese Patent Application Laid-Open No. 4-72597 has already proposed a decay heat removal system using a heat pipe in which heat is transferred to a heat sink outside the system through a condenser.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記提案に
なる原子炉の崩壊熱除去システムでは機能面で次記のよ
うな問題点が残る。すなわち、図2の原理図で表すよう
にウィック付き密封パイプ内に少量の作動液のみを封入
した通常のヒートパイプでは、その熱移送能力は蒸発部
と凝縮部との温度差,および蒸発部,凝縮部での熱貫流
に対する熱抵抗,熱伝達率などによって決まり、ヒート
パイプの熱コンダクタンスは入熱量の大小に関係なくほ
ぼ一定である。
However, in the proposed decay heat removal system for a nuclear reactor, the following problems remain in terms of functions. That is, as shown in the principle diagram of FIG. 2, in a normal heat pipe in which only a small amount of hydraulic fluid is sealed in a sealed pipe with a wick, the heat transfer capacity is determined by the temperature difference between the evaporating section and the condensing section, and the evaporating section. The heat conductance of the heat pipe is almost constant irrespective of the magnitude of the heat input, which is determined by the thermal resistance to the heat flow through the condenser, the heat transfer coefficient, and the like.

【0004】したがって、かかるヒートパイプを採用し
た前記提案になる原子炉の崩壊熱除去システムでは、原
子炉の通常運転時においてもヒートパイプが作動し、原
子炉で発生した熱の一部がヒートパイプを通じて無駄に
系外のヒートシンクに放熱されることになり、この結果
として原子炉プラントの通常運転時の熱効率が低下す
る。
Accordingly, in the proposed decay heat removal system for a nuclear reactor employing the above heat pipe, the heat pipe operates even during normal operation of the nuclear reactor, and a part of the heat generated in the nuclear reactor is removed by the heat pipe. The heat is wasted to the heat sink outside the system through the process, and as a result, the thermal efficiency during the normal operation of the reactor plant is reduced.

【0005】本発明は上記の点にかんがみなされたもの
であり、その目的はヒートパイプ方式の崩壊熱除去シス
テムにおける前記課題を解決し、原子炉の通常運転時に
はヒートパイプの放熱能力を低く抑えて原子炉プラント
の熱損失を極力低減しつつ、事故発生により熱入力が増
大した場合には、ヒートパイプの放熱能力を最大限に高
めて崩壊熱を効率よく除熱できるような優れた機能を持
つ新規な原子炉の崩壊熱除去システムを提供することに
ある。
The present invention has been made in view of the above points, and an object of the present invention is to solve the above-mentioned problems in a heat pipe type decay heat removing system, and to suppress the heat radiating ability of a heat pipe during normal operation of a nuclear reactor. It has an excellent function to minimize the heat loss of the reactor plant and maximize the heat dissipation capacity of the heat pipe to efficiently remove the decay heat when the heat input increases due to an accident. A new reactor decay heat removal system is provided.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の崩壊熱除去システムにおいては、ヒートパ
イプとして、パイプ内に作動液とともに非凝縮性ガスを
封入した可変コンダクタンスヒートパイプを用るものと
する。また、前記崩壊熱除去システムの実施態様とし
て、可変コンダクタンスヒートパイプを、蒸発部とその
上部側に配置の凝縮器との間を作動液の蒸気拡散通路,
凝縮液還流通路で結び、かつ内部に作動液ととにも適量
の非凝縮性ガスを封入した分離型熱サイフォンとした構
成、および凝縮部の下流側に非凝縮性ガスのガス溜とし
て機能するガスリザーバを設けた構成などがある。
In order to achieve the above object, in the decay heat removal system of the present invention, a variable conductance heat pipe having a non-condensable gas sealed with a working fluid is used as a heat pipe. Shall be. Further, as an embodiment of the decay heat removal system, a variable conductance heat pipe, a vapor diffusion passage of the working fluid between the evaporator and the condenser disposed on the upper side thereof,
Separate thermosyphon with a condensate reflux path and an appropriate amount of non-condensable gas sealed with the working fluid inside, and a non-condensable gas reservoir downstream of the condensing section There is a configuration in which a gas reservoir is provided.

【0007】[0007]

【作用】上記の可変コンダクタンスヒートパイプは、図
3の原理図で表すようにヒートパイプ内に作動液ととも
に適量の非凝縮性ガスを積極的に封入したものであり、
ヒートパイプの蒸発部に熱入力を与えた際には凝縮部側
で作動液の蒸気とヒートパイプ内に封入した非凝縮性ガ
スとが分離して両者間に境界面が生じ、入熱量が小さい
場合には非凝縮性ガスが凝縮部の一部を封鎖して局部的
な凝縮不感部を形成し、凝縮部として機能する実効的な
熱伝達面積を残る凝縮活性部の範囲に制限する。つま
り、ヒートパイプの熱コンダクタンスが低く抑えられ
る。一方、蒸発部への入熱量が増大すると、作動液の蒸
気圧力が増加して非凝縮性ガスを圧縮するため、前記の
境界面が凝縮部の端部側(図面右側の隅)に移動して凝
縮部の熱伝達面積が増し、これにより熱コンダクタンス
が大となってヒートパイプの熱移送能力を高めるように
自己制御が働く。
The above-mentioned variable conductance heat pipe is a type in which an appropriate amount of non-condensable gas is positively sealed together with the working fluid in the heat pipe as shown in the principle diagram of FIG.
When heat input is given to the evaporating part of the heat pipe, the working fluid vapor and the non-condensable gas sealed in the heat pipe are separated on the condensing part side, and a boundary surface is created between them, and the heat input is small. In some cases, the non-condensable gas blocks a portion of the condensing portion to form a local condensation-insensitive portion, limiting the effective heat transfer area acting as a condensing portion to the remaining condensing active portion. That is, the heat conductance of the heat pipe is kept low. On the other hand, when the amount of heat input to the evaporating section increases, the vapor pressure of the working fluid increases and compresses the non-condensable gas, so that the boundary surface moves to the end side (right corner in the drawing) of the condensing section. As a result, the heat transfer area of the condensing section is increased, whereby the heat conductance is increased, and the self-control works so as to increase the heat transfer capacity of the heat pipe.

【0008】したがって、かかる可変コンダクタンスヒ
ートパイプを原子炉容器の周域とヒートシンクとの間に
またがって配備することにより、入熱量が比較的低い原
子炉の通常運転時には、前記した可変コンダクタンスヒ
ートパイプの自己制御特性により、ヒートパイプを通じ
て系外に無駄に捨てられる放熱量を低く抑えて原子炉プ
ラントの熱損失を最小限に抑えることができる。これに
対して、事故発生に伴う多量の熱が熱荷重としてヒート
パイプに加わった場合には、可変コンダクタンスヒート
パイプの持つ自己制御特性により熱コンダクタンスが自
動的に増大するよう切り替わるので、これにより凝縮器
の放熱容量が高まって崩壊熱を効率よく系外に放熱して
原子炉を安全に保護することができる。
Therefore, by disposing such a variable conductance heat pipe between the peripheral region of the reactor vessel and the heat sink, during normal operation of the reactor having a relatively low heat input, the above-described variable conductance heat pipe is used. Due to the self-control characteristic, the heat loss wasted to the outside of the system through the heat pipe can be kept low, and the heat loss of the reactor plant can be minimized. On the other hand, when a large amount of heat is applied to the heat pipe as a heat load due to the occurrence of the accident, the heat conductance switches automatically to increase due to the self-control characteristic of the variable conductance heat pipe. The heat dissipation capacity of the reactor increases, and the decay heat can be efficiently radiated out of the system to safely protect the reactor.

【0009】一方、可変コンダクタンスヒートパイプを
分離型熱サイフォンとして構成し、かつその凝縮器の下
流側に非凝縮性ガスのリザーバを追加して設けた構成に
よれば、ウィックを設けずに蒸気の凝縮液を凝縮器から
自然流下により蒸発部へ還流させることができてヒート
パイプの構造が簡略となるとともに、蒸発部への入熱量
が大きい動作状態では作動液の蒸気が非凝縮性ガスを圧
縮してガスリザーバ内に押し込め、凝縮器の全域が凝縮
活性部として有効に放熱機能に関与するようになるの
で、これによりヒートパイプの放熱容量が最大限にまで
増大して事故時における原子炉の崩壊熱を効率よく系外
のヒートシンクに放熱することができる。
On the other hand, according to the configuration in which the variable conductance heat pipe is configured as a separate thermosiphon and a reservoir for a non-condensable gas is additionally provided downstream of the condenser, a steam wick is not provided. The condensed liquid can be returned from the condenser to the evaporator by natural flow, simplifying the structure of the heat pipe, and in the operating state where the heat input to the evaporator is large, the vapor of the working fluid compresses the non-condensable gas. And the entire area of the condenser is effectively involved in the heat dissipation function as a condensation active part, which increases the heat dissipation capacity of the heat pipe to the maximum and causes the collapse of the reactor in the event of an accident. Heat can be efficiently radiated to a heat sink outside the system.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 実施例1: 図1において、1は原子炉炉心、2は原子炉圧力容器、
3は原子炉建屋、3aは原子炉を格納した炉室、4は炉
室外に設けたヒートシンクとしての煙突式大気通風ダク
トであり、原子炉圧力容器2の周域と大気通風ダクト4
との間にまたがって多数本の可変コンダクタンスヒート
パイプ5(図には1本のヒートパイプのみが描かれてい
る)が配置されている。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 In FIG. 1, 1 is a reactor core, 2 is a reactor pressure vessel,
Reference numeral 3 denotes a reactor building, 3a denotes a furnace room in which the reactor is housed, 4 denotes a chimney-type air ventilation duct as a heat sink provided outside the reactor chamber, and a surrounding area of the reactor pressure vessel 2 and an air ventilation duct 4
And a number of variable conductance heat pipes 5 (only one heat pipe is shown in the figure).

【0011】ここで、可変コンダクタンスヒートパイプ
5は先述のようにヒートパイプ内に作動液とともに適量
の非凝縮性ガスを積極的に封入したものであり、その構
成は原子炉圧力容器2の外周に対向して炉室3aの室内
周域に配備した蒸発部5aと、蒸発部5aより上方に位
置させて前記の大気通風ダクト4内に配置した凝縮器5
bと、該凝縮器5bの下流側に接続した後記の非凝縮性
ガスに対するガスリザーバ5cと、蒸発部5aと凝縮器
5bとの間に連通配管した作動液の蒸気拡散通路5d,
および凝縮液還流通路5eと、蒸気拡散通路5dと凝縮
液還流通路5eとの間を隔離した断熱隔壁5fとからな
る分離型熱サイフォンとして構成されている。なお、5
gは蒸発部5aに収容した作動液(例えば水)、5gは
非凝縮性ガスを示す。
Here, the variable conductance heat pipe 5 is one in which an appropriate amount of non-condensable gas is positively sealed together with the working fluid in the heat pipe as described above. An evaporator 5a disposed opposite to the inner peripheral area of the furnace chamber 3a, and a condenser 5 positioned above the evaporator 5a and disposed in the air ventilation duct 4.
b, a gas reservoir 5c for the non-condensable gas described later connected to the downstream side of the condenser 5b, and a vapor diffusion passage 5d for the working fluid, which is connected between the evaporator 5a and the condenser 5b.
Further, it is configured as a separated thermosiphon comprising a condensed liquid recirculation passage 5e, and a heat insulating partition wall 5f separating the vapor diffusion passage 5d and the condensed liquid recirculation passage 5e. In addition, 5
g indicates a working fluid (for example, water) contained in the evaporator 5a, and 5g indicates a non-condensable gas.

【0012】かかる構成で、原子炉炉心1に発生した崩
壊熱は輻射熱として原子炉圧力容器2より周囲に放散
し、可変コンダクタンスヒートパイプ5の蒸発部5aに
受熱される。これにより作動液5gが蒸発し、その蒸気
は矢印で表すように蒸気拡散通路5dを拡散して凝縮器
5bに移動し、ここから凝縮器5bの伝熱面を通じて大
気通風ダクト4を流れる空気側に放熱して凝縮した後、
還流通路5eを自重で流下して蒸発部5aに還流するよ
うに蒸発/凝縮サイクルを繰り返す。これにより、原子
炉の崩壊熱はヒートパイプの凝縮器5bを通じて系外の
ヒートシンクに放熱除去されることになる。
With this configuration, the decay heat generated in the reactor core 1 is radiated to the surroundings from the reactor pressure vessel 2 as radiant heat, and is received by the evaporating section 5a of the variable conductance heat pipe 5. As a result, the working fluid 5g evaporates, and the vapor diffuses through the vapor diffusion passage 5d and moves to the condenser 5b as indicated by an arrow, from which the air flows through the air ventilation duct 4 through the heat transfer surface of the condenser 5b. After condensing by releasing heat
The evaporating / condensing cycle is repeated so that the evaporating / condensing flow returns to the evaporating section 5a by flowing down the reflux path 5e by its own weight. As a result, the decay heat of the reactor is radiated and removed to the heat sink outside the system through the condenser 5b of the heat pipe.

【0013】ところで、蒸発部5aの入熱量が比較的少
ない原子炉の通常運転時には、ヒートパイプ5内におけ
る作動液5gの蒸気圧も小さいため、ヒートパイプ内に
封入されている非凝縮性ガス5hはガスリザーバ5cか
ら出て図4で述べたように凝縮器5bの伝熱面の一部を
局部的に封鎖し、凝縮器5bの実効的な放熱容量を低く
抑える。これにより、ヒートパイプ5を通じて系外に無
駄に捨てられる放熱量が最小限に抑えられる。つまり、
通常運転時における熱損失は僅少となる。
By the way, during normal operation of the nuclear reactor in which the heat input into the evaporating section 5a is relatively small, since the vapor pressure of the working fluid 5g in the heat pipe 5 is also small, the non-condensable gas 5h sealed in the heat pipe 5 As shown in FIG. 4, a part of the heat transfer surface of the condenser 5 b exits from the gas reservoir 5 c and partially blocks the heat transfer surface, thereby suppressing the effective heat dissipation capacity of the condenser 5 b. As a result, the amount of heat released to the outside of the system through the heat pipe 5 can be minimized. That is,
Heat loss during normal operation is negligible.

【0014】一方、事故発生により原子炉の崩壊熱が増
大した場合には、ヒートパイプ5への入熱量が増大して
ヒートパイプ内での作動液の蒸気圧が高まるため、非凝
縮性ガス5hは蒸気圧により圧縮されてその大半が凝縮
器5bから排除され、ガスリザーバ5cの中に押し込め
られる。これにより、凝縮器5bはその有効伝熱面積が
増して実効的な放熱容量が増加し、原子炉の崩壊熱は効
率よく系外のヒートシンクに放熱されるようになる。
On the other hand, when the decay heat of the reactor increases due to the occurrence of an accident, the amount of heat input to the heat pipe 5 increases and the vapor pressure of the working fluid in the heat pipe increases, so that the non-condensable gas 5 h Is compressed by the vapor pressure, most of which is removed from the condenser 5b and pushed into the gas reservoir 5c. As a result, the effective heat transfer area of the condenser 5b is increased to increase the effective heat dissipation capacity, and the decay heat of the reactor is efficiently radiated to the heat sink outside the system.

【0015】[0015]

【発明の効果】以上述べたように、本発明による原子炉
の崩壊熱除去システムによれば、崩壊熱除熱用のヒート
パイプとして可変コンダクタンスヒートパイプを採用し
たことにより、入熱量が比較的低い原子炉の通常運転時
には、可変コンダクタンスヒートパイプの自己制御特性
によりヒートパイプを通じて系外に放熱される放熱量を
低く抑えて原子炉プラントの無駄な熱損失を最小限に抑
えつつ、事故発生に伴う多量の熱が熱荷重としてヒート
パイプに加わった際には、ヒートパイプの自己制御特性
により熱コンダクタンスを自動的に増大させて原子炉の
崩壊熱を効率よく系外に放熱して原子炉を安全に保護す
ることができ、これにより原子炉の通常運転/事故時の
状態に即した効果的な放熱特性の得られる原子炉の崩壊
熱除去システムを提供することができる。
As described above, according to the decay heat removal system for a nuclear reactor according to the present invention, a variable conductance heat pipe is used as a heat pipe for decay heat removal, so that the heat input is relatively low. During normal operation of the reactor, the self-control characteristic of the variable conductance heat pipe minimizes the amount of heat radiated out of the system through the heat pipe, minimizing waste heat loss in the reactor plant, and When a large amount of heat is applied to the heat pipe as a thermal load, the heat conductance is automatically increased due to the self-control characteristics of the heat pipe, and the decay heat of the reactor is efficiently radiated out of the system to make the reactor safe. A decay heat removal system for the reactor that can provide effective heat dissipation characteristics in accordance with the normal operation / accident conditions of the reactor It can be provided.

【0016】また、前記の可変コンダクタンスヒートパ
イプを分離型熱サイフォンとなし、かつその凝縮器の下
流側に非凝縮性ガスのリザーバを追加して設けた構成に
よれば、ウィックなしに蒸気の凝縮液を凝縮器から自然
流下により蒸発部へ還流させことができて構造の簡略化
が図れるとともに、蒸発部への入熱量が大きい動作状態
では非凝縮性ガスをガスリザーバ内に押し込めて、ヒー
トパイプの放熱容量が最大限に増加するよう放熱特性の
自動切り替えが行えるなどの優れた効果を発揮する。
Further, according to the configuration in which the variable conductance heat pipe is formed as a separate type thermosiphon and an additional reservoir of a non-condensable gas is provided downstream of the condenser, the condensation of the steam without the wick is achieved. The liquid can be returned from the condenser to the evaporator by gravity flow to simplify the structure, and in the operating state where the heat input to the evaporator is large, the non-condensable gas is pushed into the gas reservoir and the heat pipe It has excellent effects such as automatic switching of heat dissipation characteristics so that the heat dissipation capacity is maximized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に対応する崩壊熱除去システ
ムの構成図
FIG. 1 is a configuration diagram of a decay heat removal system corresponding to a first embodiment of the present invention.

【図2】従来の崩壊熱除去システムにおける通常のヒー
トパイプの原理図
FIG. 2 is a principle diagram of a normal heat pipe in a conventional decay heat removal system.

【図3】可変コンダクタンスヒートパイプの原理図FIG. 3 is a principle diagram of a variable conductance heat pipe.

【符号の説明】[Explanation of symbols]

1 原子炉炉心 2 原子炉圧力容器 3 原子炉建屋 4 大気通風ダクト 5 可変コンダクタンスヒートパイプ 5a 蒸発部 5b 凝縮器 5c ガスリザーバ 5e 蒸気拡散通路 5f 凝縮液貫流通路 5g 作動液 5h 非凝縮性ガス DESCRIPTION OF SYMBOLS 1 Reactor core 2 Reactor pressure vessel 3 Reactor building 4 Atmospheric ventilation duct 5 Variable conductance heat pipe 5a Evaporator 5b Condenser 5c Gas reservoir 5e Vapor diffusion passage 5f Condensate flow passage 5g Working fluid 5h Non-condensable gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 一孝 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 平4−72597(JP,A) 1992年(第30回)春の年会 要旨集 p.423「M33 静的な原子炉崩壊熱除 去法に関する基礎的研究:(その3)分 離 型熱サイフォンによる崩壊熱除去シ ステム可能性の検討」 (58)調査した分野(Int.Cl.7,DB名) G21C 15/18 G21C 15/257 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazutaka Ohashi 1-1-1, Tanabe-Shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (56) References JP-A-4-72597 (JP, A) 1992 (30th) Spring Annual Meeting Abstracts p. 423 “M33 Basic Study on Static Reactor Decay Heat Removal Method: (Part 3) Examination of Possibility of Decay Heat Removal System by Separate Thermosyphon” (58) Fields investigated (Int. Cl. 7) , DB name) G21C 15/18 G21C 15/257 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子炉容器の周域と外部のヒートシンクと
の間にまたがってヒートパイプを配置し、該ヒートパイ
プの蒸発部で受熱した原子炉の崩壊熱をヒートパイプの
凝縮部を通じてヒートシンクへ放熱させる原子炉の崩壊
熱除去システムにおいて、前記ヒートパイプとして、パ
イプ内に作動液とともに非凝縮性ガスを封入した可変コ
ンダクタンスヒートパイプを用いたことを特徴とする原
子炉の崩壊熱除去システム。
1. A heat pipe is disposed between a peripheral region of a reactor vessel and an external heat sink, and decay heat of the reactor received by an evaporating portion of the heat pipe is transferred to a heat sink through a condensing portion of the heat pipe. A decay heat removal system for a nuclear reactor in which heat is dissipated, wherein a variable conductance heat pipe in which a non-condensable gas is sealed together with a working fluid in the pipe is used as the heat pipe.
【請求項2】請求項1記載の崩壊熱除去システムにおい
て、可変コンダクタンスヒートパイプが、蒸発部とその
上部側に配置の凝縮器との間を作動液の蒸気拡散通路,
凝縮液還流通路で結び、かつその内部に作動液ととにも
適量の非凝縮性ガスを封入した分離型熱サイフォンとし
てなることを特徴とする原子炉の崩壊熱除去システム。
2. The decay heat removal system according to claim 1, wherein the variable conductance heat pipe is provided between the evaporator and the condenser disposed above the evaporator, and a vapor diffusion passage for the working fluid.
A decay heat removal system for a nuclear reactor, wherein the decay heat removal system is configured as a separated thermosiphon that is connected by a condensate reflux passage and that contains an appropriate amount of non-condensable gas together with a working fluid therein.
【請求項3】請求項2記載の崩壊熱除去システムにおい
て、凝縮部の下流側に非凝縮性ガスのガス溜として機能
するガスリザーバを接続したことを特徴とする原子炉の
崩壊熱除去システム。
3. A decay heat removal system for a nuclear reactor according to claim 2, wherein a gas reservoir functioning as a non-condensable gas reservoir is connected to the downstream side of the condensing section.
【請求項4】請求項2記載の崩壊熱除去システムにおい
て、ヒートパイプの凝縮器,ガスリザーバを炉室外に設
けた冷却空気の通風ダクト内に配備したことを特徴とす
る原子炉の崩壊熱除去システム。
4. The decay heat removal system according to claim 2, wherein the condenser and the gas reservoir of the heat pipe are provided in a cooling air ventilation duct provided outside the reactor chamber. .
JP04237858A 1992-09-07 1992-09-07 Decay heat removal system for nuclear reactor Expired - Lifetime JP3109917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04237858A JP3109917B2 (en) 1992-09-07 1992-09-07 Decay heat removal system for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04237858A JP3109917B2 (en) 1992-09-07 1992-09-07 Decay heat removal system for nuclear reactor

Publications (2)

Publication Number Publication Date
JPH0688893A JPH0688893A (en) 1994-03-29
JP3109917B2 true JP3109917B2 (en) 2000-11-20

Family

ID=17021461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04237858A Expired - Lifetime JP3109917B2 (en) 1992-09-07 1992-09-07 Decay heat removal system for nuclear reactor

Country Status (1)

Country Link
JP (1) JP3109917B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102477A1 (en) 2006-03-07 2007-09-13 Mitsubishi Pencil Company, Limited Liquid applicator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635960B2 (en) * 2011-09-28 2014-12-03 日立Geニュークリア・エナジー株式会社 Nuclear reactor system
JP5871951B2 (en) * 2011-12-02 2016-03-01 三菱重工業株式会社 Fluid cooling device, nuclear plant equipped with fluid cooling device
JP5931620B2 (en) * 2012-07-17 2016-06-08 三菱重工業株式会社 Fluid cooling device
CN204596431U (en) * 2014-04-03 2015-08-26 国核(北京)科学技术研究院有限公司 Passive containment thermal conduction system and the pressurized water reactor with it
JP6590719B2 (en) * 2016-02-05 2019-10-16 日立Geニュークリア・エナジー株式会社 Loop-type thermosiphon heat pipe and nuclear reactor equipped with the same
KR102071595B1 (en) * 2018-03-09 2020-01-30 한국원자력연구원 Passive reactor cavity cooling system
JP7333917B2 (en) * 2020-05-22 2023-08-28 東京電力ホールディングス株式会社 heat pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1992年(第30回)春の年会 要旨集 p.423「M33 静的な原子炉崩壊熱除去法に関する基礎的研究:(その3)分離 型熱サイフォンによる崩壊熱除去システム可能性の検討」

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102477A1 (en) 2006-03-07 2007-09-13 Mitsubishi Pencil Company, Limited Liquid applicator

Also Published As

Publication number Publication date
JPH0688893A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
US5276720A (en) Emergency cooling system and method
JP2642763B2 (en) Reactor system
US4941530A (en) Enhanced air fin cooling arrangement for a hermetically sealed modular electronic cold plate utilizing reflux cooling
US4944344A (en) Hermetically sealed modular electronic cold plate utilizing reflux cooling
JP3109917B2 (en) Decay heat removal system for nuclear reactor
EP0397509B1 (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
JPH02201293A (en) Natural circulation type passive cooling system for containment construction
JPH0769455B2 (en) Nuclear reactor system
JP2001166081A (en) Cooling of reactor core catcher by heat pipe
JP5555669B2 (en) Nuclear power plant and fuel pool water cooling method
US7680237B1 (en) Containment vessel and method of operating a condenser in a nuclear power plant
JP2993155B2 (en) Reactor, reactor cooling equipment, and nuclear power plant
US20020070486A1 (en) Method and device for removing decay heat from liquid metal reactors using thermosyphon
JPH0529279B2 (en)
JPH04254795A (en) Cooling system of nuclear power station
JP3666836B2 (en) Reactor containment cooling equipment
JPH04290994A (en) Reactor container vessel
JPH0472597A (en) Decay heat removing device for high temperature gas-cooled reactor
Razzaque et al. A novel concept of passive shutdown heat removal in advanced nuclear reactors—Applications to PRISM and MHTGR
JPS5869362A (en) Solar heat collector
JP6705730B2 (en) Nuclear power generation system
JPH0616306Y2 (en) heat pipe
JPH04172291A (en) Reactor container
EP0818044A1 (en) A system for the dissipation of heat from the interior of a containment structure of a nuclear reactor
RU2219455C2 (en) Thermal tube

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

EXPY Cancellation because of completion of term