JP3109002B2 - Microwave heating equipment - Google Patents

Microwave heating equipment

Info

Publication number
JP3109002B2
JP3109002B2 JP02260633A JP26063390A JP3109002B2 JP 3109002 B2 JP3109002 B2 JP 3109002B2 JP 02260633 A JP02260633 A JP 02260633A JP 26063390 A JP26063390 A JP 26063390A JP 3109002 B2 JP3109002 B2 JP 3109002B2
Authority
JP
Japan
Prior art keywords
heated
microwave
thickness
irradiation furnace
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02260633A
Other languages
Japanese (ja)
Other versions
JPH04141980A (en
Inventor
稔 工藤
和章 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Denshi Co Ltd
Original Assignee
Micro Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Denshi Co Ltd filed Critical Micro Denshi Co Ltd
Priority to JP02260633A priority Critical patent/JP3109002B2/en
Publication of JPH04141980A publication Critical patent/JPH04141980A/en
Application granted granted Critical
Publication of JP3109002B2 publication Critical patent/JP3109002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はマイクロ波加熱装置に係り、特に、棒状ある
いは板状のゴム、プラスチック、木材等のいわゆる誘電
体をマイクロ波を利用して局部的に加熱するに好適なマ
イクロ波加熱装置に関する。
Description: TECHNICAL FIELD The present invention relates to a microwave heating apparatus, and more particularly to a so-called dielectric material such as a rod-shaped or plate-shaped rubber, plastic, wood, or the like, which is locally applied using microwaves. The present invention relates to a microwave heating device suitable for heating to a low temperature.

「従来の技術」 水道用送水管の接続個所に使用されるゴム製のガスケ
ットリングの直径は、数cmから数mまで多種類のものが
使用されている。直径30cm以上のガスケットリングは押
出成形機を用いて線状に成形したゴムを連続加硫して所
定の長さに切断し、両端の切断面に加硫性のゴム接着剤
を塗布し、電気ヒーターなどで加熱した金型内に両端面
を突き合わせるように挿入して、電気ヒーターからの熱
伝導によって接着剤を加熱加硫してリング状に接続す
る。
[Prior Art] Various types of rubber gasket rings having diameters ranging from several cm to several meters are used for connecting points of water supply pipes for water supply. A gasket ring with a diameter of 30 cm or more is continuously vulcanized by using an extruder to vulcanize the rubber molded into a linear shape and cut to a predetermined length. The adhesive is inserted into a mold heated by a heater or the like so that the both end surfaces abut each other, and the adhesive is heated and vulcanized by heat conduction from an electric heater to be connected in a ring shape.

圧縮空気を送るホースで使用圧力が10kg/cm2以下のも
のはナイロンやポリウレタンなどのプラスチックの押出
成形ホースが多く使用されている。このホースと空圧機
器との接続には金属製の継手が使用されるが、ホースと
継手の接続にはホースの内面と外面を機械的に締め付け
る構造のものが多く、継手の構造が複雑で高価である。
継手付の定尺ホースを量産する場合、継手側のホースに
挿入されるパイプの外径をホースの内径より少し大きく
作り、パイプの外周に接着剤を塗布しておき、ホースの
接続端をヒーターで加熱して軟化させてから、ホースに
継手のパイプを挿入接着している。
Extrusion hoses made of plastic such as nylon or polyurethane are often used for hoses that send compressed air and have a working pressure of 10 kg / cm 2 or less. A metal joint is used to connect the hose to the pneumatic equipment.However, the connection between the hose and the joint often has a structure in which the inner and outer surfaces of the hose are mechanically tightened. Expensive.
When mass-producing fixed-length hoses with fittings, make the outer diameter of the pipe inserted into the hose on the fitting side slightly larger than the inner diameter of the hose, apply adhesive to the outer circumference of the pipe, and heat the connection end of the hose with a heater. After softening by heating, the pipe of the joint is inserted and bonded to the hose.

この結果、ホースの外周を締め付ける部品は不要とな
り、安価となる。
As a result, a component for tightening the outer periphery of the hose becomes unnecessary and the cost is reduced.

この他に、本の背表紙の接着乾燥や木板の木口に化粧
板を加熱接着する用途、さらには、特願昭48−59976号
に示されるように薬液を封入したアンプルの下部をマイ
クロ波加熱して対流によって薬液全体を加熱滅菌する用
途などがある。
In addition to this, it is also used for bonding and drying the spine of a book and for heating and bonding a decorative board to the wood mouth of a wooden board. Then, there is a use for heat sterilization of the whole drug solution by convection.

以上に例を示す如く、産業分野の加工の過程で材料の
端部を局部的に加熱する用途は数多く存在する。
As shown above, there are many uses for locally heating the edge of a material in the course of processing in the industrial field.

従来の局部加熱の方法は、熱した金属板を加熱材料に
押し当てて、金属板からの熱伝導によって加熱する方法
や、熱した空気を加熱材料に吹き付ける方法、加熱した
水や油などの液体に加熱材料の端部を浸す方法などが用
いられている。
Conventional local heating methods include a method of pressing a heated metal plate against a heating material and heating by heat conduction from the metal plate, a method of blowing heated air to the heating material, and a method of heating liquid such as water or oil. For example, a method of dipping an end portion of a heating material into a material is used.

しかし、ゴム、プラスチック、木材などのいわゆる誘
電体材料は、熱伝導の低い物質が多く、熱の受け渡され
る表面から加熱材料内部への熱伝導に時間がかかり、作
業能率、エネルギー効率が低い。その上、作業環境が高
温となるため、働き手の少ない職場となっている。
However, so-called dielectric materials such as rubber, plastic, and wood often have low heat conductivity, and it takes time to conduct heat from the surface through which heat is transferred to the inside of the heating material, resulting in low work efficiency and low energy efficiency. In addition, the work environment is hot, which makes the workplace less workable.

そこで、マイクロ波の誘電体発熱の原理を応用して材
料の端部のみを局部的にマイクロ波電界に曝露すること
により、熱伝導にたよることなく短時間で加熱すること
が必要となった。
Therefore, it was necessary to heat the material in a short time without relying on heat conduction by locally exposing only the edge of the material to the microwave electric field by applying the principle of microwave dielectric heating. .

局部をマイクロ波電界中に曝露する方法としては、金
属がマイクロ波を反射することを利用して、第5図に示
すように、被加熱材50を金属管51内に挿入し、加熱材50
のうち加熱に必要な部分のみを金属管51から外に出し、
被加熱材50と金属管51をマイクロ波照射オーブン内に挿
入して所定の時間マイクロ波を照射する方法が提案され
ている。
As a method of exposing a local portion to a microwave electric field, a material to be heated 50 is inserted into a metal tube 51 as shown in FIG.
Out only the part necessary for heating out of the metal tube 51,
A method has been proposed in which the material to be heated 50 and the metal tube 51 are inserted into a microwave irradiation oven to irradiate microwaves for a predetermined time.

ところが、この方法では被加熱材50全体をオーブン内
に挿入しなければならず、オーブンとして大型なものが
必要となり、実用的ではない。
However, in this method, the entire material to be heated 50 must be inserted into the oven, and a large oven is required, which is not practical.

一方、第6図及び第7図に示すように、マイクロ波発
振器48とマイクロ波吸収器49に接続された導波管52の壁
面に、被加熱材50端部を挿入可能なスリット53を形成
し、コンベア54上を移送する被加熱材50の端部をスリッ
ト53を介して導波管52内に挿入した状態で被加熱材50を
移動させ、この移動する間に被加熱材50端部にマイクロ
波を照射する方法が提案されている。
On the other hand, as shown in FIGS. 6 and 7, a slit 53 is formed on the wall surface of the waveguide 52 connected to the microwave oscillator 48 and the microwave absorber 49 so that the end of the material 50 to be heated can be inserted. Then, the heated material 50 is moved in a state where the end of the heated material 50 to be transferred on the conveyor 54 is inserted into the waveguide 52 through the slit 53, and during this movement, the heated material 50 ends. There has been proposed a method of irradiating a microwave.

「発明が解決しようとする課題」 第5図に示す方法では、被加熱材50端部に限らず、加
熱すべき部分を金属管51から露出させれば被加熱材50を
加熱することはできるが、被加熱材50の幅がマイクロ波
の1/2波長より広くなると、金属管51は導波管のように
マイクロ波を伝搬することが可能となり、加熱部を金属
管51から露出した部分に限定することができなくなる。
[Problems to be Solved by the Invention] In the method shown in FIG. 5, the material to be heated 50 can be heated by exposing not only the end of the material to be heated 50 but also the portion to be heated from the metal tube 51. However, when the width of the material to be heated 50 is wider than a half wavelength of the microwave, the metal tube 51 can propagate the microwave like a waveguide, and the heating portion is exposed from the metal tube 51. Can not be limited to.

すなわち、特定の部分のみを加熱することができなく
なる。
That is, it becomes impossible to heat only a specific portion.

一方、第6図及び第7図に示す方法では、スリット53
内に挿入された部分のみを加熱することはできるが、被
加熱材50としてゴムやプラスチックやよく乾燥した木材
等を用いた場合、これらの材料はマイクロ波吸収が少な
いので、これらの材料を局部的に加熱するには充分では
ない。
On the other hand, in the method shown in FIGS.
It is possible to heat only the part inserted in the inside, but if rubber, plastic, or well-dried wood is used as the material to be heated 50, these materials have low microwave absorption, so these materials are locally Is not enough to heat it.

そこで、マイクロ波吸収率を向上させるために、導波
管52の長さを長くして導波管52のスリット53内に多数の
被加熱材50を挿入する方法も考えられるが、この方法で
は装置が大型化すると共に高価なものになるほか、広い
設備面積が必要となる。例えば、天然ゴムの棒(10mm×
20mm)の端部10mmをスリット53内に挿入し、室温から15
0℃まで昇温するマイクロ波加熱として、天然ゴムの棒
を50mmピッチで40本順次スリット53内に挿入し、これら
にマイクロ波を照射したところ、マイクロ波吸収率とし
て約40%という値が得られた。
Therefore, in order to improve the microwave absorptivity, a method of increasing the length of the waveguide 52 and inserting a large number of materials to be heated 50 into the slits 53 of the waveguide 52 is also considered. In addition to an increase in the size of the device, the device becomes expensive and requires a large equipment area. For example, a natural rubber rod (10mm ×
20mm) Insert the end 10mm into the slit 53
As microwave heating to raise the temperature to 0 ° C, 40 natural rubber rods were sequentially inserted into the slit 53 at a pitch of 50 mm into the slit 53, and these were irradiated with microwaves. As a result, a value of about 40% was obtained as the microwave absorptivity. Was done.

この場合導波管52の長さは2m以上必要となるのに対し
て、マイクロ波吸収率が約40%では設備面積としては電
気ヒーターを用いたものと何ら変わることがなく、装置
を小型化するのは困難となる。
In this case, the length of the waveguide 52 is required to be 2 m or more, but if the microwave absorptivity is about 40%, the equipment area is no different from that using an electric heater, and the device is downsized. It will be difficult to do.

本発明の目的は、照射炉の長さを最小限に抑えてマイ
クロ波吸収率を高めることができるマイクロ波加熱装置
を提案することにある。
An object of the present invention is to propose a microwave heating device capable of increasing the microwave absorptivity by minimizing the length of the irradiation furnace.

「課題を解決するための手段」 上記目的を達成するため、本発明では、マイクロ波を
発生するマイクロ波発生手段と、マイクロ波発生手段か
らのマイクロ波を伝搬する筒状の照射炉と、照射炉の筒
軸方向に沿って被加熱材を移送する移送手段とを備え、
前記照射炉の壁面に被加熱材の移送方向に沿って延在さ
せる被加熱部材挿入用スリットを形成し、さらに、前記
照射炉内に同軸線路を形成する軸状の内部導体を前記ス
リットを延在させる方向に沿うようにして固着すると共
に、この内部導体の肉厚をL、被加熱材の肉厚をdとし
たとき、内部導体の肉厚Lが(1/2)d≦L≦dの条件
を満たすように構成したことを特徴とするマイクロ波加
熱装置を提案する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a microwave generating means for generating microwaves, a cylindrical irradiation furnace for transmitting microwaves from the microwave generating means, Transfer means for transferring the material to be heated along the axial direction of the furnace,
A slit for inserting a member to be heated is formed on a wall surface of the irradiation furnace so as to extend along a direction in which the material to be heated is transferred. Further, an axial internal conductor forming a coaxial line in the irradiation furnace is formed by extending the slit. When the thickness of the inner conductor is L and the thickness of the material to be heated is d, the thickness L of the inner conductor is (1/2) d ≦ L ≦ d A microwave heating apparatus characterized by satisfying the above condition is proposed.

「作用」 被加熱材の一部をスリットを介して照射炉内に挿入し
た状態で被加熱材をスリットに沿って順次移送するとき
に、マイクロ波発生手段から照射炉内にマイクロ波を照
射すると、マイクロ波が照射炉の壁面に沿って順次伝搬
する。このとき、内部導体によって集束された電気力線
が被加熱材中を通り、被加熱材を効率良く誘電加熱する
ことができる。
When the material to be heated is sequentially transferred along the slit while a part of the material to be heated is inserted into the irradiation furnace through the slit, the microwave irradiation means irradiates the irradiation furnace with the microwave. The microwaves propagate sequentially along the wall of the irradiation furnace. At this time, the lines of electric force converged by the internal conductor pass through the material to be heated, and the material to be heated can be efficiently subjected to dielectric heating.

また、照射炉の内部導体の肉厚Lが被加熱材の肉厚d
に対して、(1/2)d≦L≦dの条件を満たすように構
成してあるので、内部導体から発生する電気力線が被加
熱材中を均一に通り、被加熱材に加熱むらが生ずること
を抑制することができる。
The thickness L of the inner conductor of the irradiation furnace is equal to the thickness d of the material to be heated.
On the other hand, since it is configured so as to satisfy the condition of (1/2) d ≦ L ≦ d, the lines of electric force generated from the internal conductor pass uniformly through the material to be heated, and the material to be heated has uneven heating. Can be suppressed.

「実施例」 以下、本発明の一実施例を図面に沿って説明する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図において、筒状の照射炉10の両端には外部導体
11、12、導波管13、14を介してマイクロ波発振器15とマ
イクロ波吸収器16が接続されている。
In FIG. 1, external conductors are provided at both ends of a cylindrical irradiation furnace 10.
A microwave oscillator 15 and a microwave absorber 16 are connected via waveguides 11 and 12 and waveguides 13 and 14, respectively.

外部導体11、12内には各々筒状の絶縁支持体17、18が
装着されており、各絶縁支持体17、18内には内部導体1
9、20が挿入されている。内部導体19、20の一端にはア
ンテナ21、22が接続され、他端には照射炉10の軸方向に
沿って延在する内部導体23がボルト24によって連結され
ている。
Cylindrical insulating supports 17 and 18 are mounted in the outer conductors 11 and 12, respectively.
9, 20 are inserted. Antennas 21 and 22 are connected to one ends of the internal conductors 19 and 20, and an internal conductor 23 extending along the axial direction of the irradiation furnace 10 is connected to the other end by bolts 24.

一方、照射炉10の壁面には、第2図に示すように、照
射炉10の軸方向に沿ってスリット25が形成される。
On the other hand, a slit 25 is formed on the wall surface of the irradiation furnace 10 along the axial direction of the irradiation furnace 10, as shown in FIG.

スリット25は、水道用送水管のゴム製ガスケットリン
グを作るための天然ゴム製の棒等の被加熱材26端部及び
ベルト27の一部が挿入可能に形成されている。
The slit 25 is formed so that an end of a heated material 26 such as a natural rubber rod for forming a rubber gasket ring of a water supply pipe for water and a part of a belt 27 can be inserted.

ベルト27は照射炉10の壁面に沿って配置されたベルト
コンベア機構によって移動するようになっており、マイ
クロ波吸収の極めて少ないガラス繊維に4フッ化エチレ
ン樹脂をコーテングしたものが用いられている。
The belt 27 is moved by a belt conveyor mechanism arranged along the wall surface of the irradiation furnace 10, and is made of a glass fiber that absorbs very little microwave and coated with a tetrafluoroethylene resin.

ここで、同軸線路を形成する方形断面の内部導体23を
形成するに際しては、内部導体27の肉厚をLとし、被加
熱材26の肉厚をdとしたとき、(1/2)d≦L≦dの条
件を満たすように構成されている。
Here, when forming the inner conductor 23 having a rectangular cross section that forms a coaxial line, when the thickness of the inner conductor 27 is L and the thickness of the material 26 to be heated is d, (1/2) d ≦ It is configured to satisfy the condition of L ≦ d.

すなわち、被加熱材26内を通る電気力線の数は内部導
体21の肉厚Lと被加熱材26の肉厚dとの相互関係によっ
て決定されるので、被加熱材26の肉厚dに対し最適な肉
厚Lを有する内部導体23を形成することが必要となる。
That is, the number of lines of electric force passing through the material to be heated 26 is determined by the correlation between the thickness L of the internal conductor 21 and the thickness d of the material to be heated 26. On the other hand, it is necessary to form the inner conductor 23 having the optimum thickness L.

例えば、第3図に示すように、内部導体23の肉厚Lを
被加熱材26の肉厚dより大きくしたところ、内部導体23
から被加熱材26に向かう電気力線は点線で示すように、
被加熱材26の外側を通るものが多くなる。
For example, as shown in FIG. 3, when the thickness L of the inner conductor 23 is made larger than the thickness d of the material 26 to be heated,
As shown by the dotted lines, the lines of electric force from
Many objects pass through the outside of the material to be heated 26.

被加熱材26の外側を通る電気力線は被加熱材26の加熱
には寄与しないので、被加熱材26のマイクロ波吸収率が
低下することになる。
Since the lines of electric force passing outside the material to be heated 26 do not contribute to the heating of the material to be heated 26, the microwave absorptivity of the material to be heated 26 is reduced.

一方、第4図に示すように、内部導体23の肉厚Lを被
加熱材26の肉厚dを1/2以下にしたところ、内部導体23
から発生する電気力線が被加熱材26の端面中程に集中
し、被加熱材26にホットスポットが生じたり、また、被
加熱材26に電気力線の通らない部分28が形成されて加熱
むらが発生することが確認された。
On the other hand, as shown in FIG. 4, when the thickness L of the internal conductor 23 is reduced to half or less the thickness d of the material 26 to be heated,
The lines of electric force generated from the heat are concentrated in the middle of the end surface of the material to be heated 26, and a hot spot is generated in the material to be heated 26, and a portion 28 where the lines of electric force do not pass through the material to be heated 26 is formed, and heating It was confirmed that unevenness occurred.

そこで、本実施例では、内部導体23の肉厚Lを被加熱
材26の肉厚dに対して前述した条件を満たすように形成
した。
Therefore, in the present embodiment, the thickness L of the internal conductor 23 is formed so as to satisfy the above-described condition with respect to the thickness d of the material 26 to be heated.

以上の構成において、ベルト27上に載置された被加熱
材26をベルト27の移動に合わせて照射炉10に沿って移動
させる過程で、マイクロ波発振器15からマイクロ波を発
生すると、このマイクロ波は導波管13、アンテナ12、内
部導体19、23を介して照射炉10内を伝搬する。
In the above configuration, when microwaves are generated from the microwave oscillator 15 in the process of moving the material to be heated 26 placed on the belt 27 along the irradiation furnace 10 in accordance with the movement of the belt 27, this microwave Propagates through the irradiation furnace 10 through the waveguide 13, the antenna 12, and the internal conductors 19 and 23.

このマイクロ波は照射炉10内を伝搬する過程で被加熱
材26端部に吸収されて減衰していくが、吸収されずに残
ったマイクロ波は内部導体20、アンテナ22、導波管14を
介してマイクロ波吸収器16に吸収される。
This microwave is absorbed by the end of the material to be heated 26 and attenuated in the process of propagating in the irradiation furnace 10, but the remaining microwave without being absorbed passes through the inner conductor 20, the antenna 22, and the waveguide 14. The microwave is absorbed by the microwave absorber 16.

照射炉10内にマイクロ波が伝搬されている状態で被加
熱材12がベルト27によって移動すると、スリット25から
照射炉10内に挿入された被加熱材26端部にマイクロ波が
照射され、被加熱材26を局部的に加熱することができ
る。このとき、照射炉10内には内部導体23が固着され、
同軸線路を形成しているため、照射炉10としては従来の
ような方形導波管を用いたように遮断波長がなく、照射
炉10の口径をマイクロ波の波長に無関係に小さくするこ
とができる。
When the material to be heated 12 is moved by the belt 27 while the microwave is being propagated into the irradiation furnace 10, the microwave is irradiated to the end of the material to be heated 26 inserted into the irradiation furnace 10 from the slit 25, and the microwave is irradiated. The heating material 26 can be locally heated. At this time, the inner conductor 23 is fixed in the irradiation furnace 10,
Since the coaxial line is formed, the irradiation furnace 10 does not have a cutoff wavelength as in the case of using a conventional rectangular waveguide, and the aperture of the irradiation furnace 10 can be reduced regardless of the wavelength of the microwave. .

また、このような照射炉10の場合には、方形導波管を
用いた照射炉に比べてマイクロ波伝搬時の特性インピー
ダンスが低いので、比誘電率の大きな被加熱材でも整合
性が良く、マイクロ波の反射損失を少なくすることがで
きる。
In addition, in the case of such an irradiation furnace 10, since the characteristic impedance at the time of microwave propagation is lower than that of the irradiation furnace using a rectangular waveguide, good matching is achieved even with a material to be heated having a large relative dielectric constant, Microwave reflection loss can be reduced.

また、本実施例における装置を用いてマイクロ波吸収
率を測定したところ、照射炉10の長さとして、従来の方
形導波管を用いた照射炉の25%の長さとしても、65%の
マイクロ波吸収率が得られることが確認された。
Further, when the microwave absorption rate was measured using the apparatus in this embodiment, the length of the irradiation furnace 10 was 65%, even if the length of the irradiation furnace using a conventional rectangular waveguide was 25%. It was confirmed that microwave absorption was obtained.

さらに、被加熱材26の端部の温度分布を測定したとこ
ろ、被加熱材26の肉厚dと内部導体23の肉厚Lの比d/L
が1.0〜0.8の間では150℃を中心として±1.5℃、d/Lが
0.6では±3.5℃、d/Lが0.5では±5℃の温度分布が生じ
る結果が得られた。
Further, when the temperature distribution at the end of the heated material 26 was measured, the ratio d / L of the thickness d of the heated material 26 to the thickness L of the internal conductor 23 was obtained.
Is between 1.0 and 0.8 ± 1.5 ° C around 150 ° C, d / L
A result was obtained in which a temperature distribution of ± 3.5 ° C. was obtained at 0.6 and a temperature distribution of ± 5 ° C. at d / L of 0.5.

そしてd/Lが1.0〜0.5までの間ではマイクロ波吸収率
が変化しないことが確認された。
And it was confirmed that the microwave absorptance did not change when d / L was between 1.0 and 0.5.

「発明の効果」 以上説明した通り、本発明によれば、照射炉内に内部
導体を固着して同軸線路を形成し、被加熱材中を通る電
気力線の数を増大させるようにしたため、装置の小型化
を図ることができると共に、マイクロ波吸収率を高める
ことができる。
[Effects of the Invention] As described above, according to the present invention, the inner conductor is fixed in the irradiation furnace to form a coaxial line, and the number of lines of electric force passing through the material to be heated is increased. The size of the device can be reduced, and the microwave absorptivity can be increased.

また、照射炉内の内部導体の肉厚と被加熱材の肉厚と
の関係を一定の関係に定めたため、被加熱材にホットス
ポットが生じることがなく、被加熱材を均一に加熱する
ことができ、品質の向上に寄与することができる。
In addition, since the relationship between the thickness of the internal conductor in the irradiation furnace and the thickness of the material to be heated is determined to be constant, there is no hot spot on the material to be heated, and the material to be heated can be heated uniformly. And contribute to the improvement of quality.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す全体構成図、第2図は
照射炉の要部断面図、第3図は内部導体と被加熱材の肉
厚との関係を説明するための説明図、第4図は内部導体
と被加熱材の肉厚との関係を説明するための他の説明
図、第5図は従来例の要部斜視図、第6図は他の従来例
の要部斜視図、第7図は第6図の要部断面図である。 10……照射炉 11、12……外部導体 13、14……導波管 15……マイクロ波発振器 16……マイクロ波吸収器 17、18……絶縁支持体 19、20……内部導体 21、22……アンテナ 23……内部導体 25……スリット 26……被加熱材 27……ベルト
1 is an overall configuration diagram showing one embodiment of the present invention, FIG. 2 is a cross-sectional view of a main part of an irradiation furnace, and FIG. 3 is an explanation for explaining a relationship between an inner conductor and a thickness of a material to be heated. 4 is another explanatory view for explaining the relationship between the inner conductor and the thickness of the material to be heated, FIG. 5 is a perspective view of a main part of a conventional example, and FIG. 6 is a main part of another conventional example. FIG. 7 is a sectional view of an essential part of FIG. 10 Irradiation furnace 11, 12 Outer conductor 13, 14 Waveguide 15 Microwave oscillator 16 Microwave absorber 17, 18 Insulating support 19, 20 Inner conductor 21, 22 Antenna 23 Inner conductor 25 Slit 26 Material to be heated 27 Belt

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マイクロ波を発生するマイクロ波発生手段
と、マイクロ波発生手段からのマイクロ波を伝搬する筒
状の照射炉と、照射炉の筒軸方向に沿って被加熱材を移
送する移送手段とを備え、前記照射炉の壁面に被加熱材
の移送方向に沿って延在させる被加熱部材挿入用スリッ
トを形成し、さらに、前記照射炉内に同軸線路を形成す
る軸状の内部導体を前記スリットを延在させる方向に沿
うようにして固着すると共に、この内部導体の肉厚を
L、被加熱材の肉厚をdとしたとき、内部導体の肉厚L
が(1/2)d≦L≦dの条件を満たすように構成したこ
とを特徴とするマイクロ波加熱装置。
1. A microwave generating means for generating microwaves, a cylindrical irradiation furnace for transmitting microwaves from the microwave generating means, and a transfer for transferring a material to be heated along a cylindrical axis of the irradiation furnace. Means, a slit for inserting a member to be heated extending in the direction of transport of the material to be heated is formed on a wall surface of the irradiation furnace, and further, an axial internal conductor forming a coaxial line in the irradiation furnace. Are fixed along the direction in which the slits extend, and when the thickness of the internal conductor is L and the thickness of the material to be heated is d, the thickness L of the internal conductor is
Characterized by satisfying the condition of (1/2) d ≦ L ≦ d.
JP02260633A 1990-10-01 1990-10-01 Microwave heating equipment Expired - Fee Related JP3109002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02260633A JP3109002B2 (en) 1990-10-01 1990-10-01 Microwave heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02260633A JP3109002B2 (en) 1990-10-01 1990-10-01 Microwave heating equipment

Publications (2)

Publication Number Publication Date
JPH04141980A JPH04141980A (en) 1992-05-15
JP3109002B2 true JP3109002B2 (en) 2000-11-13

Family

ID=17350635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02260633A Expired - Fee Related JP3109002B2 (en) 1990-10-01 1990-10-01 Microwave heating equipment

Country Status (1)

Country Link
JP (1) JP3109002B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244208A (en) * 1994-03-02 1995-09-19 Keete Syst Service:Kk Light reflection device, measuring method therefor and optical system using light reflection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244208A (en) * 1994-03-02 1995-09-19 Keete Syst Service:Kk Light reflection device, measuring method therefor and optical system using light reflection device

Also Published As

Publication number Publication date
JPH04141980A (en) 1992-05-15

Similar Documents

Publication Publication Date Title
IT1083294B (en) PROCESS AND CONNECTOR FOR JOINING PLASTIC TUBES BY THERMAL WELDING
DE3587589D1 (en) Welding pipes and fittings made of fluoropolymers.
DE3264926D1 (en) Welding joint for plastics tubes
MY110746A (en) Method and apparatus for connecting resin pipes.
JP3109002B2 (en) Microwave heating equipment
JP3109003B2 (en) Microwave heating equipment
US4329135A (en) Device for the continuous thermal or thermo-chemical treatment of objects by emission of micro-waves
US3571551A (en) High frequency heating apparatus
JPH06507752A (en) Method of heating a medium passing through an insulating tube and electrode device
CA1129741A (en) Portable end heater for plastic hose
US3480486A (en) Heating method for local annealing or stress relieving of parts of metal articles
FR2149633A5 (en) Profile fusion tool - using microwave energy for localised welding of plastic pipes and rods
GB2246318A (en) Abutment welding of plastic pipes and fittings and apparatus therefor
CN218928659U (en) Heating device for to metal framework tubular product terminal surface
US3539771A (en) Heating apparatus for treating plastic pipe
US3456289A (en) Apparatus for calibrating thermoplastic tubes and similar objects
CN210999705U (en) Rubber sheet infrared microwave foaming device heated by steam
CN220339005U (en) Cable tube preheating protection mechanism
SU1488265A1 (en) Method of joining glass tubes
CN220923252U (en) Traction tube heating device for extrusion bonding traction of pipeline
CN111409271A (en) PE double-pipe manufacturing system
SE7907647L (en) PROCEDURE FOR ASSEMBLY OF DIFFERENT INSULATED INSULATED PIPES
JPS646070Y2 (en)
RU2311966C1 (en) Device for deposition of the liquid on the internal surface of the cylindrical articles
CN115532902A (en) Production method of hanging basket supporting rod of wafer conveying manipulator and obtained product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees