JP3108054B2 - Inverter control method - Google Patents

Inverter control method

Info

Publication number
JP3108054B2
JP3108054B2 JP10167358A JP16735898A JP3108054B2 JP 3108054 B2 JP3108054 B2 JP 3108054B2 JP 10167358 A JP10167358 A JP 10167358A JP 16735898 A JP16735898 A JP 16735898A JP 3108054 B2 JP3108054 B2 JP 3108054B2
Authority
JP
Japan
Prior art keywords
fluctuation
frequency
inverter
power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10167358A
Other languages
Japanese (ja)
Other versions
JP2000004541A (en
Inventor
正博 金城
晃 伊藝
勇人 成底
淳 伊良皆
正也 吉川
正邦 浅野
憲昭 徳田
清重 村松
義也 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP10167358A priority Critical patent/JP3108054B2/en
Publication of JP2000004541A publication Critical patent/JP2000004541A/en
Application granted granted Critical
Publication of JP3108054B2 publication Critical patent/JP3108054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はインバータ制御方法
に関し、詳しくは、風力発電システムや太陽光発電シス
テム等の分散電源と商用電源を構成するディーゼル発電
機とを連系させたハイブリッド電源系統システムに使用
されるインバータの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter control method and, more particularly, to a hybrid power supply system in which a distributed power supply such as a wind power generation system or a solar power generation system and a diesel generator constituting a commercial power supply are interconnected. The present invention relates to a method for controlling an inverter to be used.

【0002】[0002]

【従来の技術】一般的に、電力の品質は周波数と電圧と
で規定され、例えば、電力系統の周波数はその系統に属
する負荷の容量と発電機の出力のバランスのもとで一定
に保たれている。発電量が負荷量を上回れば周波数は上
昇し、逆に発電量が負荷量を下回れば周波数は低下す
る。即ち、時々刻々変化する負荷量に対して発電機の出
力を制御することで周波数が一定に保たれている。風力
発電や太陽光発電のように自然エネルギーを活用する分
散電源の出力は気象条件に左右され、出力の変化も急峻
であるが、その設備容量に比較して商用電源の容量が圧
倒的に大きいため、従来は周波数変動が問題になること
はなかった。
2. Description of the Related Art Generally, the quality of electric power is defined by frequency and voltage. For example, the frequency of a power system is kept constant under the balance between the capacity of a load belonging to the system and the output of a generator. ing. If the amount of power generation exceeds the load, the frequency increases, and if the amount of power generation falls below the load, the frequency decreases. That is, the frequency is kept constant by controlling the output of the generator with respect to the load amount that changes every moment. The output of distributed power sources that utilize natural energy, such as wind power and solar power, is affected by weather conditions and changes in output are steep, but the capacity of commercial power is significantly larger than its installed capacity Therefore, conventionally, frequency fluctuation has not been a problem.

【0003】しかしながら、離島などに商用電源として
設置された小容量のディーゼル発電機に、出力変動が大
きい風力発電システムを分散電源として接続したハイブ
リッド電源系統システムにおいては、風力発電システム
の出力変動が急峻でディーゼル発電機の出力制御が十分
に追従できないため、発電量と負荷の消費電力のバラン
スがとれず周波数変動が生じる。そのため、商用系統に
おける周波数の安定化を図る対策が望まれている。
However, in a hybrid power supply system in which a wind power generation system having a large output fluctuation is connected as a distributed power supply to a small-capacity diesel generator installed as a commercial power supply on an isolated island or the like, the output fluctuation of the wind power generation system is sharp. In this case, the output control of the diesel generator cannot be sufficiently followed, so that the power generation amount and the power consumption of the load cannot be balanced, and frequency fluctuation occurs. Therefore, a measure for stabilizing the frequency in a commercial system is desired.

【0004】このような周波数変動対策の一例として、
図8に示すように商用電源を構成するディーゼル発電機
1にアーク炉変動負荷8を接続した系統システムにおい
て、アーク炉変動負荷8による周波数変動を改善するた
めに、可変速同期発電機9にフライホイール10を設け
た手段がある。この周波数変動対策は、フライホイール
10を取り付けることにより可変速同期発電機9におけ
る見かけ上の慣性定数を大きくし、これに貯蔵される機
械エネルギーを利用して周波数変動を抑制するようにし
ている。
[0004] As an example of such frequency fluctuation countermeasures,
As shown in FIG. 8, in a system system in which an arc furnace variable load 8 is connected to a diesel generator 1 constituting a commercial power supply, a flywheel is connected to a variable-speed synchronous generator 9 in order to improve frequency fluctuations caused by the arc furnace variable load 8. There is a means provided with the wheel 10. As a countermeasure against the frequency fluctuation, the apparent inertia constant of the variable speed synchronous generator 9 is increased by attaching the flywheel 10, and the frequency fluctuation is suppressed by utilizing the mechanical energy stored therein.

【0005】一方、風力発電システムが商用系統の末端
にあり、しかも一般需要家が近接している場合などに
は、風力発電システムの出力変動のため線路インピーダ
ンスによる電圧変動が生じる。このように電圧変動が生
じる場合には、従来、図9に示すように風力発電システ
ム2の無効電力変動ΔQを検出回路3により検出し、そ
の無効電力変動を補償するようにインバータ5の無効電
力指令値を指令値作成回路4により作成し、インバータ
5(例えば自励式SVC)を制御することにより電圧変
動を抑制するようにしていた。
[0005] On the other hand, when the wind power generation system is located at the end of a commercial power system and a general customer is in proximity, a voltage fluctuation due to line impedance occurs due to an output fluctuation of the wind power generation system. In the case where the voltage fluctuation occurs as described above, conventionally, as shown in FIG. 9, the reactive power fluctuation ΔQ of the wind power generation system 2 is detected by the detection circuit 3 and the reactive power of the inverter 5 is compensated for the reactive power fluctuation. The command value is created by the command value creation circuit 4, and voltage fluctuation is suppressed by controlling the inverter 5 (for example, self-excited SVC).

【0006】[0006]

【発明が解決しようとする課題】ところで、図8に示す
ようにアーク炉変動負荷8による周波数変動対策の場
合、可変速同期発電機9にフライホイール10を取り付
けることによりその周波数変動を抑制するようにしてい
るが、フライホイール10は大型のものであり、騒音が
高く、損失が大きく、広い保守スペースも必要となって
好適な手段ではなかった。
In the meantime, as shown in FIG. 8, in the case of countermeasures against frequency fluctuation by the arc furnace fluctuation load 8, the frequency fluctuation is suppressed by attaching a flywheel 10 to the variable speed synchronous generator 9. However, the flywheel 10 is large, large in noise, large in loss, and requires a large maintenance space.

【0007】そこで、商用系統の周波数安定化を図るた
めに電池などの電力貯蔵装置とインバータとを組み合わ
せた周波数変動対策が要望されている。但し、小規模系
統に大容量の出力変動を示す風力発電システムが接続さ
れたハイブリッド電源系統システムにおける周波数変動
をインバータ及び電力貯蔵装置により抑制するにあたっ
ては、インバータ及び電力貯蔵装置の設備容量をできる
だけ小さくすることが、設備コスト、設備の損失及び保
守費用のそれぞれの低減化のために望ましい。前述した
ように系統の周波数はディーゼル発電機の出力調整能力
に依存している。ところが、風力発電システムの出力変
動が急峻なため、風力発電システムの容量が大きくなる
とディーゼル発電機の出力調整能力で処理しきれず、周
波数変動が常時の運用基準を超えるようになる。
[0007] Therefore, in order to stabilize the frequency of a commercial system, there is a demand for a countermeasure against frequency fluctuation in which a power storage device such as a battery and an inverter are combined. However, when suppressing frequency fluctuations in a hybrid power supply system in which a wind power generation system showing large-capacity output fluctuations is connected to a small-scale system using an inverter and a power storage device, the installed capacity of the inverter and the power storage device should be as small as possible. It is desirable to reduce equipment costs, equipment losses, and maintenance costs, respectively. As described above, the frequency of the system depends on the output adjustment capability of the diesel generator. However, since the output fluctuation of the wind power generation system is steep, if the capacity of the wind power generation system becomes large, it cannot be processed by the output adjustment capability of the diesel generator, and the frequency fluctuation exceeds the normal operation standard.

【0008】そこで、本発明は前述した問題点に鑑みて
提案されたもので、その目的とするところは、有効電力
及び無効電力変動による周波数変動をインバータ及び電
力貯蔵装置により抑制するにあたって、設備コスト、設
備の損失及び保守費用の低減化を図り得るインバータの
制御方法を提供することにある。
Accordingly, the present invention has been proposed in view of the above-mentioned problems, and an object of the present invention is to reduce the equipment cost when suppressing frequency fluctuations due to active power and reactive power fluctuations with an inverter and a power storage device. Another object of the present invention is to provide a method of controlling an inverter, which can reduce equipment loss and maintenance cost.

【0009】[0009]

【課題を解決するための手段】前述の目的を達成するた
めの技術的手段として、本発明は、有効電力又は無効電
力変動が大きい分散電源又は変動負荷を小容量の商用電
源に連系させたハイブリッド電源系統システムにおい
て、商用電源を構成する発電機との分担により系統の周
波数変動及び電圧変動を抑制する電力貯蔵装置付きイン
バータの制御方法であって、分散電源又は変動負荷の有
効電力変動を検出し、商用電源を構成する発電機のガバ
ナ特性のカットオフ周波数から割り出されたカットオフ
周波数を有する高域フィルタにより有効電力変動からそ
の短周期成分を抽出し、この短周期成分に基づいてイン
バータの有効電力指令値を作成することにより系統の周
波数変動を抑制し、前記短周期成分に基づくインバータ
の有効電力指令値により電圧変動を抑制すると共に、そ
の短周期成分を除いた有効電力変動の長周期成分と無効
電力変動とに基づいてインバータの無効電力指令値を作
成することにより系統の電圧変動を抑制することを特徴
とする。
SUMMARY OF THE INVENTION As a technical means for achieving the above-mentioned object, the present invention connects a distributed power supply or a variable load having a large fluctuation in active power or reactive power to a commercial power supply having a small capacity. In a hybrid power supply system, a method of controlling an inverter with a power storage device that suppresses frequency fluctuation and voltage fluctuation of the system by sharing with a generator constituting a commercial power supply, and detects active power fluctuation of a distributed power supply or a variable load. Then, the short-period component is extracted from the active power fluctuation by a high-pass filter having a cut-off frequency determined from the cut-off frequency of the governor characteristic of the generator constituting the commercial power supply, and the input is performed based on the short-period component. <br/> By creating an active power command value for the inverter,
Inverter that suppresses wave number fluctuation and is based on the short-period component
Voltage fluctuation with the effective power command value of
Long-period component of active power fluctuation excluding short-period component and invalid
Creates the reactive power command value for the inverter based on the power fluctuation.
The characteristic feature is that the voltage fluctuation of the system is suppressed by implementing the method.

【0010】本発明方法では、分散電源又は変動負荷の
有効電力変動による周波数変動のうち、商用電源の出力
調整能力で処理できる有効電力変動の長周期成分につい
ては商用電源で、その商用電源の出力調整能力で処理し
きれない短周期成分についてはインバータで分担するこ
とにより周波数変動を抑制し、インバータ及び電力貯蔵
装置の容量低減化を図る。
According to the method of the present invention, of the frequency fluctuations due to the active power fluctuations of the distributed power supply or the variable load, the long-period component of the active power fluctuations that can be processed by the output adjustment capability of the commercial power supply is the commercial power supply, and the output of the commercial power supply is Short-period components that cannot be processed by the adjustment capability are shared by the inverter to suppress frequency fluctuations and reduce the capacity of the inverter and the power storage device.

【0011】[0011]

【0012】また、商用電源の末端で連系された分散電
源又は変動負荷の出力変動のために線路インピーダンス
による電圧変動が分散電源又は変動負荷の設置点近傍で
生じる場合には、前述した周波数の変動を抑制すると共
に、その電圧変動も抑制する必要がある。そこで、本発
明は、前述したカットオフ周波数を有する高域フィルタ
により抽出された有効電力変動の短周期成分を抽出し、
この短周期成分に基づいてインバータの有効電力指令値
を作成することにより、インバータは有効電力の短周期
成分を吸収するので、線路の抵抗分で生じる有効電力の
短周期成分によって生じる電圧変動の改善にも寄与す
る。また、このように有効電力変動から抽出した短周期
成分により系統の電圧変動を抑制すると共に、その短周
期成分を除いた有効電力変動の長周期成分と無効電力変
動とに基づいてインバータの無効電力指令値を作成する
ことにより系統の電圧変動を抑制する。
In the case where a voltage fluctuation due to line impedance occurs near the installation point of the distributed power supply or the variable load due to the output fluctuation of the distributed power supply or the variable load connected at the end of the commercial power supply, In addition to suppressing the fluctuation, it is necessary to suppress the voltage fluctuation. Therefore,
Akira is a high-pass filter with the cutoff frequency described above.
Extract the short-period component of the active power fluctuation extracted by
The active power command value of the inverter based on this short cycle component
By creating the inverter, the short period of the active power
Component, absorbing the active power generated by the line resistance.
Also contributes to improving voltage fluctuations caused by short-period components
You. In addition, the short period extracted from the active power fluctuation
Components to suppress voltage fluctuations in the
Long-period component of reactive power fluctuation and reactive power
The reactive power command value of the inverter based on the
This suppresses voltage fluctuations in the system.

【0013】尚、前述した高域フィルタのカットオフ周
波数は、商用電源を構成する発電機のガバナ特性のカッ
トオフ周波数の1/20〜1/2とすることが望まし
い。ここで、高域フィルタのカットオフ周波数が発電機
のガバナ特性のカットオフ周波数の1/20よりも小さ
ければ、設備コストの上昇や設備の大型化を招来して好
適な手段ではなくなり、逆に1/2よりも大きければ、
周波数変動を規制する運用基準を超えて所期の効果を発
揮することが困難となる。因みに、高域フィルタのカッ
トオフ周波数は、発電機のガバナ特性のカットオフ周波
数の1/10程度が好ましい。
Incidentally, the cut-off frequency of the high-pass filter described above.
The wave number is based on the governor characteristics of the generator that constitutes the commercial power supply.
To 1/20 to 1/2 of the toe-off frequency.
No. Here, the cutoff frequency of the high-pass filter is
Less than 1/20 of the cut-off frequency of governor characteristics
If this is the case, it is preferable to increase equipment costs and increase the size of equipment.
It is no longer a suitable means, and if it is larger than 1/2,
Providing expected effects beyond operating standards that regulate frequency fluctuations
It becomes difficult to conduct. By the way, the high-pass filter
Is the cutoff frequency of the governor characteristics of the generator.
About 1/10 of the number is preferable.

【0014】[0014]

【0015】また、系統の電圧変動を抑制するに際し
て、有効電力変動の長周期成分による線路末端の電圧上
昇を抑制するSVRと、そのSVRで対処できない短周
期の電圧変動を選択的に補償するインバータとで協調制
御する。
Further, when suppressing the voltage fluctuation of the system, the voltage at the end of the line due to the long-period component of the active power fluctuation is reduced.
SVR that suppresses ascent and short circuit that SVR cannot cope with
Control with inverter that selectively compensates for voltage fluctuations
I will.

【0016】[0016]

【発明の実施の形態】本発明の実施形態を以下に詳述す
る。以下の実施形態では、風力発電システムを分散電源
とした場合について説明するが、例えば、発電機、フラ
イホイール等の回転機電源や太陽光発電などの静止形電
源からなる他の分散電源についても適用可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail. In the following embodiments, a case where a wind power generation system is used as a distributed power supply will be described. However, the present invention is also applied to other distributed power supplies including a stationary power supply such as a generator, a rotating machine power supply such as a flywheel, and a photovoltaic power generation. It is possible.

【0017】まず、一般的に商用電源を構成するディー
ゼル発電機1は、後述するように調速器(ガバナ)によ
り回転数が一定に保たれるように原動機の入力(燃料)
制御が行われる(図5参照)。この結果として、負荷の
要求する有効電力に応じた発電機の出力が得られる。ま
た、インバータ5は、周波数変動を抑制するために系統
からの余剰電力の吸収及び系統への不足電力の放出が可
能なように電池やバッテリ等を有する電力貯蔵装置(図
示せず)が付設されている。
First, in general, a diesel generator 1 constituting a commercial power supply receives an input (fuel) of a prime mover such that a rotation speed is kept constant by a governor as described later.
Control is performed (see FIG. 5). As a result, an output of the generator according to the active power required by the load is obtained. Further, the inverter 5 is provided with a power storage device (not shown) having a battery, a battery, or the like so as to be able to absorb surplus power from the system and release insufficient power to the system in order to suppress frequency fluctuation. ing.

【0018】図1は負荷の有効電力変動に対して、ディ
ーゼル発電機1の回転数がどのように応動するかを示し
たもので、ディーゼル発電機1が持つ伝達函数G(s)
により決定されるガバナ特性Gについては、負荷の変動
周波数が低いほどガバナが有効に働き、ディーゼル発電
機1の回転数(周波数)変動を小さく抑制することがで
きることを示している。逆に負荷の変動周波数が高いと
ガバナがその変動に追従しきれないため、ディーゼル発
電機1の回転数(周波数)変動の抑制効果がなくなるこ
とを示している。
FIG. 1 shows how the rotation speed of the diesel generator 1 responds to a change in the active power of the load. The transfer function G (s) of the diesel generator 1 is shown in FIG.
The governor characteristic G determined by the formula (1) indicates that the governor works more effectively as the load fluctuation frequency is lower, and the rotation speed (frequency) fluctuation of the diesel generator 1 can be suppressed to be smaller. Conversely, if the load fluctuation frequency is high, the governor cannot follow the fluctuation, and the effect of suppressing the rotation speed (frequency) fluctuation of the diesel generator 1 is lost.

【0019】本発明で使用するインバータ5は、このデ
ィーゼル発電機1のガバナ特性Gのカットオフ周波数f
gから割り出したカットオフ周波数fp、即ち、ディー
ゼル発電機1の伝達函数G(s)により決定されるガバ
ナ特性Gのカットオフ周波数fgの例えば1/10程度
のカットオフ周波数fpを持つ高域フィルタ14を具備
する(図5参照)。この高域フィルタ14が必要とする
伝達函数I(s)により決定されるフィルタ特性Iは、
前述のガバナ特性Gと逆に、負荷の変動周波数が高いほ
どインバータ5が有効に作動してディーゼル発電機1の
回転数(周波数)変動を小さく抑制することができ、逆
に負荷の変動周波数が低いほどディーゼル発電機1の回
転数(周波数)変動の抑制効果がなくなることになる。
The inverter 5 used in the present invention has a cut-off frequency f of the governor characteristic G of the diesel generator 1.
g, a high-pass filter having a cut-off frequency fp, for example, about 1/10 of the cut-off frequency fg of the governor characteristic G determined by the transfer function G (s) of the diesel generator 1. 14 (see FIG. 5). The filter characteristic I determined by the transfer function I (s) required by the high-pass filter 14 is
Contrary to the governor characteristic G described above, the higher the load fluctuation frequency is, the more effectively the inverter 5 operates and the rotation speed (frequency) fluctuation of the diesel generator 1 can be suppressed small, and conversely, the load fluctuation frequency decreases. The lower the value, the less the effect of suppressing the fluctuation of the rotational speed (frequency) of the diesel generator 1 becomes.

【0020】有効電力変動による周波数変動の抑制は、
以下の要領でもって行われる。概略的には、前述したデ
ィーゼル発電機1が持つ伝達函数G(s)と高域フィル
タ14が持つ伝達函数I(s)との積により得られる伝
達函数F(s)=G(s)×I(s)、即ち、ディーゼ
ル発電機1のガバナ特性Gと高域フィルタ14のフィル
タ特性Iとの合成特性F=G×Iでもって周波数の変動
をディーゼル発電機1とインバータ5の両者で分担して
抑制する。
The suppression of frequency fluctuation due to active power fluctuation is as follows.
It is performed in the following manner. Schematically, a transfer function F (s) = G (s) × obtained by a product of the transfer function G (s) of the diesel generator 1 and the transfer function I (s) of the high-pass filter 14. I (s), that is, the combined frequency F = G × I of the governor characteristic G of the diesel generator 1 and the filter characteristic I of the high-pass filter 14 causes the frequency fluctuation to be shared by both the diesel generator 1 and the inverter 5. And suppress.

【0021】即ち、図1に示すように負荷の変動周波数
が低い状況では、ディーゼル発電機1による変動抑制効
果が大きいため、有効電力変動による周波数変動(図3
参照)のうちの長周期成分ΔP−ΔPinv (図4参照)
を主としてディーゼル発電機1により吸収する。一方、
負荷の変動周波数が高い状況では、インバータ5による
変動抑制効果が大きいため、有効電力変動による周波数
変動のうちの短周期成分ΔPinv (図3参照)を主とし
てインバータ5により吸収する。
That is, as shown in FIG. 1, when the load fluctuation frequency is low, the fluctuation suppression effect by the diesel generator 1 is large, so that the frequency fluctuation due to the active power fluctuation (FIG. 3)
) P-ΔPinv (see FIG. 4)
Is mainly absorbed by the diesel generator 1. on the other hand,
In a situation where the load fluctuation frequency is high, the fluctuation suppression effect of the inverter 5 is large, so that the short-cycle component ΔPinv (see FIG. 3) of the frequency fluctuation due to the active power fluctuation is mainly absorbed by the inverter 5.

【0022】尚、フィルタ特性Iを設定する上で必要な
高域フィルタ14のカットオフ周波数fpについては、
前述の場合、ガバナ特性Gのカットオフ周波数fgの1
/10程度にしたが、この値は、ディーゼル発電機1及
び風力発電システム2の容量などの諸条件に応じて変更
可能である。
The cut-off frequency fp of the high-pass filter 14 required for setting the filter characteristic I is as follows:
In the case described above, the cutoff frequency fg of the governor characteristic G is 1
Although it is set to about / 10, this value can be changed according to various conditions such as the capacity of the diesel generator 1 and the wind power generation system 2.

【0023】但し、高域フィルタ14のカットオフ周波
数fpは、商用電源を構成するディーゼル発電機1のガ
バナ特性Gのカットオフ周波数fgの1/20〜1/2
とすることが望ましい。ここで、高域フィルタ14のカ
ットオフ周波数fpがディーゼル発電機1のガバナ特性
Gのカットオフ周波数fgの1/20よりも小さけれ
ば、設備コストの上昇や設備の大型化を招来して好適な
手段ではなくなり、逆に1/2よりも大きければ、ディ
ーゼル発電機1のガバナ特性Gと高域フィルタ14のフ
ィルタ特性I' との合成特性F' =G×I' が周波数変
動を規制する運用基準Lを超えて所期の効果を発揮する
ことが困難となる(図2参照)。
However, the cutoff frequency fp of the high-pass filter 14 is 1/20 to 1/2 of the cutoff frequency fg of the governor characteristic G of the diesel generator 1 constituting the commercial power supply.
It is desirable that Here, if the cut-off frequency fp of the high-pass filter 14 is smaller than 1/20 of the cut-off frequency fg of the governor characteristic G of the diesel generator 1, the cost of equipment increases and the equipment becomes larger. If it is larger than 手段, the combined characteristic F ′ = G × I ′ of the governor characteristic G of the diesel generator 1 and the filter characteristic I ′ of the high-pass filter 14 controls the frequency fluctuation. It becomes difficult to exhibit the intended effect beyond the standard L (see FIG. 2).

【0024】具体的に、前述したインバータ5による短
周期成分ΔPinv の吸収は、図5の制御ブロック図に示
す以下の構成に基づいて行われる。尚、前述したように
商用電源を構成するディーゼル発電機1は、回転数検出
器22から検出された回転数に基づいて、ガバナ23に
より回転数が一定に保たれるように燃料系24を制御し
て原動機25の入力(燃料)制御が行われる。この結果
として、負荷の要求する有効電力に応じたディーゼル発
電機1の出力が得られる。
Specifically, the above-described absorption of the short-period component ΔPinv by the inverter 5 is performed based on the following configuration shown in the control block diagram of FIG. As described above, the diesel generator 1 constituting the commercial power supply controls the fuel system 24 based on the rotation speed detected by the rotation speed detector 22 so that the governor 23 keeps the rotation speed constant. Then, input (fuel) control of the prime mover 25 is performed. As a result, the output of the diesel generator 1 according to the active power required by the load is obtained.

【0025】風力発電システム2の有効電力変動ΔPを
変流器11及び変圧器12により検出回路13でもって
検出し、ディーゼル発電機1のガバナ特性Gのカットオ
フ周波数fgの1/10程度のカットオフ周波数fpを
有する高域フィルタ14(HPF)により有効電力変動
ΔPからその短周期成分ΔPinv を抽出する。尚、この
高域フィルタ14は、(S・Tinv )/(1+S・Tin
v )の特性を有する〔1/Tinv :インバータのカット
オフ周波数〕。この有効電力変動ΔPの短周期成分ΔP
inv に基づいてインバータ5の指令値作成回路15によ
り有効電力指令値Pref を作成し、インバータ5の有効
電力Pを制御する。
The active power fluctuation ΔP of the wind power generation system 2 is detected by the current transformer 11 and the transformer 12 by the detection circuit 13, and the cutoff frequency of the governor characteristic G of the diesel generator 1 is reduced to about 1/10 of the cutoff frequency fg. The short-period component ΔPinv is extracted from the active power fluctuation ΔP by the high-pass filter 14 (HPF) having the off frequency fp. Note that this high-pass filter 14 is calculated by (S · Tinv) / (1 + S · Tin
v) [1 / Tinv: cut-off frequency of the inverter]. The short-period component ΔP of this active power fluctuation ΔP
Based on the inv, the command power generation circuit 15 of the inverter 5 generates the active power command value Pref to control the active power P of the inverter 5.

【0026】一方、風力発電システム2が商用系統の末
端にあり、しかも一般需要家が近接している場合などに
は、風力発電システム2の出力変動のため線路インピー
ダンスによる電圧変動が風力発電システム2の設置点近
傍で生じる。この風力発電システム2の出力変動に伴う
電圧変動ΔVは、風力発電システム2の有効電力変動を
ΔP、無効電力変動をΔQ、線路インピーダンスをR+
jX〔R:商用系統の抵抗、X:商用系統のリアクタン
ス〕とすると、ΔV=R×ΔP+X×ΔQで近似でき
る。
On the other hand, when the wind power generation system 2 is located at the end of the commercial power system and a general customer is in proximity, the voltage fluctuation due to the line impedance due to the output fluctuation of the wind power generation system 2 causes the fluctuation. Occurs near the installation point. The voltage fluctuation ΔV accompanying the output fluctuation of the wind power generation system 2 is represented by ΔP for the active power fluctuation, ΔQ for the reactive power fluctuation, and R + for the line impedance of the wind power generation system 2.
Assuming that jX [R: resistance of the commercial system, X: reactance of the commercial system], it can be approximated by ΔV = R × ΔP + X × ΔQ.

【0027】従って、この電圧変動ΔVをインバータ5
の無効電力で補償するためには、ΔV=X×Qinv とす
る必要があることから、インバータ5の無効電力補償量
Qinv は、Qinv =(R/X)×ΔP+ΔQとなる。一
般的には、電圧変動対策は線路の抵抗率(R/X)が小
さいため、従来では系統の無効電力変動ΔQでのみ行っ
ていた(図9参照)。
Therefore, this voltage fluctuation ΔV is
Since it is necessary to satisfy ΔV = X × Qinv in order to compensate with the reactive power of (1), the reactive power compensation amount Qinv of the inverter 5 is Qinv = (R / X) × ΔP + ΔQ. In general, the countermeasures against voltage fluctuations are performed only with the reactive power fluctuation ΔQ of the system because the resistivity (R / X) of the line is small (see FIG. 9).

【0028】インバータ5で周波数変動を抑制するた
め、有効電力変動ΔPの一部である短周期成分ΔPinv
の対策を行った場合、有効電力変動ΔPの長周期成分
(ΔP−ΔPinv )による電圧変動は残留することにな
る。とりわけ系統の末端に設置される機会が多い風力発
電システム2では線路の抵抗分による電圧変動が顕著な
ため、有効電力変動ΔPの長周期成分(ΔP−ΔPinv
)により線路末端の電圧が上昇する。これを抑制する
ため、SVR(Series Voltage Regulator)で末端電圧
が既定の電圧範囲に収まるように制御しているが、それ
でも対応できない場合は系統構成の変更などの運用で末
端の電圧上昇を回避している。尚、SVRの応答時間を
時定数とした高域フィルタ20は、(S・Tsvr )/
(1+S・Tsvr)の特性を有する〔1/Tsvr :SV
Rの制御系のカットオフ周波数〕。
In order to suppress the frequency fluctuation by the inverter 5, the short-period component ΔPinv which is a part of the active power fluctuation ΔP
In this case, the voltage fluctuation due to the long-period component (ΔP−ΔPinv) of the active power fluctuation ΔP remains. In particular, in the wind power generation system 2 which is often installed at the end of the system, the voltage fluctuation due to the resistance of the line is remarkable, so that the long-period component (ΔP−ΔPinv) of the active power fluctuation ΔP.
) Increases the voltage at the end of the line. To suppress this, SVR (Series Voltage Regulator) controls the terminal voltage to fall within the specified voltage range. If that cannot be met, however, avoid voltage rise at the terminal by changing the system configuration. ing. The high-pass filter 20 using the response time of the SVR as a time constant is represented by (S · Tsvr) /
It has the characteristic of (1 + S · Tsvr) [1 / Tsvr: SV
Cutoff frequency of R control system].

【0029】このような電圧上昇〔有効電力変動ΔPの
長周期成分(ΔP−ΔPinv )〕に対し、インバータ5
の有効電力補償で対応することは得策でなく、有効電力
変動ΔPによる電圧変動はインバータ5の無効電力で対
策すれば有効電力変動ΔPの抵抗率(R/X)の無効電
力補償で済ませることができ、インバータ5の容量低減
を図ることができる。
The inverter 5 responds to such a voltage rise (long-period component (ΔP−ΔPinv) of the active power fluctuation ΔP).
It is not advisable to cope with the active power compensation of the above. If the voltage fluctuation due to the active power fluctuation ΔP is dealt with by the reactive power of the inverter 5, the reactive power compensation of the resistivity (R / X) of the active power fluctuation ΔP can be completed. As a result, the capacity of the inverter 5 can be reduced.

【0030】本発明方法では、前述したように風力発電
システム2の有効電力変動ΔPを検出し、商用電源を構
成するディーゼル発電機1のガバナ特性Gのカットオフ
周波数fgから割り出されたカットオフ周波数fpを有
する高域フィルタ14により有効電力変動ΔPから抽出
された短周期成分ΔPinv を周波数変動抑制のためにイ
ンバータ5の有効電力指令値Pref として付与する。そ
の結果、インバータ5は有効電力変動ΔPの短周期成分
ΔPinv を吸収するので、線路の抵抗分(R/X)で生
じる有効電力変動ΔPの短周期成分ΔPinv によって生
じる電圧変動の改善にも寄与する。
In the method of the present invention, as described above, the active power fluctuation ΔP of the wind power generation system 2 is detected, and the cutoff frequency fg of the governor characteristic G of the diesel generator 1 constituting the commercial power supply is determined. The short-period component ΔPinv extracted from the active power fluctuation ΔP by the high-pass filter 14 having the frequency fp is given as the active power command value Pref of the inverter 5 for suppressing the frequency fluctuation. As a result, since the inverter 5 absorbs the short-period component ΔPinv of the active power fluctuation ΔP, it also contributes to the improvement of the voltage fluctuation caused by the short-period component ΔPinv of the active power fluctuation ΔP generated by the resistance (R / X) of the line. .

【0031】そこで、風力発電システム2の有効電力変
動ΔPから抽出した短周期成分ΔPinv により電圧変動
を抑制すると共に、その短周期成分ΔPを除いた有効電
力変動ΔPの長周期成分(ΔP−ΔPinv )に風力発電
システム2から見た線路インピーダンス(Z=R+j
X)から求まる(R/X)を乗じた無効電力換算値に、
風力発電システム2から検出した無効電力成分を加え、
インバータ5の無効電力指令値Qref を作成する。
Therefore, the voltage fluctuation is suppressed by the short-period component ΔPinv extracted from the active power fluctuation ΔP of the wind power generation system 2, and the long-period component (ΔP−ΔPinv) of the active power fluctuation ΔP excluding the short-period component ΔP. The line impedance (Z = R + j) viewed from the wind power generation system 2
X) to the reactive power conversion value multiplied by (R / X)
The reactive power component detected from the wind power generation system 2 is added,
A reactive power command value Qref for the inverter 5 is created.

【0032】即ち、風力発電システム2の有効電力変動
ΔPを変流器11及び変圧器12により検出回路13で
もって検出し、その有効電力変動ΔPから短周期成分Δ
Pinv を減算器16により差し引いて長周期成分(ΔP
−ΔPinv )を算出する。この有効電力変動ΔPの長周
期成分(ΔP−ΔPinv )に抵抗率(R/X)を演算回
路19により乗算し、検出回路18により検出された風
力発電システム2の無効電力変動ΔQを、前述の演算回
路19から出力される無効電力換算値に加算器17によ
り加算し、インバータ5の無効電力指令値Qref を指令
値作成回路21により作成し、インバータ5の無効電力
Qを制御する。
That is, the active power fluctuation ΔP of the wind power generation system 2 is detected by the current transformer 11 and the transformer 12 by the detection circuit 13, and the short-period component ΔP is obtained from the active power fluctuation ΔP.
Pinv is subtracted by the subtractor 16 to obtain a long-period component (ΔP
-ΔPinv). The long-period component (ΔP−ΔPinv) of the active power variation ΔP is multiplied by the resistivity (R / X) by the arithmetic circuit 19, and the reactive power variation ΔQ of the wind power generation system 2 detected by the detection circuit 18 is calculated as described above. The adder 17 adds the reactive power conversion value output from the arithmetic circuit 19 to the reactive power command value Qref of the inverter 5 by the command value creation circuit 21 to control the reactive power Q of the inverter 5.

【0033】尚、図7は図5の変形例であり、図5の実
施形態は、有効電力変動ΔPの長周期成分(ΔP−ΔP
inv )を内部演算により算出するものであるのに対し
て、図7の実施形態は、有効電力変動ΔPの長周期成分
(ΔP−ΔPinv )を変流器11' 及び変圧器12によ
り検出回路13' でもって検出するものである。
FIG. 7 is a modification of FIG. 5, and in the embodiment of FIG. 5, the long period component (ΔP−ΔP
Inv) is calculated by an internal calculation, whereas the embodiment of FIG. 7 uses the current transformer 11 ′ and the transformer 12 to detect the long-period component (ΔP−ΔPinv) of the active power fluctuation ΔP. 'To detect it.

【0034】以上の実施形態では、有効電力と無効電力
の両方を制御することにより電圧変動を抑制する場合に
ついて説明したが、商用電源であるディーゼル発電機1
と分散電源である風力発電システム2との間の系統母線
6が比較的短くて線路インピーダンスが小さい商用系統
では、電圧変動が大きく現出してこないため、無効電力
を制御する必要がなく、有効電力の変動を抑制するだけ
で十分な場合もある。
In the above embodiment, the case where the voltage fluctuation is suppressed by controlling both the active power and the reactive power has been described.
In a commercial system having a relatively short system bus 6 and a small line impedance between the power generation system 2 and the wind power generation system 2 serving as a distributed power source, voltage fluctuations do not appear significantly. In some cases, it is sufficient to suppress the fluctuations of.

【0035】[0035]

【発明の効果】本発明では、有効電力変動の短周期成分
に基づいて有効電力を制御し、有効電力の長周期成分と
無効電力変動とに基づいて無効電力を制御するようにし
たことから、有効電力及び無効電力の変動による周波数
及び電圧変動の一部を商用電源が分担し、残りをインバ
ータが分担することによりインバータの負担を軽減する
ことができ、分散電源又は変動負荷の容量に比べてイン
バータの容量を小さくすることができ、また、電池など
の電力貯蔵装置の容量も小さくできるので、設備コス
ト、設備の損失及び保守費用の低減化が図れ、装置のコ
ンパクト化も実現できてその実用的価値は大きい。
According to the present invention , the short-period component of the active power fluctuation
The active power is controlled based on the
The reactive power is controlled based on the reactive power fluctuation.
Therefore, the commercial power supply shares part of the frequency and voltage fluctuations due to the fluctuations in the active power and the reactive power, and the rest can be shared by the inverter, thereby reducing the load on the inverter. Since the capacity of the inverter can be made smaller than the capacity, and the capacity of the power storage device such as a battery can also be made smaller, the equipment cost, equipment loss and maintenance cost can be reduced, and the equipment can be made more compact. Its practical value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を説明するためのもので、負
荷の有効電力変動に対して、発電機の回転数がどのよう
に応動するかを示す周波数特性図
FIG. 1 is a diagram for explaining an embodiment of the present invention, and is a frequency characteristic diagram showing how the rotation speed of a generator responds to a change in active power of a load.

【図2】高域フィルタのカットオフ周波数を発電機のガ
バナ特性のカットオフ周波数の1/2より大きくした場
合の周波数特性図
FIG. 2 is a frequency characteristic diagram when a cutoff frequency of a high-pass filter is set to be larger than 1/2 of a cutoff frequency of a governor characteristic of a generator.

【図3】有効電力の周波数変動を示す波形図FIG. 3 is a waveform chart showing frequency fluctuation of active power.

【図4】図3の周波数変動を長周期成分と短周期成分と
に分けた状態を示す波形図
FIG. 4 is a waveform diagram showing a state in which the frequency fluctuation of FIG. 3 is divided into a long-period component and a short-period component;

【図5】本発明の実施形態におけるインバータの制御ブ
ロック図
FIG. 5 is a control block diagram of an inverter according to the embodiment of the present invention.

【図6】系統にSVRを設置した場合のインバータの制
御ブロック図
FIG. 6 is a control block diagram of an inverter when an SVR is installed in a system.

【図7】本発明の他の実施形態におけるインバータの制
御ブロック図
FIG. 7 is a control block diagram of an inverter according to another embodiment of the present invention.

【図8】アーク炉変動負荷を商用系統に接続した系統連
系システムを示す構成図
FIG. 8 is a configuration diagram showing a system interconnection system in which an arc furnace variable load is connected to a commercial system.

【図9】商用系統に発生した無効電力を補償するインバ
ータを設けた電圧変動対策の従来例を示す制御ブロック
FIG. 9 is a control block diagram showing a conventional example of a countermeasure against voltage fluctuation provided with an inverter for compensating reactive power generated in a commercial system.

【符号の説明】[Explanation of symbols]

1 商用電源(ディーゼル発電機) 2 分散電源(風力発電システム) 5 インバータ 8 変動負荷 14 高域フィルタ G ガバナ特性 I フィルタ特性 ΔP 有効電力変動 ΔQ 無効電力変動 fg ガバナ特性のカットオフ周波数 fp フィルタ特性のカットオフ周波数 ΔPinv 短周期成分 ΔP−ΔPinv 長周期成分 ΔV 電圧変動 Pref 有効電力指令値 Qref 無効電力指令値 DESCRIPTION OF SYMBOLS 1 Commercial power supply (diesel generator) 2 Distributed power supply (wind power generation system) 5 Inverter 8 Fluctuating load 14 High-pass filter G Governor characteristic I Filter characteristic ΔP Active power fluctuation ΔQ Reactive power fluctuation fg Governor characteristic cutoff frequency fp Filter characteristic Cutoff frequency ΔPinv Short-term component ΔP-ΔPinv Long-term component ΔV Voltage fluctuation Pref Active power command value Qref Reactive power command value

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成底 勇人 沖縄県浦添市牧港5丁目2番1号 沖縄 電力株式会社内 (72)発明者 伊良皆 淳 沖縄県浦添市牧港5丁目2番1号 沖縄 電力株式会社内 (72)発明者 吉川 正也 京都府京都市右京区梅津高畝町47番地 日新電機株式会社内 (72)発明者 浅野 正邦 京都府京都市右京区梅津高畝町47番地 日新電機株式会社内 (72)発明者 徳田 憲昭 京都府京都市右京区梅津高畝町47番地 日新電機株式会社内 (72)発明者 村松 清重 京都府京都市右京区梅津高畝町47番地 日新電機株式会社内 (72)発明者 荻原 義也 京都府京都市右京区梅津高畝町47番地 日新電機株式会社内 (56)参考文献 特開 平2−250638(JP,A) 特開 平9−101829(JP,A) 特開 平7−298497(JP,A) 特開 平8−308248(JP,A) 実開 平6−80389(JP,U) 実開 平7−25407(JP,U) 実開 平7−41608(JP,U) 実開 平6−86109(JP,U) 特許2575682(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H02J 3/12 - 3/18 G05F 1/66 - 1/70 H01M 7/48 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor, Hayato Naruto, 5-2-1 Makiko, Urasoe, Okinawa Prefecture Inside Okinawa Electric Power Co., Inc. (72) Atsushi Irika, 5-2-1 Makiko, Urasoe, Okinawa, Okinawa Inside Electric Power Co., Inc. (72) Inventor Masaya Yoshikawa 47, Umezu Takaune-cho, Ukyo-ku, Kyoto-shi, Kyoto Nippon Electric Co., Ltd. (72) Inventor Noriaki Tokuda 47, Umezu Takaune-cho, Ukyo-ku, Kyoto-shi, Kyoto Nishi Electric Co., Ltd. Inventor Yoshiya Ogiwara 47, Umezu Takaune-cho, Ukyo-ku, Kyoto-shi, Nippon Electric Co., Ltd. (56) References JP-A-2-250638 (JP, A) JP-A-Hei. JP-A-7-298497 (JP, A) JP-A-8-308248 (JP, A) JP-A-6-80389 (JP, U) JP-A-7-25407 (JP, U) Japanese Utility Model Application Hei 7-41608 (JP, U) Japanese Utility Model Application Hei 6-86109 (JP, U) Patent 2557682 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 3/12 -3/18 G05F 1/66-1/70 H01M 7/48

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有効電力又は無効電力変動が大きい分散電
源又は変動負荷を小容量の商用電源に連系させたハイブ
リッド電源系統システムにおいて、商用電源を構成する
発電機との分担により系統の周波数変動及び電圧変動
抑制する電力貯蔵装置付きインバータの制御方法であっ
て、 分散電源又は変動負荷の有効電力変動を検出し、商用電
源を構成する発電機のガバナ特性のカットオフ周波数か
ら割り出されたカットオフ周波数を有する高域フィルタ
により有効電力変動からその短周期成分を抽出し、この
短周期成分に基づいてインバータの有効電力指令値を作
成することにより系統の周波数変動を抑制し、前記短周
期成分に基づくインバータの有効電力指令値により電圧
変動を抑制すると共に、その短周期成分を除いた有効電
力変動の長周期成分と無効電力変動とに基づいてインバ
ータの無効電力指令値を作成することにより系統の電圧
変動を抑制することを特徴とするインバータの制御方
法。
In a hybrid power supply system in which a variable power supply or a variable load having large fluctuations in active power or reactive power is connected to a commercial power supply having a small capacity, the frequency fluctuation of the system by sharing with a generator constituting the commercial power supply. And a method for controlling an inverter with a power storage device that suppresses voltage fluctuations , wherein active power fluctuations of a distributed power supply or a variable load are detected, and the active power fluctuations are determined from a cutoff frequency of a governor characteristic of a generator constituting a commercial power supply. extracts the short-period component from the active power variation by a high pass filter having a cut-off frequency, this
By creating an active power command value for the inverter based on the short-period component, frequency fluctuation of the system is suppressed,
Voltage by the inverter's active power command value based on the period component
Fluctuations and the effective power excluding the short-period component.
Based on the long-period component of the power fluctuation and the reactive power fluctuation.
The reactive power command value of the
A method for controlling an inverter, which suppresses fluctuation .
【請求項2】前記高域フィルタのカットオフ周波数は、
商用電源を構成する発電機のガバナ特性のカットオフ周
波数の1/20〜1/2に相当することを特徴とする請
求項1記載のインバータの制御方法。
2. The cut-off frequency of the high-pass filter is:
2. The control method for an inverter according to claim 1, wherein the control value corresponds to 1/20 to 1/2 of a cutoff frequency of a governor characteristic of a generator constituting a commercial power supply.
【請求項3】前記系統の電圧変動を抑制するに際して、
有効電力変動の長周期成分による線路末端の電圧上昇を
抑制するSVRと、そのSVRで対処できない短周期の
電圧変動を選択的に補償するインバータとで協調制御す
ることを特徴とする請求項1記載のインバータの制御方
法。
3. The method according to claim 1, further comprising :
The voltage rise at the line end due to the long period component of the active power fluctuation
SVR to suppress and short-period that cannot be dealt with by SVR
Cooperative control with an inverter that selectively compensates for voltage fluctuations
The method for controlling an inverter according to claim 1, wherein
Law.
JP10167358A 1998-06-15 1998-06-15 Inverter control method Expired - Fee Related JP3108054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10167358A JP3108054B2 (en) 1998-06-15 1998-06-15 Inverter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10167358A JP3108054B2 (en) 1998-06-15 1998-06-15 Inverter control method

Publications (2)

Publication Number Publication Date
JP2000004541A JP2000004541A (en) 2000-01-07
JP3108054B2 true JP3108054B2 (en) 2000-11-13

Family

ID=15848248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10167358A Expired - Fee Related JP3108054B2 (en) 1998-06-15 1998-06-15 Inverter control method

Country Status (1)

Country Link
JP (1) JP3108054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683321A (en) * 2013-11-20 2014-03-26 国家电网公司 Optimal output calculation method and optimal output calculation device for energy storage system for smoothening wind power fluctuation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706361B2 (en) * 2005-07-11 2011-06-22 株式会社明電舎 System stabilization device
JP4518002B2 (en) * 2005-11-01 2010-08-04 富士電機システムズ株式会社 Power stabilization system using power storage device and control device thereof
JP4672525B2 (en) * 2005-11-04 2011-04-20 三菱電機株式会社 Power quality maintenance control device
US7983799B2 (en) * 2006-12-15 2011-07-19 General Electric Company System and method for controlling microgrid
JP5355907B2 (en) * 2008-02-29 2013-11-27 株式会社東芝 Power system stabilization system
KR101464483B1 (en) 2013-05-02 2014-11-25 이엔테크놀로지 주식회사 System for lowing capacity of the battery by stabilizing the output
GB201406098D0 (en) * 2014-04-04 2014-05-21 Cummins Generator Technologies Power generation system
JP6933450B2 (en) * 2016-06-20 2021-09-08 株式会社日立製作所 Voltage Reactive Power Monitoring and Control Device and Method
JP7228126B2 (en) * 2017-01-24 2023-02-24 住友電気工業株式会社 Energy storage system and variable power stable utilization system
JP7075861B2 (en) * 2018-10-09 2022-05-26 三菱重工エンジン&ターボチャージャ株式会社 Hybrid power generation system and control method of hybrid power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683321A (en) * 2013-11-20 2014-03-26 国家电网公司 Optimal output calculation method and optimal output calculation device for energy storage system for smoothening wind power fluctuation
CN103683321B (en) * 2013-11-20 2016-02-17 国家电网公司 A kind of optimum output calculation method of energy-storage system for level and smooth wind power fluctuation and device

Also Published As

Publication number Publication date
JP2000004541A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
Howlader et al. A comprehensive review of low voltage ride through capability strategies for the wind energy conversion systems
Muljadi et al. Power quality issues in a hybrid power system
CN101272055B (en) Low voltage traversing control method of wind generator set
Valenciaga et al. Passivity/sliding mode control of a stand-alone hybrid generation system
US7518257B2 (en) Hybrid power-generating device
CN108092577B (en) Wind power generation system and control method suitable for same
JP3108054B2 (en) Inverter control method
CN111682587B (en) Wind driven generator low voltage ride through control method and system
CN110071531A (en) A kind of extensive energy storage and permanent magnet wind generating coordinated control system and method
EP3987170A1 (en) Fast frequency support from wind turbine systems
Nouh et al. Wind energy conversion systems: Classifications and trends in application
Yousef et al. Frequency response enhancement of an AC micro-grid has renewable energy resources based generators using inertia controller
CN114498747A (en) Wind turbine generator fault ride-through control method based on energy storage and fan inertia response
Sharma et al. Performance evaluation of SFIG and DFIG based wind turbines
CN105207270B (en) Improve the inverter power control method for coordinating of grid-connected voltage out-of-limit
CN116937546A (en) Wind storage grid connection considered power grid low-frequency oscillation suppression method and system
CN114221395A (en) Primary frequency modulation and virtual inertia control method for wind power station
JPH0530686A (en) Controller for superconducting energy storage device
Haruni et al. Control of a direct drive IPM synchronous generator based variable speed wind turbine with energy storage
Awasthi et al. Study for performance comparison of sfig and dfig based wind turbines
Gao et al. Frequency Control Strategy of DFIGs based on Improved Virtual Inertia Method
Aboul-Seoud et al. A novel dynamic voltage regulator compensation scheme for a standalone village electricity wind energy conversion system
Zhai et al. Frequency response strategy of Wind-storage-PEV collaborated system
Ren et al. Primary Frequency Regulation Strategy of PMSG-Based Wind Turbines Integrated Inertia Control
CN114421533A (en) Method for transforming virtual synchronous machine of fan based on idea of virtual synchronous machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees