JP3108231B2 - Steel cord - Google Patents

Steel cord

Info

Publication number
JP3108231B2
JP3108231B2 JP04339189A JP33918992A JP3108231B2 JP 3108231 B2 JP3108231 B2 JP 3108231B2 JP 04339189 A JP04339189 A JP 04339189A JP 33918992 A JP33918992 A JP 33918992A JP 3108231 B2 JP3108231 B2 JP 3108231B2
Authority
JP
Japan
Prior art keywords
steel cord
cord
steel
hardness
hardness distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04339189A
Other languages
Japanese (ja)
Other versions
JPH06184965A (en
Inventor
隆蔵 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP04339189A priority Critical patent/JP3108231B2/en
Publication of JPH06184965A publication Critical patent/JPH06184965A/en
Application granted granted Critical
Publication of JP3108231B2 publication Critical patent/JP3108231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/3053Steel characterised by the carbon content having a medium carbon content, e.g. greater than 0,5 percent and lower than 0.8 percent respectively HT wires

Landscapes

  • Ropes Or Cables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はスチールコード特にゴム
複合体補強用スチールコードに関する。更に詳しくは線
材から冷間伸線によって製造される、直径0.6〜0.
15mmのスチール細線であって、ゴム、プラスチック等
の補強用ワイヤー繊維として用いられ、主としてタイヤ
のように長期間にわたって、静的、動的応力‐歪のもと
で、腐食、劣化環境におかれて使用されるゴム複合体製
品に適用されるスチールコードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel cord, and more particularly to a steel cord for reinforcing a rubber composite. More specifically, it is manufactured from a wire by cold drawing, and has a diameter of 0.6 to 0.1 mm.
A 15-mm thin steel wire used as a reinforcing wire fiber for rubber, plastic, etc., which is exposed to corrosive and degraded environments under static and dynamic stress-strain over a long period of time, mainly like tires. The present invention relates to a steel cord applied to a rubber composite product used.

【0002】[0002]

【従来の技術】ラジアルタイヤは従来は力学的にも、腐
食劣化の環境的にも、比較的マイルドな条件下で使用さ
れて来たが、近年タイヤの偏平化や自動車の低床化の進
行に伴って大入力の応力‐歪の下で使用され、かつタイ
ヤ耐久性の向上と相まって、腐食劣化環境も厳しくなる
と同時に多様化してきている。
2. Description of the Related Art Conventionally, radial tires have been used under relatively mild conditions, both mechanically and environmentally due to corrosion deterioration. As a result, they are used under high input stress-strain, and coupled with the improvement of tire durability, the corrosion deterioration environment is becoming more severe and diversified.

【0003】更に地球環境保護の観点から、燃費の低
減、従って車体、中でもタイヤの軽量化要求も一段と強
まり、スチールコード補強材性能にも様々な改良が要請
されつつある。
Further, from the viewpoint of protection of the global environment, the demand for reduction of fuel consumption and, therefore, the weight of vehicle bodies, especially tires, has been further strengthened, and various improvements in the performance of steel cord reinforcing materials have been demanded.

【0004】その要請の中で最重要な性能として、スチ
ールコードの耐タイヤコード破断性(耐CBU性と称す
る)が挙げられる。タイヤのタイヤコード破断の主原因
としては水素脆性や腐食疲労性に基くものの他に、タイ
ヤが何らかの理由により内圧が低下し、更にはランフラ
ット状態で一定距離を走行せざるを得ない事態によって
発生する場合がしばしばある。
[0004] Among the requirements, the most important performance is the tire cord break resistance (referred to as CBU resistance) of a steel cord. Tire cord breakage is mainly caused by hydrogen embrittlement and corrosion fatigue resistance, and also caused by the internal pressure of the tire being reduced for some reason, and the tire must be driven a certain distance in a run flat state. Often it is.

【0005】このような低内圧状態では荷重を積載した
車のタイヤは大きくたわみ、複輪接触を起こすまでの大
曲げ変形を受けることとなる。極端な場合には、プライ
コードが塑性変形を起こすような大入力さえ受けること
がある。タイヤの偏平化や自動車の低床化はこのランフ
ラット時のプライコード大曲げ入力の増大を促進させる
傾向にある。
[0005] In such a low internal pressure state, the tire of a vehicle loaded with a load is greatly bent and undergoes large bending deformation until double wheel contact occurs. In extreme cases, the ply cord may receive even a large input that causes plastic deformation. Flat tires and low-floor automobiles tend to promote an increase in ply cord large bending input during run flat.

【0006】しかし従来、タイヤ用スチールコードに対
し、材質面から、この耐CBU性即ち低内圧時に発生す
るCBU性(耐低内圧CBU性)を改良することは充分
になし得ないままに推移して来た。この耐低内圧CBU
性は、高強力化コード程、劣化する傾向にあることか
ら、高強力コード程、この性能の改善は極めて重要な課
題となって来た。
However, conventionally, it has been impossible to sufficiently improve the CBU resistance, that is, the CBU resistance generated at a low internal pressure (low internal pressure CBU resistance), from the viewpoint of the material of a steel cord for a tire. I came. This low internal pressure resistant CBU
Since the gender tends to deteriorate as the code becomes stronger, improvement of this performance has become a very important issue as the code becomes stronger.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、高減
面されて製造されるスチール細線において、高強力化と
耐低内圧CBU性という相矛盾する性質を支配する材質
のパラメーターが何であるかを明らかにすることによっ
て、高強力化と耐低内圧CBU性を両立させたゴム複合
体補強用スチールコードを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to determine what material parameters govern the contradictory properties of high strength and low internal pressure resistance in a thin steel wire manufactured with high surface reduction. An object of the present invention is to provide a steel cord for reinforcing a rubber composite, which achieves both high strength and low internal pressure resistance to CBU.

【0008】[0008]

【課題を解決するための手段】パーライト/フェライト
又はフェライト/セメンタイトの2相からなる亜共析〜
共析パーライト鋼を高減面した細線のもつ重要な物性パ
ラメーターとして、延性、脆性特性を表現するものとし
て硬度が挙げられる。
A hypoeutectoid comprising two phases of pearlite / ferrite or ferrite / cementite.
An important physical property parameter of a fine wire having a high surface area reduced eutectoid pearlite steel is hardness, which expresses ductility and brittleness.

【0009】本発明者は、この基本物性と大曲げ入力時
の破断時の諸関係を広範囲にわたって鋭意研究した結
果、硬度分布が大曲げ入力時の破断性を支配しているこ
と、更に細線の大曲げ入力時の破断性は、この硬度分布
と極めて良好に対応すること、具体的には表層と内部の
硬度分布に一定の関係をもたせれば高強力化と大曲げ入
力時の破断性の矛盾を解決することが可能であることを
見い出した。
The present inventor has conducted extensive studies on the relationship between the basic physical properties and the fracture at the time of large bending input, and as a result, it has been found that the hardness distribution controls the fracture at the time of large bending input. Breakability at the time of large bending input corresponds to this hardness distribution very well.Specifically, if there is a certain relationship between the surface layer and the internal hardness distribution, high strength and breakability at the time of large bending input are obtained. We found that it was possible to resolve the contradiction.

【0010】本発明は、このような新しい知見を見い出
すことによって、高強力化と耐低内圧CBU性を両立さ
せることのできる硬度分布の作り込み方を提供するもの
である。
The present invention provides a method of creating a hardness distribution that can achieve both high strength and low internal pressure CBU resistance by finding such new findings.

【0011】すなわち、本発明は、炭素量0.60〜
0.90%の炭素鋼で、パーライト/フェライト又はフ
ェライト/セメンタイトの2相からなる亜共析〜共析パ
ーライト鋼であって、引張強さ250〜450kg/mm2
線直径0.6〜0.15mmスチール細線中のビッカース
硬度分布が、表層から内部にかけて、単調に増加した逆
V字型分布を満足するか、もしくは内部は一定で、表層
がより低いビッカース硬度をもつ逆U字型分布を満足す
る細線を有するスチールコードである。
That is, according to the present invention, the carbon content is 0.60 to 0.60.
0.90% carbon steel, a hypoeutectoid to eutectoid pearlite steel consisting of two phases of pearlite / ferrite or ferrite / cementite, having a tensile strength of 250 to 450 kg / mm 2 ,
The Vickers hardness distribution in a thin steel wire having a wire diameter of 0.6 to 0.15 mm satisfies a monotonically increased inverse V-shaped distribution from the surface layer to the inside, or the inside is constant and the surface layer has a lower Vickers hardness. It is a steel cord having a fine wire satisfying the inverted U-shaped distribution.

【0012】本発明の細線の線径は0.6〜0.15mm
のスチール細線であるか、更に0.4〜0.15mmの線
径の細線であることが好ましい。引張り強さは250〜
450kg/mm2であるが、高強力コード程、その低内圧耐
CBU性の向上の重要性は増す。スチールコードは細線
1本よりなるものでもよいし、複数本の細線を平行に引
揃えるか、又は撚り合わせたものであってもよい。また
細線を一部に有するものであってもよい。
The diameter of the thin wire of the present invention is 0.6 to 0.15 mm.
Or a thin wire having a wire diameter of 0.4 to 0.15 mm. Tensile strength is 250 ~
Although it is 450 kg / mm 2 , the higher the strength of the cord, the greater the importance of improving its low internal pressure resistance to CBU. The steel cord may be composed of one thin wire, or a plurality of thin wires may be aligned in parallel or twisted. Further, a thin wire may be partially provided.

【0013】通常の伸線プロセスで、ダイを通して牽引
減面された強化細線コードは、表面部が硬くなってお
り、硬度分布はV字(又はU字)型を示している。本発
明は、この硬度分布を表層から内部にかけて単調に増加
した逆V字型分布又は内部は一定で表層がより低い硬度
をもつ硬度分布に変えるものである。硬度はビッカース
硬度を使用する。
The reinforced thin wire cord drawn and reduced through a die in a normal drawing process has a hard surface portion, and has a V-shaped (or U-shaped) hardness distribution. In the present invention, this hardness distribution is changed to a reverse V-shaped distribution monotonically increased from the surface layer to the inside or a hardness distribution in which the inside is constant and the surface layer has lower hardness. The hardness uses Vickers hardness.

【0014】硬度分布がV字(又はU字)型のコードの
硬度分布をM字型から更に逆V字(又は逆U字)型に変
える方法としては、メカニカルな塑性変形を繰り返し与
えることによって可能である。その他の方法としては最
終伸線段階でスキンパスを施すこと、或いは伸線のダイ
シリーズを適切に配列して最適化することによっても可
能である。
A method of changing the hardness distribution of a V-shaped (or U-shaped) cord from an M-shaped cord to an inverted V-shaped (or inverted U-shaped) cord is to repeatedly apply mechanical plastic deformation. It is possible. As other methods, it is also possible to apply a skin pass at the final drawing step, or to appropriately arrange and optimize a die series of drawing.

【0015】スチールコード細線では、曲げ入力は表層
程大きい為、本発明では細線中の硬度の分布に傾斜を持
たせるものであるが、特にトラック、バス用スチールラ
ジアルタイヤのプライ材としての曲げ入力下に於いて
は、表層の硬度を下げることと、中心部の硬度を下げな
いことが大事である。例えば図3に示されるようなM字
型分布であっても、大曲げ入力時の破断性は低下する。
これはM字の頂点に著しい歪の集中が発生するからと考
えられる。
In the case of a steel cord thin wire, since the bending input is larger at the surface layer, in the present invention, the distribution of hardness in the thin wire is made to have an inclination. In particular, the bending input as a ply material of a steel radial tire for trucks and buses is used. Below, it is important to lower the hardness of the surface layer and not to lower the hardness of the central part. For example, even in the case of an M-shaped distribution as shown in FIG.
This is probably because a significant concentration of distortion occurs at the top of the M-shape.

【0016】低内圧、大曲げ入力時のコード破断シミュ
レーションとして、ゴム/コード複合体中のフィラメン
ト表面歪と破断ライフとの相関を図8に示した。下記の
実施例1は、比較例1、従来例1に比し、大幅に改良さ
れていることが明確である。フィラメント表面歪が小さ
い程、破断までの屈曲回数は多くなるが、本発明の硬度
分布の実施例1では最もその回数が大きくなる。
FIG. 8 shows the correlation between the filament surface strain in the rubber / cord composite and the fracture life as a cord fracture simulation at low internal pressure and large bending input. It is clear that Example 1 described below is significantly improved as compared with Comparative Example 1 and Conventional Example 1. The smaller the filament surface strain, the greater the number of bendings before breaking, but in Example 1 of the hardness distribution of the present invention, the number of bendings is largest.

【0017】[0017]

【実施例】以下に本発明を実施例によって、従来例、比
較例と対比して具体的に説明するが、本発明はこの実施
例によって何等限定されるものではない。大曲げ入力時
の破断性の研究室における測度としては捻回値テストの
破断ライフ及び破断形態やベルト屈曲疲労テストでの破
断ライフから評価した。
EXAMPLES The present invention will be specifically described below with reference to examples, in comparison with conventional examples and comparative examples, but the present invention is not limited to these examples. In the laboratory, the rupture property at the time of large bending input was evaluated from the rupture life and the morphology of the torsion value test and the rupture life in the belt bending fatigue test.

【0018】引張り強さ340kg/mm2レベルの細線につ
いて、従来例1の硬度分布(図4) 比較例の硬度分布(図5)、及び本発明のスチールコー
ドの実施例1の硬度分布(図6)の、従来例1、比較
例、実施例1について、捻回値テストの破断ライフ、破
断形態の結果を表1に示す。実施例1はメカニカルな塑
性変形を繰り返し与えることによって、硬度分布させ
た。
With respect to the fine wire having a tensile strength of 340 kg / mm 2 level, the hardness distribution of the conventional example 1 (FIG. 4) and the hardness distribution of the comparative example (FIG. 5) and the hardness distribution of the steel cord of the present invention in Example 1 (FIG. Table 1 shows the results of the breaking life and the breaking mode of the torsion value test for 6) of Conventional Example 1, Comparative Example, and Example 1. In Example 1, the hardness was distributed by repeatedly applying mechanical plastic deformation.

【表1】 [Table 1]

【0019】図9は引張り強さ380kg/mm2レベルの細
線について横軸に細線の中心部と両表面部の位置をとり
縦軸にビッカース硬度をとって、従来例と本発明の実施
例と比較例の細線の硬度測定結果を示したものである。
従来例2の硬度分布(図9B)、比較例2のM字型硬度
分布(図9C)と、本発明のスチールコードの実施例2
の硬度分布(図9A)の場合について、捻回値テストの
破断ライフ、破断形態の結果を表2に示す。実施例2
は、ダイシリーズの適正化によって、この硬度分布を形
成させたものであるが、単にダイの通過回数であるパス
数を増大させることでは達成できず、最終伸線の減面率
を工夫することによって可能である。
FIG. 9 shows the conventional example and the embodiment of the present invention in which the horizontal axis represents the position of the central portion and both surface portions of the fine line and the vertical axis represents the Vickers hardness of the fine line having a tensile strength of 380 kg / mm 2 level. 7 shows the results of measuring the hardness of the thin wire of the comparative example.
Hardness distribution of Conventional Example 2 (FIG. 9B), M-shaped hardness distribution of Comparative Example 2 (FIG. 9C), and Example 2 of steel cord of the present invention
Table 2 shows the results of the fracture life and the fracture mode of the torsion value test for the hardness distribution (FIG. 9A). Example 2
Although this hardness distribution was formed by optimizing the die series, it could not be achieved simply by increasing the number of passes, which is the number of passes through the die. Is possible.

【表2】 [Table 2]

【0020】本発明の効果を明確にするため、従来例
1、比較例1、実施例1のスチールコードを用いて、タ
イヤを試作して、評価した結果を表3に示す。実施例1
はCBUが発生しなかったが、従来例1はCBUを起こ
した。又比較例1は20〜50%のフィラメントが破断
していた。
In order to clarify the effects of the present invention, a tire was prototyped using the steel cords of Conventional Example 1, Comparative Example 1, and Example 1, and the evaluation results are shown in Table 3. Example 1
No CBU occurred, but in Conventional Example 1, CBU occurred. In Comparative Example 1, 20 to 50% of the filaments were broken.

【表3】 [Table 3]

【0021】[0021]

【発明の効果】本発明においては、スチールコードの表
層から内部にかけての硬度分布を逆V字型ないし逆U字
型とすることにより、従来高強力化する程、大曲げ入力
時の破断性が大きくなる矛盾を解決し、高強力化コード
でしかも低内圧時の耐CBU性を改善し、スチールコー
ドの破断ライフを改善することができた。
According to the present invention, the hardness distribution from the surface layer to the inside of the steel cord is formed into an inverted V-shape or an inverted U-shape. The inconsistency which became large was solved, and the CBU resistance at the time of low internal pressure was improved with the high strength cord, and the breaking life of the steel cord was able to be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のスチールコードの表層から内部にかけ
ての逆V字型の硬度分布を示す。
FIG. 1 shows an inverted V-shaped hardness distribution from the surface layer to the inside of the steel cord of the present invention.

【図2】本発明のスチールコードの表層から内部にかけ
ての逆U字型の硬度分布を示す。
FIG. 2 shows an inverted U-shaped hardness distribution from the surface layer to the inside of the steel cord of the present invention.

【図3】比較例のスチールコードのM字型硬度分布を示
す。
FIG. 3 shows an M-shaped hardness distribution of a steel cord of a comparative example.

【図4】従来例1のスチールコードの硬度分布(V字
型)を示す。
FIG. 4 shows a hardness distribution (V-shape) of a steel cord of Conventional Example 1.

【図5】比較例のスチールコードのM字型硬度分布の測
定値を示す。
FIG. 5 shows measured values of an M-shaped hardness distribution of a steel cord of a comparative example.

【図6】本発明の実施例1のスチールコードの逆V字型
硬度分布の測定値。
FIG. 6 shows measured values of an inverted V-shaped hardness distribution of the steel cord of Example 1 of the present invention.

【図7】一般的な捻り破断形態の説明図。FIG. 7 is an explanatory view of a general torsional break mode.

【図8】高張力ベルトの屈曲試験結果を示す。縦軸にフ
ィラメント表面歪を、横軸に破断までの屈曲回数をと
る。
FIG. 8 shows a bending test result of the high tension belt. The vertical axis represents the surface strain of the filament, and the horizontal axis represents the number of times of bending until breaking.

【図9】引張り強さ380kg/mm2の高張力スチールコー
ドの実施例2(A)、従来例(B)、比較例2(C)の
硬度分布の測定結果を示す。
FIG. 9 shows the measurement results of the hardness distribution of Example 2 (A), Conventional Example (B), and Comparative Example 2 (C) of a high-tensile steel cord having a tensile strength of 380 kg / mm 2 .

【図10】捻り破断の段付高さの定義の説明図。FIG. 10 is an explanatory diagram of the definition of the step height of torsional break.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素量0.60〜0.90%の炭素鋼
で、パーライト/フェライト又はフェライト/セメンタ
イトの2相からなる亜共析〜共析パーライト鋼であっ
て、引張強さ250〜450kg/mm2、線直径0.6〜
0.15mmのスチール細線中のビッカース硬度分布が、
表層から内部にかけて、単調に増加した逆V字型分布を
満足するか、もしくは内部は一定で、表層がより低いビ
ッカース硬度をもつ逆U字型分布を満足する細線を有す
るスチールコード。
1. A subeutectoid to eutectoid pearlite steel having a carbon content of 0.60 to 0.90% and comprising two phases of pearlite / ferrite or ferrite / cementite, and having a tensile strength of 250 to 450 kg. / mm 2 , wire diameter 0.6 ~
Vickers hardness distribution in 0.15mm fine steel wire,
A steel cord that satisfies a monotonically increased inverse V-shape distribution from the surface layer to the inside, or a fine wire in which the inside is constant and the surface layer satisfies an inverted U-shape distribution having a lower Vickers hardness.
JP04339189A 1992-12-18 1992-12-18 Steel cord Expired - Fee Related JP3108231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04339189A JP3108231B2 (en) 1992-12-18 1992-12-18 Steel cord

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04339189A JP3108231B2 (en) 1992-12-18 1992-12-18 Steel cord

Publications (2)

Publication Number Publication Date
JPH06184965A JPH06184965A (en) 1994-07-05
JP3108231B2 true JP3108231B2 (en) 2000-11-13

Family

ID=18325081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04339189A Expired - Fee Related JP3108231B2 (en) 1992-12-18 1992-12-18 Steel cord

Country Status (1)

Country Link
JP (1) JP3108231B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995249B1 (en) * 2012-09-07 2016-04-01 Michelin & Cie HIGH TREFILITY STEEL WIRE COMPRISING A CARBON MASS RATE INCLUDING BETWEEN 0.5% AND 0.6% INCLUDED TERMINALS
FR2995231B1 (en) 2012-09-07 2014-08-29 Michelin & Cie TREFILING PROCESS
JP2014169507A (en) 2013-03-01 2014-09-18 Bridgestone Corp Steel wire for reinforcing rubber article and rubber article including the same
JP6344781B2 (en) * 2016-05-11 2018-06-20 朝日インテック株式会社 Wire rope
JP6631979B2 (en) * 2018-05-16 2020-01-15 朝日インテック株式会社 Wire rope
WO2020083893A1 (en) * 2018-10-23 2020-04-30 Bekaert Advanced Cords Aalter Nv Steel wire rope, coated steel wire rope and belt comprising steel wire rope
CN109281214A (en) * 2018-12-03 2019-01-29 江苏兴达钢帘线股份有限公司 A kind of steel cord and its manufacturing method and the tire with this steel cord
WO2022085052A1 (en) * 2020-10-19 2022-04-28 住友電気工業株式会社 Steel wire and tire

Also Published As

Publication number Publication date
JPH06184965A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
CA1246945A (en) Reinforcing cord with wrap-around wire
US5676776A (en) Pneumatic tire having cross belt layer reinforced with specified steel cord
EP0317636B1 (en) Heavy-load radial tire
EP0719889B1 (en) Steel cords for the reinforcement of rubber article
JPH05505985A (en) High strength reinforced tires
JP2001512191A (en) Steel cord for pneumatic tire protection ply
JP3108231B2 (en) Steel cord
US6102095A (en) Corrosion resistant steel cords and pneumatic tires reinforced with same
JP2001011785A (en) Steel cord for reinforcing tire and application of the cord to pneumatic radial tire
EP0413582B1 (en) Pneumatic radial tires
US6308508B1 (en) Steel cord for reinforcement of a radial tire and a radial tire employing the same
US6715331B1 (en) Drawing of steel wire
JP2995709B2 (en) Steel cord for belt reinforcement of pneumatic tires for heavy loads
EP0711868B1 (en) Steel cord for reinforcing a rubber product
JP3205390B2 (en) Pneumatic radial tire
JPH05238202A (en) Pneumatic radial tire for passenger car
KR100683956B1 (en) Nylon-steel hybrid cord for tire
JP3187601B2 (en) Steel cord for reinforcing rubber articles and pneumatic radial tire
EP1018573A2 (en) A radial tyre having a carcass to which steel cord is applied
KR200188434Y1 (en) Steel code structure for radial tire of belt
KR100318896B1 (en) Single wire steel cord for reinforcing rubber
JPH08218281A (en) Steel cord for reinforcing rubber article
JP3108205B2 (en) Large radial tires
JP2989860B2 (en) Manufacturing method of rubber reinforcement
KR101388368B1 (en) Method of producing rubber products using a twisted flat steel cord

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees