JP3109003B2 - Microwave heating equipment - Google Patents

Microwave heating equipment

Info

Publication number
JP3109003B2
JP3109003B2 JP02260634A JP26063490A JP3109003B2 JP 3109003 B2 JP3109003 B2 JP 3109003B2 JP 02260634 A JP02260634 A JP 02260634A JP 26063490 A JP26063490 A JP 26063490A JP 3109003 B2 JP3109003 B2 JP 3109003B2
Authority
JP
Japan
Prior art keywords
heated
microwave
metal plate
thickness
irradiation furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02260634A
Other languages
Japanese (ja)
Other versions
JPH04141981A (en
Inventor
稔 工藤
和章 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Denshi Co Ltd
Original Assignee
Micro Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Denshi Co Ltd filed Critical Micro Denshi Co Ltd
Priority to JP02260634A priority Critical patent/JP3109003B2/en
Publication of JPH04141981A publication Critical patent/JPH04141981A/en
Application granted granted Critical
Publication of JP3109003B2 publication Critical patent/JP3109003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はマイクロ波加熱装置に係り、特に、棒状ある
いは板状のゴム、プラスチック、木材等のいわゆる誘電
体をマイクロ波を利用して局部的に加熱するに好適なマ
イクロ波加熱装置に関する。
Description: TECHNICAL FIELD The present invention relates to a microwave heating apparatus, and more particularly to a so-called dielectric material such as a rod-shaped or plate-shaped rubber, plastic, wood, or the like, which is locally applied using microwaves. The present invention relates to a microwave heating device suitable for heating to a low temperature.

「従来の技術」 水道用送水管の接続個所に使用されるゴム製のガスケ
ットリングの直径は、数cmから数mまで多種類のものが
使用されている。直径30cm以上のガスケットリングは押
出成形機を用いて線状に成形したゴムを連続加硫して所
定の長さに切断し、両端の切断面に加硫性のゴム接着剤
を塗布し、電気ヒーターなどで加熱した金型内に両端面
を突き合わせるように挿入して、電気ヒーターからの熱
伝導によって接着剤を加熱加硫してリング状に接続す
る。
[Prior Art] Various types of rubber gasket rings having diameters ranging from several cm to several meters are used for connecting points of water supply pipes for water supply. A gasket ring with a diameter of 30 cm or more is continuously vulcanized by using an extruder to vulcanize the rubber molded into a linear shape and cut to a predetermined length. The adhesive is inserted into a mold heated by a heater or the like so that the both end surfaces abut each other, and the adhesive is heated and vulcanized by heat conduction from an electric heater to be connected in a ring shape.

圧縮空気を送るホースで使用圧力が10kg/cm2以下のも
のはナイロンやポリウレタンなどのプラスチックの押出
成形ホースが多く使用されている。このホースと空圧機
器との接続には金属製の継手が使用されるが、ホースと
継手の接続にはホースの内面と外面を機械的に締め付け
る構造のものが多く、継手の構造が複雑で高価である。
継手付の定尺ホースを量産する場合、継手側のホースに
挿入されるパイプの外径をホースの内径より少し大きく
作り、パイプの外周に接着剤を塗布しておき、ホースの
接続端をヒーターで加熱して軟化させてから、ホースに
継手のパイプを挿入接着している。
Extrusion hoses made of plastic such as nylon or polyurethane are often used for hoses that send compressed air and have a working pressure of 10 kg / cm 2 or less. A metal joint is used to connect the hose to the pneumatic equipment.However, the connection between the hose and the joint often has a structure in which the inner and outer surfaces of the hose are mechanically tightened. Expensive.
When mass-producing fixed-length hoses with fittings, make the outer diameter of the pipe inserted into the hose on the fitting side slightly larger than the inner diameter of the hose, apply adhesive to the outer circumference of the pipe, and heat the connection end of the hose with a heater. After softening by heating, the pipe of the joint is inserted and bonded to the hose.

この結果、ホースの外周を締め付ける部品は不要とな
り、安価となる。
As a result, a component for tightening the outer periphery of the hose becomes unnecessary and the cost is reduced.

この他に、本の背表紙の接着乾燥や木板の木口に化粧
板を加熱接着する用途、さらに、特願昭48−59976号に
示されるように薬液を封入したアンプルの下部をマイク
ロ波加熱して対流によって薬液全体を加熱滅菌する用途
などがある。
In addition to this, it is also used to bond and dry the spine of a book and to heat and bond a decorative board to the wood opening of a wooden board. There is an application to heat sterilize the whole drug solution by convection.

以上に例を示す如く、産業分野の加工の過程で材料の
端部を局部的に加熱する用途は数多く存在する。
As shown above, there are many uses for locally heating the edge of a material in the course of processing in the industrial field.

従来の局部加熱の方法は、熱した金属板を加熱材料に
押し当てて、金属板からの熱伝導によって加熱する方法
や、熱した空気を加熱材料に吹き付ける方法、加熱した
水や油などの液体に加熱材料の端部を浸す方法などが用
いられている。
Conventional local heating methods include a method of pressing a heated metal plate against a heating material and heating by heat conduction from the metal plate, a method of blowing heated air to the heating material, and a method of heating liquid such as water or oil. For example, a method of dipping an end portion of a heating material into a material is used.

しかし、ゴム、プラスチック、木材などのいわゆる誘
電体材料は、熱伝導の低い物質が多く、熱の受け渡され
る表面から加熱材料内部への熱伝導に時間がかかり、作
業能率、エネルギー効率が低い。その上、作業環境が高
温となるため、働き手の少ない職場となっている。
However, so-called dielectric materials such as rubber, plastic, and wood often have low heat conductivity, and it takes time to conduct heat from the surface through which heat is transferred to the inside of the heating material, resulting in low work efficiency and low energy efficiency. In addition, the work environment is hot, which makes the workplace less workable.

そこで、マイクロ波の誘電体発熱の原理を応用して材
料の端部のみを局部的にマイクロ波電界に曝露すること
により、熱伝導にたよることなく短時間で加熱すること
が必要となった。
Therefore, it was necessary to heat the material in a short time without relying on heat conduction by locally exposing only the edge of the material to the microwave electric field by applying the principle of microwave dielectric heating. .

局部をマイクロ波電界中に曝露する方法としては、金
属がマイクロ波を反射することを利用して、第5図に示
すように、被加熱材50を金属管51内に挿入し、加熱材50
のうち加熱に必要な部分のみを金属管51から外に出し、
被加熱材50と金属管51をマイクロ波照射オーブン内に挿
入して所定の時間マイクロ波を照射する方法が提案され
ている。
As a method of exposing a local portion to a microwave electric field, a material to be heated 50 is inserted into a metal tube 51 as shown in FIG.
Out only the part necessary for heating out of the metal tube 51,
A method has been proposed in which the material to be heated 50 and the metal tube 51 are inserted into a microwave irradiation oven to irradiate microwaves for a predetermined time.

ところが、この方法では被加熱材50全体をオーブン内
に挿入しなければならず、オーブンとして大型なものが
必要となり、実用的ではない。
However, in this method, the entire material to be heated 50 must be inserted into the oven, and a large oven is required, which is not practical.

一方、第6図及び第7図に示すように、マイクロ波発
振器48とマイクロ波吸収器49に接続された導波管52の壁
面に、被加熱材50端部を挿入可能なスリット53を形成
し、コンベア54によって移送する被加熱材50の端部をス
リット53を介して導波管52内に挿入した状態で被加熱材
50を移動させ、この移動する間に被加熱材50端部にマイ
クロ波を照射する方法が提案されている。
On the other hand, as shown in FIGS. 6 and 7, a slit 53 is formed on the wall surface of the waveguide 52 connected to the microwave oscillator 48 and the microwave absorber 49 so that the end of the material 50 to be heated can be inserted. Then, with the end of the heated material 50 transferred by the conveyor 54 inserted into the waveguide 52 through the slit 53,
A method has been proposed in which the heating member 50 is moved, and the end of the heated material 50 is irradiated with microwaves during the movement.

「発明が解決しようとする課題」 第5図に示す方法では、被加熱材50端部に限らず、加
熱すべき部分を金属管51から露出させれば被加熱材50を
加熱することはできるが、被加熱材50の幅がマイクロ波
の1/2波長より広くなると、金属管51は導波管のように
マイクロ波を伝搬することが可能となり、加熱部を金属
管51から露出した部分に限定することができなくなる。
[Problems to be Solved by the Invention] In the method shown in FIG. 5, the material to be heated 50 can be heated by exposing not only the end of the material to be heated 50 but also the portion to be heated from the metal tube 51. However, when the width of the material to be heated 50 is wider than a half wavelength of the microwave, the metal tube 51 can propagate the microwave like a waveguide, and the heating portion is exposed from the metal tube 51. Can not be limited to.

すなわち、特定の部分のみを加熱することができなく
なる。
That is, it becomes impossible to heat only a specific portion.

一方、第6図及び第7図に示す方法では、スリット53
内に挿入された部分のみを加熱することはできるが、被
加熱材50としてゴムやプラスチックやよく乾燥した木材
等を用いた場合、これらの材料はマイクロ波吸収が少な
いので、これらの材料を局部的に加熱するには充分では
ない。
On the other hand, in the method shown in FIGS.
It is possible to heat only the part inserted in the inside, but if rubber, plastic, or well-dried wood is used as the material to be heated 50, these materials have low microwave absorption, so these materials are locally Is not enough to heat it.

そこで、マイクロ波吸収率を向上させるために、導波
管52の長さを長くして導波管52のスリット53内に多数の
被加熱材50を挿入する方法も考えられるが、この方法で
は装置が大型化すると共に高価なものになるほか、広い
設備面積が必要となる。例えば、天然ゴムの棒(10mm×
20mm)の端部10mmをスリット53内に挿入し、室温から15
0℃まで昇温するマイクロ波加熱として、天然ゴムの棒
を50mmピッチで40本順次スリット53内に挿入し、これら
にマイクロ波を照射したところ、マイクロ波吸収率とし
て約40%という値が得られた。
Therefore, in order to improve the microwave absorptivity, a method of increasing the length of the waveguide 52 and inserting a large number of materials to be heated 50 into the slits 53 of the waveguide 52 is also considered. In addition to an increase in the size of the device, the device becomes expensive and requires a large equipment area. For example, a natural rubber rod (10mm ×
20mm) Insert the end 10mm into the slit 53
As microwave heating to raise the temperature to 0 ° C, 40 natural rubber rods were sequentially inserted into the slit 53 at a pitch of 50 mm into the slit 53, and these were irradiated with microwaves. As a result, a value of about 40% was obtained as the microwave absorptivity. Was done.

この場合導波管52の長さは2m以上必要となるのに対し
て、マイクロ波吸収率が約40%では設備面積としては電
気ヒーターを用いたものと何ら変わることがなく、装置
を小型化するのは困難となる。
In this case, the length of the waveguide 52 is required to be 2 m or more, but if the microwave absorptivity is about 40%, the equipment area is no different from that using an electric heater, and the device is downsized. It will be difficult to do.

本発明の目的は、照射炉の長さを最小限に抑えてマイ
クロ波吸収率を高めることができるマイクロ波加熱装置
を提案することにある。
An object of the present invention is to propose a microwave heating device capable of increasing the microwave absorptivity by minimizing the length of the irradiation furnace.

「課題を解決するための手段」 上記目的を達成するため、本発明では、マイクロ波を
発生するマイクロ波発生手段と、マイクロ波発生手段か
らのマイクロ波を伝搬する筒状の照射炉と、照射炉の筒
軸方向に沿って被加熱材を移送する移送手段とを備え、
前記照射炉の壁面に被加熱材の移送方向に沿って延在さ
せる被加熱部材挿入用スリットを形成し、さらに、前記
スリットと対向させ、かつ、このスリットを延在させる
方向に沿うようにして照射炉内に配置したリッジ金属板
を設けると共に、このリッジ金属板の肉厚をL、被加熱
材の肉厚をdとしたとき、リッジ金属板の肉厚Lが(1/
2)d≦L≦dの条件を満たすように構成したことを特
徴とするマイクロ波加熱装置を提案する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a microwave generating means for generating microwaves, a cylindrical irradiation furnace for transmitting microwaves from the microwave generating means, Transfer means for transferring the material to be heated along the axial direction of the furnace,
A slit for inserting a member to be heated is formed on the wall surface of the irradiation furnace so as to extend along the direction in which the material to be heated is transferred.Further, the slit is opposed to the slit, and along the direction in which the slit extends. When a ridge metal plate arranged in the irradiation furnace is provided, and the thickness of the ridge metal plate is L and the thickness of the material to be heated is d, the thickness L of the ridge metal plate is (1 /
2) A microwave heating device characterized by satisfying the condition of d ≦ L ≦ d is proposed.

「作用」 被加熱材の一部をスリットを介して照射炉内に挿入し
た状態で被加熱材をスリットに沿って順次移送するとき
に、マイクロ波発生手段から照射炉内にマイクロ波を照
射すると、マイクロ波が照射炉の壁面に沿って順次伝搬
する。
When the material to be heated is sequentially transferred along the slit while a part of the material to be heated is inserted into the irradiation furnace through the slit, the microwave irradiation means irradiates the irradiation furnace with the microwave. The microwaves propagate sequentially along the wall of the irradiation furnace.

このとき、リッジ金属板によって集束された電気力線
が被加熱材中を通り、被加熱材を効率良く誘電加熱する
ことができる。
At this time, the lines of electric force converged by the ridge metal plate pass through the material to be heated, and the material to be heated can be efficiently subjected to dielectric heating.

また、照射炉のリッジ金属板の肉厚Lが被加熱材の肉
厚dに対して(1/2)d≦L≦dの条件を満たすように
構成してあるので、リッジ金属板から発生する電気力線
が被加熱材中を均一に通り、被加熱材に加熱むらが生ず
ることを抑制することができる。
Further, since the thickness L of the ridge metal plate of the irradiation furnace satisfies the condition of (1/2) d ≦ L ≦ d with respect to the thickness d of the material to be heated, the ridge metal plate is generated from the ridge metal plate. The lines of electric force that pass through the material to be heated uniformly, thereby suppressing the occurrence of uneven heating in the material to be heated.

「実施例」 以下、本発明の一実施例を図面に沿って説明する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図において、筒状の照射炉10の両端には外部導体
11、12を介してマイクロ波発振器13とマイクロ波吸収器
14が接続されている。
In FIG. 1, external conductors are provided at both ends of a cylindrical irradiation furnace 10.
Microwave oscillator 13 and microwave absorber via 11, 12
14 are connected.

照射炉10の壁面には、第2図に示すように、照射炉10
の軸方向に沿ってスリット15が形成されており、照射炉
10内にはスリット15と対向してリッジ金属板16がねじ17
によってねじ止めされている。
As shown in FIG. 2, the irradiation furnace 10
A slit 15 is formed along the axial direction of the irradiation furnace.
Ridge metal plate 16 has a screw 17 facing slit 15 in 10
Screwed by.

スリット15は、水道用送水管のゴム製ガスケットリン
グを作るための天然ゴム製の棒等の被加熱材18端部及び
ベルト19の端部が挿入可能に形成されている。
The slit 15 is formed such that an end of a heated material 18 such as a natural rubber rod for forming a rubber gasket ring of a water supply pipe for water and an end of a belt 19 can be inserted.

ベルト19は照射炉10の壁面に沿って配置されたベルト
コンベア機構によって移動するようになっており、マイ
クロ波吸収の極めて少ないガラス繊維に4フッ化エチレ
ン樹脂をコーテングしたものが用いられている。
The belt 19 is moved by a belt conveyor mechanism arranged along the wall surface of the irradiation furnace 10, and is made of a glass fiber that absorbs very little microwave and coated with a tetrafluoroethylene resin.

ここで、リツジ金属板16を形成するに際しては、リッ
ジ金属板16の肉厚をLとし、被加熱材18の肉厚をdとし
たとき、(1/2)d≦L≦dの条件を満たすように構成
されている。
Here, when forming the ridge metal plate 16, when the thickness of the ridge metal plate 16 is L and the thickness of the material to be heated 18 is d, the condition of (1/2) d ≦ L ≦ d is satisfied. It is configured to meet.

すなわち、被加熱材18内を通る電気力線の数はリッジ
金属板16の肉厚Lと被加熱材18の肉厚dとの相互関係に
よって決定されるので、被加熱材18の肉厚dに対し最適
な肉厚Lを有するリッジ金属板16を形成することが必要
となる。
That is, the number of lines of electric force passing through the material 18 to be heated is determined by the correlation between the thickness L of the ridge metal plate 16 and the thickness d of the material 18 to be heated. Therefore, it is necessary to form a ridge metal plate 16 having an optimum thickness L.

すなわち、第3図に示すように、リッジ金属板16の肉
厚Lを被加熱材18の肉厚dより大きくしたところ、リッ
ジ金属板16から被加熱材18に向かう電気力線は点線で示
すように、被加熱材18の外側を通るものが多くなる。
That is, as shown in FIG. 3, when the thickness L of the ridge metal plate 16 is made larger than the thickness d of the material 18 to be heated, the lines of electric force from the ridge metal plate 16 to the material 18 to be heated are indicated by dotted lines. As described above, many objects pass outside the material to be heated 18.

被加熱材18の外側を通る電気力線は被加熱材18の加熱
には寄与しないので、被加熱材18のマイクロ波吸収率が
低下することになる。
Since the lines of electric force passing outside the material to be heated 18 do not contribute to the heating of the material to be heated 18, the microwave absorptivity of the material to be heated 18 is reduced.

一方、第4図に示すように、リッジ金属板16の肉厚L
を被加熱材18の肉厚dの1/2以下にしたところ、リッジ
金属板16から発生する電気力線が被加熱材18の端面中程
に集中し、被加熱材18にホットスポットが生じたり、ま
た、被加熱材18に電気力線の通らない部位20が形成され
た加熱むらが発生することが確認された。
On the other hand, as shown in FIG.
Is reduced to half or less of the thickness d of the material 18 to be heated, the lines of electric force generated from the ridge metal plate 16 are concentrated in the middle of the end face of the material 18 to be heated, and a hot spot is generated on the material 18 to be heated. Also, it was confirmed that unevenness in heating occurred in which a portion 20 through which the lines of electric force did not pass was formed in the material 18 to be heated.

そこで、本実施例では、リッジ金属板16の肉厚Lを被
加熱材18の肉厚dに対して前述した条件を満たすように
形成した。
Therefore, in the present embodiment, the thickness L of the ridge metal plate 16 is formed so as to satisfy the above-described condition with respect to the thickness d of the material 18 to be heated.

以上の構成において、ベルト19上に載置された被加熱
材18をベルト19の移動に合わせて照射炉10に沿って移動
させる過程で、マイクロ波発振器13からマイクロ波を発
生すると、このマイクロ波は外部導体11を介して照射炉
10内を伝搬する。
In the above configuration, when microwaves are generated from the microwave oscillator 13 in the process of moving the material to be heated 18 placed on the belt 19 along the irradiation furnace 10 in accordance with the movement of the belt 19, this microwave Is the irradiation furnace through the external conductor 11
Propagating in 10.

このマイクロ波は照射炉10内を伝搬する過程で被加熱
材18端部に吸収されて減衰していくが、吸収されずに残
ったマイクロ波は外部導体12を介してマイクロ波吸収器
14に吸収される。
This microwave is absorbed by the end of the material to be heated 18 and attenuated in the process of propagating in the irradiation furnace 10, but the remaining microwave without being absorbed is passed through the external conductor 12 to the microwave absorber.
Absorbed in 14.

照射炉10内にマイクロ波が伝搬されている状態で被加
熱材18がベルト19によって移動すると、スリット15から
照射炉10内に挿入された被加熱材18端部にマイクロ波が
照射され、被加熱材18を局部的に加熱することができ
る。このとき、照射炉10内にはリッジ金属板16が配置さ
れているため、照射炉10としては従来のような方形導波
管を用いた場合よりも遮断波長が長くなるので、照射炉
10の口径を小さくすることができる。
When the material to be heated 18 is moved by the belt 19 while the microwave is being propagated into the irradiation furnace 10, the microwave is irradiated to the end of the material to be heated 18 inserted into the irradiation furnace 10 from the slit 15, and the microwave is irradiated. The heating material 18 can be locally heated. At this time, since the ridge metal plate 16 is arranged in the irradiation furnace 10, the cutoff wavelength becomes longer than that in the case of using a conventional rectangular waveguide as the irradiation furnace 10, so that the irradiation furnace
10 caliber can be reduced.

また、このような照射炉10の場合には、方形導波管を
用いた照射炉に比べてマイクロ波伝搬時の特性インピー
ダンスが低いので、比誘電率の大きな被加熱材でも整合
性が良く、マイクロ波の反射損失を少なくすることがで
きる。
In addition, in the case of such an irradiation furnace 10, since the characteristic impedance at the time of microwave propagation is lower than that of the irradiation furnace using a rectangular waveguide, good matching is achieved even with a material to be heated having a large relative dielectric constant, Microwave reflection loss can be reduced.

また、本実施例における装置を用いてマイクロ波吸収
率を測定したところ、従来の方形導波管を用いた照射炉
と同じマイクロ波吸収率を得るのに、照射炉10の長さが
従来の32%ですむことが確認された。
In addition, when the microwave absorption was measured using the apparatus in this embodiment, the length of the irradiation furnace 10 was reduced to obtain the same microwave absorption as the irradiation furnace using the conventional rectangular waveguide. It was confirmed that only 32% was required.

さらに、被加熱材18の端面の温度分布を測定したとこ
ろ、被加熱材18の肉厚dとリッジ金属板16の肉厚Lの比
d/Lが1.0〜0.8の間では150℃を中心として±1.5℃、d/L
が0.6では±3.5℃、d/Lが0.5では±5℃の温度分布で最
も温度むらの大きいd/Lが0.5の場合でも、接着の強度が
低下することはなかった。
Further, when the temperature distribution on the end face of the heated material 18 was measured, the ratio of the thickness d of the heated material 18 to the thickness L of the ridge metal plate 16 was determined.
When d / L is between 1.0 and 0.8, ± 1.5 ° C around 150 ° C, d / L
However, when d / L is 0.5 and d / L is 0.5 and d / L is 0.5 and d / L is 0.5, the bonding strength is not reduced even when d / L is 0.5.

そしてd/Lが1.0〜0.5までの間ではマイクロ波吸収率
が変化しないことが確認された。
And it was confirmed that the microwave absorptance did not change when d / L was between 1.0 and 0.5.

「発明の効果」 以上説明した通り、本発明によれば、照射炉内にリッ
ジ金属板を配置し、被加熱材中を通る電気力線の数を増
大させるようにしたため、装置の小型化を図ることがで
きると共に、マイクロ波吸収率を高めることができる。
[Effects of the Invention] As described above, according to the present invention, the ridge metal plate is arranged in the irradiation furnace to increase the number of lines of electric force passing through the material to be heated. And the microwave absorptivity can be increased.

また、照射炉内のリッジ金属板の肉厚と被加熱材の肉
厚との関係を一定の関係に定めたため、被加熱材にホッ
トスポットが生じることがなく、被加熱材を均一に加熱
することができ、品質の向上に寄与することができる。
In addition, since the relationship between the thickness of the ridge metal plate in the irradiation furnace and the thickness of the material to be heated is fixed, a hot spot does not occur in the material to be heated, and the material to be heated is uniformly heated. And can contribute to the improvement of quality.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す全体構成図、第2図は
照射炉の要部断面図、第3図はリッジ金属板と被加熱材
の肉厚との関係を説明するための説明図、第4図はリレ
ッジ金属板と被加熱材の肉厚との関係を説明するための
他の説明図、第5図は従来例の要部斜視図、第6図は他
の従来例の要部斜視図、第7図は第6図の要部断面図で
ある。 10……照射炉 11、12……外部導体 13……マイクロ波発振器 14……マイクロ波吸収器 15……スリット 16……リッジ金属板 18……被加熱材 19……ベルト
FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, FIG. 2 is a sectional view of a main part of an irradiation furnace, and FIG. 3 is a diagram for explaining a relationship between a ridge metal plate and a thickness of a material to be heated. FIG. 4 is another explanatory view for explaining the relationship between the thickness of the metal plate to be heated and the thickness of the material to be heated, FIG. 5 is a perspective view of a main part of a conventional example, and FIG. 6 is another conventional example. FIG. 7 is a sectional view of a main part of FIG. 10 Irradiation furnace 11, 12 External conductor 13 Microwave oscillator 14 Microwave absorber 15 Slit 16 Ridge metal plate 18 Material to be heated 19 Belt

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マイクロ波を発生するマイクロ波発生手段
と、マイクロ波発生手段からのマイクロ波を伝搬する筒
状の照射炉と、照射炉の筒軸方向に沿って被加熱材を移
送する移送手段とを備え、前記照射炉の壁面に被加熱材
の移送方向に沿って延在させる被加熱部材挿入用スリッ
トを形成し、さらに、前記スリットと対向させ、かつ、
このスリットを延在させる方向に沿うようにして照射炉
内に配置したリッジ金属板を設けると共に、このリッジ
金属板の肉厚をL、被加熱材の肉厚をdとしたとき、リ
ッジ金属板の肉厚Lが(1/2)d≦L≦dの条件を満た
すように構成したことを特徴とするマイクロ波加熱装
置。
1. A microwave generating means for generating microwaves, a cylindrical irradiation furnace for transmitting microwaves from the microwave generating means, and a transfer for transferring a material to be heated along a cylindrical axis of the irradiation furnace. Means, a slit for inserting a member to be heated is formed on the wall surface of the irradiation furnace to extend along the direction of transfer of the material to be heated, and further, opposed to the slit, and,
When a ridge metal plate is provided in the irradiation furnace along the direction in which the slit extends, and the thickness of the ridge metal plate is L and the thickness of the material to be heated is d, the ridge metal plate Characterized in that the thickness L of the microwave heating device satisfies the condition of (1/2) d ≦ L ≦ d.
JP02260634A 1990-10-01 1990-10-01 Microwave heating equipment Expired - Fee Related JP3109003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02260634A JP3109003B2 (en) 1990-10-01 1990-10-01 Microwave heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02260634A JP3109003B2 (en) 1990-10-01 1990-10-01 Microwave heating equipment

Publications (2)

Publication Number Publication Date
JPH04141981A JPH04141981A (en) 1992-05-15
JP3109003B2 true JP3109003B2 (en) 2000-11-13

Family

ID=17350648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02260634A Expired - Fee Related JP3109003B2 (en) 1990-10-01 1990-10-01 Microwave heating equipment

Country Status (1)

Country Link
JP (1) JP3109003B2 (en)

Also Published As

Publication number Publication date
JPH04141981A (en) 1992-05-15

Similar Documents

Publication Publication Date Title
DE3587589D1 (en) Welding pipes and fittings made of fluoropolymers.
DE3264926D1 (en) Welding joint for plastics tubes
MY110746A (en) Method and apparatus for connecting resin pipes.
FR2353381A1 (en) ASSEMBLY PROCESS BY WELDING PLASTIC TUBES AND CONNECTING FOR SUCH ASSEMBLY
JPS644332A (en) Device and method of melting and joining connecting end section of piping system part
AU569688B2 (en) Pipe coupler of weldable plastics material
ATE6169T1 (en) WELDING CONNECTION FOR PLASTIC PIPES.
US3789188A (en) Insulated pipe line for heated materials
AU2014338554B2 (en) Method and device for applying protective sheeting of polymer material to a pipeline
JP3109003B2 (en) Microwave heating equipment
JP3109002B2 (en) Microwave heating equipment
GB2104616A (en) Method of wrapping tape around a pipe
US4329135A (en) Device for the continuous thermal or thermo-chemical treatment of objects by emission of micro-waves
JPH06507752A (en) Method of heating a medium passing through an insulating tube and electrode device
US4255137A (en) Portable end heater for plastic hose
GB2246318A (en) Abutment welding of plastic pipes and fittings and apparatus therefor
CN212072999U (en) PE double-pipe manufacturing system
FR2149633A5 (en) Profile fusion tool - using microwave energy for localised welding of plastic pipes and rods
CA2180354A1 (en) A Method and Apparatus for Producing a Bell Joint
CN218928659U (en) Heating device for to metal framework tubular product terminal surface
US3539771A (en) Heating apparatus for treating plastic pipe
JPS55142617A (en) Heat-welding method for thermoplastic resin pipe
CN220339005U (en) Cable tube preheating protection mechanism
SU1488265A1 (en) Method of joining glass tubes
KR100839103B1 (en) Polyethylene form forming apparatus for formed article

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees