JP3105623B2 - Constant temperature controlled crystal oscillator - Google Patents

Constant temperature controlled crystal oscillator

Info

Publication number
JP3105623B2
JP3105623B2 JP04073051A JP7305192A JP3105623B2 JP 3105623 B2 JP3105623 B2 JP 3105623B2 JP 04073051 A JP04073051 A JP 04073051A JP 7305192 A JP7305192 A JP 7305192A JP 3105623 B2 JP3105623 B2 JP 3105623B2
Authority
JP
Japan
Prior art keywords
crystal oscillator
heat
temperature
constant temperature
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04073051A
Other languages
Japanese (ja)
Other versions
JPH0750523A (en
Inventor
春男 鋪
延幸 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP04073051A priority Critical patent/JP3105623B2/en
Publication of JPH0750523A publication Critical patent/JPH0750523A/en
Application granted granted Critical
Publication of JP3105623B2 publication Critical patent/JP3105623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水晶振動子を恒温槽に入
れて発振周波数の安定性を図った恒温制御水晶発振器
関し、特にその恒温槽の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant temperature controlled crystal oscillator in which a crystal oscillator is placed in a thermostat to stabilize an oscillation frequency, and more particularly to a configuration of the thermostat.

【0002】[0002]

【従来の技術】従来、高安定水晶発振器としてディジタ
ル周波数温度補償水晶発振器(DTCXO)が提案され
ている。このDTCXOには、例えば水晶発振器の発振
周波数の温度特性をプロブラマブルキャパシタと温度セ
ンサとの組合せ回路で補償するものがある。しかしなが
ら、発振回路の部品や水晶振動子が長期経時変化等によ
って発振周波数が変化した場合、発振回路を再調整して
発振周波数を修正したとすると、必要とする温度補償特
性も変化してしまい再現しなくなるという問題があり、
長期安定度を保証することはできなかった。
2. Description of the Related Art Conventionally, a digital oscillator has been used as a highly stable crystal oscillator.
Frequency temperature compensated crystal oscillator (DTCXO) is proposed
ing. This DTCXO has, for example, the oscillation of a crystal oscillator.
The temperature characteristics of the frequency are
Some are compensated by a combination circuit with a sensor. But
The components of the oscillation circuit and the crystal unit may
If the oscillation frequency changes, readjust the oscillation circuit
If the oscillation frequency is modified, the required temperature compensation
There is a problem that the nature also changes and it will not be reproduced,
Long-term stability could not be guaranteed.

【0003】このため、水晶振動子等を恒温槽内に収納
して、水晶振動子が安定して動作する高温度点に恒温槽
の動作温度を設定することにより、発振回路自体による
周波数温度補償制御の必要性をなくした、いわゆる恒温
制御水晶発振器が専ら利用されている。この恒温制御発
振器の一例を図2に示す。品質係数(Q)の高い水晶振
動子(図示せず)はケース3内に収納されており、リー
ド線34によりプリント板4に支持される。このケース
3には、発熱体としてのヒータ巻線31が巻き付けら
れ、かつケース3にはこのヒータ巻線31に電力を供給
する制御トランジスタ32を支持している。更に、ケー
ス3には白金線等の温度センサ33が取着される。
[0003] For this reason, a crystal oscillator or the like is stored in a thermostat.
To a high temperature point where the crystal unit operates stably.
By setting the operating temperature of the
So-called constant temperature that eliminates the need for frequency temperature compensation control
Controlled crystal oscillators are exclusively used. This constant temperature control
FIG. 2 shows an example of the shaker. A quartz oscillator (not shown ) having a high quality factor (Q) is housed in the case 3 and supported on the printed board 4 by the lead wires 34. A heater winding 31 as a heating element is wound around the case 3, and the case 3 supports a control transistor 32 that supplies power to the heater winding 31. Further, a temperature sensor 33 such as a platinum wire is attached to the case 3.

【0004】前記プリント板4にはLCR構成の発振回
路41が設けられ、4本の熱絶縁スタッド42でプリン
ト板5に支持される。プリント板5には外部から供給さ
れる電源の電圧安定回路や、温度センサ33の出力電圧
で制御トランジスタ32を制御するためのヒータ電力制
御回路51等が設けられ、本のスタッド52により基
台2に支持される。この基台2にはガラス等の絶縁体を
介して支持された貫通端子21が設けられ、この貫通端
子21を通して電源の供給や発振器の出力が取り出され
る。又、基台2には金属やプラスチック等の蓋1が被せ
られ、ネジ12で基台2に取着される。この場合、蓋1
と基台2とを嵌合させ、或いは部分的に半田付けを行う
こともある。
The printed circuit board 4 is provided with an oscillation circuit 41 having an LCR structure, and is supported on the printed circuit board 5 by four heat insulating studs 42. Voltage stabilizing circuit and the power supplied from outside the printed circuit board 5, such as the heater power control circuit 51 for controlling the control transistor 32 in the output voltage of the temperature sensor 33 is provided, the base by four studs 52 2 supported. The base 2 is provided with a through terminal 21 supported via an insulator such as glass. Through this through terminal 21, power is supplied and the output of the oscillator is taken out. The base 2 is covered with a lid 1 made of metal, plastic, or the like, and attached to the base 2 with screws 12. In this case, lid 1
And the base 2 may be fitted together or partially soldered.

【0005】更に、前記蓋1の内側には、石綿やウレタ
ン等のような熱絶縁体11を貼り付けており、外部との
間の遮熱効果を得ている。したがって、この恒温制御水
発振器では、水晶振動子はケース3においてヒータ巻
線31により所要温度に保持され、かつ基台2と蓋1と
のケーシングによって外気温の影響が抑制され、恒温状
態を保って周波数の安定化が図られることになる。
Further, a heat insulator 11 such as asbestos or urethane is adhered to the inside of the lid 1 to obtain a heat shielding effect with the outside. Therefore, this constant temperature control water
In the crystal oscillator, the crystal resonator is maintained at a required temperature by the heater winding 31 in the case 3 and the influence of the outside air temperature is suppressed by the casing of the base 2 and the lid 1, and the frequency is stabilized while maintaining the constant temperature state. Will be achieved.

【0006】[0006]

【発明が解決しようとする課題】このような従来の恒温
制御水晶発振器を屋外無線機等に使用する場合、外気温
の急激な変化(サーマルショック)に対して周波数変動
を微小とする発振器として構成する必要があり、このた
めには恒温槽の熱容量の大きなものが望ましいと考えら
れている。しかしながら、熱容量が大きいと、電源投入
から周波数が安定するまでの、所謂立ち上がり時間が長
くなるという問題がある。又、熱容量が大きいと、内部
を恒温状態に保持するための消費電力が大きくなり、か
つ外形も大型化するという問題もある。本発明の目的
は、サーマルショックを緩和する一方で、小型化及び低
消費電力化を可能にした恒制御水晶発振器を提供するこ
とにある。
SUMMARY OF THE INVENTION Such a conventional constant temperature
When a controlled crystal oscillator is used in an outdoor wireless device or the like, it must be configured as an oscillator that minimizes frequency fluctuations in response to a sudden change in external temperature (thermal shock). Things are considered desirable. However, when the heat capacity is large, there is a problem that the so-called rise time from power-on to the frequency stabilization becomes long. In addition, when the heat capacity is large, there is a problem that power consumption for maintaining the inside at a constant temperature becomes large and the external shape becomes large. SUMMARY OF THE INVENTION An object of the present invention is to provide a constant-control crystal oscillator that can reduce the size and reduce power consumption while alleviating thermal shock.

【0007】[0007]

【課題を解決するための手段】本発明は、恒温槽のケー
シング内に水晶振動子と発振回路と温度制御回路と発熱
体と温度センサとを装備してなる恒温制御水晶発振器に
おいて、ケーシングは金属製基台と金属製蓋からなる気
密構造とし、かつ該蓋面上に箔状の断熱材を部分的かつ
分散して貼り付けることにより、該ケーシングの内部と
外部の間を伝達する熱量に対する熱伝達抵抗を調整可能
とする。
SUMMARY OF THE INVENTION The present invention relates to a casing for a thermostat.
Crystal oscillator, oscillation circuit, temperature control circuit and heat generation
Constant temperature controlled crystal oscillator equipped with body and temperature sensor
The casing consists of a metal base and a metal lid.
A dense structure, and a foil-like heat insulating material is partially and
By dispersing and attaching, the inside of the casing and
Adjustable heat transfer resistance to the amount of heat transferred between the outside
And

【0008】[0008]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例の断面図であり、図2に示
した従来構成と同一部分には同一符号を付してある。こ
こでは、ケーシングを構成する基台2と蓋1をそれぞれ
金属で構成し、蓋1と基台2との接触部分を半田等で接
合してケーシング内を気密に構成する。又、蓋3の内面
には従来のような熱絶縁体は設けてはおらず、ケーシン
グ内部における気体の対流がスムーズに行えるようにす
る。その代わりに、蓋1の外面には薄い断熱材からなる
断熱シート13を貼り付けている。この断熱シート13
は任意の寸法で、任意の箇所に部分的にかつ分散して貼
り付ける。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of one embodiment of the present invention, and the same reference numerals are given to the same portions as those of the conventional configuration shown in FIG. Here, the base 2 and the lid 1 that constitute the casing are each made of metal, and the contact portion between the lid 1 and the base 2 is joined with solder or the like to make the inside of the casing airtight. In addition, a conventional thermal insulator is not provided on the inner surface of the lid 3, so that convection of gas inside the casing can be smoothly performed. Instead, a heat insulating sheet 13 made of a thin heat insulating material is attached to the outer surface of the lid 1. This heat insulating sheet 13
Is attached in an arbitrary size and at an arbitrary place, partially and dispersedly.

【0009】このような構成の恒温制御水晶発振器の
温槽による恒温効果を説明する。先ず、本発明者は恒温
槽における熱伝達工学及び熱/電気回路の類推、及び実
験を通じて解析を行った。(表1)は各種素材の熱容量
算出に用いた物性例である。
The constant temperature effect of the constant temperature controlled crystal oscillator having such a configuration by the constant temperature bath will be described. First, the inventor performed analysis through analogy of heat transfer engineering and a heat / electric circuit in a thermostat, and experiments. (Table 1) is an example of physical properties used for calculating the heat capacity of various materials.

【表1】[Table 1]

【0010】恒温槽のケースがプラスチックの場合に
は、周囲の電子回路の発熱の影響を不均等に受けてお
り、又ケーシングの基台と蓋との間に隙間が生じている
ものは蓋と基台との間に温度差が観察された。そこで、
基台と蓋とを金属で構成し、かつ蓋と基台との間を気密
にすることで、温度差を極めて小さいものにすることが
できた。又、金属の熱容量(=比熱×質量)は、強度を
考察するとプラスチックより小さいことが判明した。
[0010] When the case of the thermostat is made of plastic, it is unevenly affected by the heat generated by the surrounding electronic circuits. A temperature difference was observed between the base and the base. Therefore,
The temperature difference could be made extremely small by forming the base and the lid from metal and making the lid and the base airtight. Further, it was found that the heat capacity (= specific heat × mass) of the metal was smaller than that of the plastic when considering the strength.

【0011】一方、空気等の気体の熱容量は固体材料に
比べて2桁も小さく無視できる上、熱拡散速度が速いの
で理想的な熱抵抗体であり、恒温層内に自然対流が起き
る結果、気体と金属壁との間の熱伝達率は10〜20W
-2-1と推定できた。又、気密を行わない恒温槽は、
高度の高い山岳では気圧が下がると熱伝達率が下がり、
電源投入時の立ち上がり特性が遅くなるので、気密とす
ることが好ましいし、耐濕性の向上にも寄与する。
On the other hand, the heat capacity of a gas such as air is two orders of magnitude smaller than that of a solid material and can be ignored, and the heat diffusion rate is high, making it an ideal heat resistor. As a result, natural convection occurs in the thermostatic layer. Heat transfer coefficient between gas and metal wall is 10-20W
m −2 k −1 could be estimated. In addition, the thermostat that does not perform airtightness is
In high altitude mountains, the heat transfer coefficient decreases as the atmospheric pressure decreases,
Since the rising characteristic at the time of turning on the power is slow, it is preferable to make the airtight, and this also contributes to the improvement of the moisture resistance .

【0012】熱伝達のもう一つの要素にヒータ巻線から
の熱放射がある。ヒータ巻線を黒体と見做し最高温度を
75℃としたときの等価熱抵抗は、およそ1250cm2 KW
-1となる。発熱電力を定電流に、温度を電圧に、熱伝達
抵抗を抵抗に、熱容量を容量にそれぞれ類推して前記考
察を取り込んで得た等価回路が図3である。ここで、V
aは周囲温度を電圧ボルトで表し、Vsは水晶振動子収
納ケース3の最大設定温度をボルトで表したものであ
る。又、IS ,I4 ,IH Hそれぞれプリント板5,プ
リント板4,ケース3の各部で発生する熱エネルギワッ
トをアンペアと読み替えたものである。C3 ,C4 ,C
2 ,C1 はそれぞれ水晶振動子収納ケース3の部分の熱
容量、プリント板4及び発振回路41のもつ熱容量、水
晶振動子自体の熱容量、ケーシングの蓋1,基台2及び
プリント板5と制御回路51が全部有する等価熱容量を
ファラッドで表している。これらの熱容量は体積に比例
するから、寸法が半分になれば熱容量は1/4〜1/8
に小さくできる。
Another component of heat transfer is heat radiation from the heater windings. Consider the heater winding as a black body and set the maximum temperature
The equivalent thermal resistance at 75 ° C is about 1250cm 2 kW
It becomes -1 . FIG. 3 shows an equivalent circuit obtained by inferring the above consideration by analogizing heat generation power to constant current, temperature to voltage, heat transfer resistance to resistance, and heat capacity to capacity. Where V
“a” represents the ambient temperature in volts, and “Vs” represents the maximum set temperature of the crystal resonator housing case 3 in volts. Further, the thermal energy watts generated in the printed circuit board 5, the printed circuit board 4, and the case 3 in each of the parts I S , I 4 , and I HH are read as ampere. C 3 , C 4 , C
2 and C 1 are the heat capacity of the crystal oscillator housing case 3 portion, the heat capacity of the printed board 4 and the oscillation circuit 41, the heat capacity of the crystal oscillator itself, the lid 1, base 2 and printed board 5 of the casing and the control circuit, respectively. The equivalent heat capacity of all 51 is represented by farads. Since these heat capacities are proportional to the volume , if the dimensions are reduced by half, the heat capacities are reduced to 1/4 to 1/8
Can be made smaller.

【0013】又、r1aは蓋1や基台2の外壁からの等価
伝達抵抗、r10,r30,r40はそれぞれケーシング内
部の気体と蓋1と基台2の内壁及びプリント板5の表面
の金属部分との間で生ずる等価熱伝達抵抗,ケーシング
内部の気体と水晶振動子収納ケース3との間の等価熱伝
達抵抗,ケーシング内部の気体とプリント板4の表面の
金属部分との間の等価熱伝達抵抗をそれぞれオームで表
している。r2Xとr3Xは水晶振動子収納ケース3の内部
の気体と水晶振動子との間や収納ケース3の内壁との間
で生ずる等価熱伝達抵抗を表している。これらの等価熱
伝達抵抗は気体と接する金属の表面積に逆比例するか
ら、寸法が半分になれば等価熱抵抗はおよそ4倍にな
る。
Further, r 1a is the equivalent heat transfer resistance from the outer wall of the lid 1 and the base 2, and r 10 , r 30 and r 40 are the gas inside the casing, the inner wall of the lid 1 and the base 2 and the printed board 5, respectively. Equivalent heat transfer resistance between the metal part on the surface of the printed circuit board, the equivalent heat transfer resistance between the gas inside the casing and the crystal resonator housing case 3, and the metal part on the surface of the printed circuit board 4 The equivalent heat transfer resistance between them is expressed in ohms. r 2X and r 3X represent equivalent heat transfer resistances generated between the gas inside the crystal resonator housing case 3 and the crystal oscillator and the inner wall of the housing case 3. Since these equivalent heat transfer resistances are inversely proportional to the surface area of the metal in contact with the gas, halving the dimensions approximately quadruples the equivalent thermal resistance.

【0014】したがって、恒温槽全体の寸法を小さくす
ると、熱容量が小さくなって所要消費電力を小さくする
ことができる。又、電源投入時の立ち上がり時間特性は
熱容量×等価熱伝達抵抗に比例することから、立ち上が
り時間特性を短くすることができる。尚、図3の等価回
路の導出に際しては、プリント板5は基台2と同一温度
を見做すため、スタッド52は金属で構成される。又、
ガラスで絶縁した貫通端子21と基台2は同一温度であ
ると見做している。図4は図3を簡略化した等価回路で
あり、実験結果を折り込んだものである。
Therefore, when the size of the entire thermostat is reduced, the heat capacity is reduced and the required power consumption can be reduced. Further, since the rise time characteristic at the time of turning on the power is proportional to heat capacity × equivalent heat transfer resistance, the rise time characteristic can be shortened. In deriving the equivalent circuit shown in FIG. 3, the printed board 5 is assumed to have the same temperature as the base 2, so that the stud 52 is made of metal. or,
The through terminal 21 and the base 2 insulated with glass are regarded as having the same temperature. FIG. 4 is an equivalent circuit obtained by simplifying FIG. 3, in which the experimental results are included.

【0015】図5は周囲温度をパラメータとした消費電
力の立ち上がり特性を示すもので、横軸は電源投入後の
経過時間、縦軸は消費電力である。この消費電力の立ち
上がり特性は、図4の等価回路でほぼ説明できる。尚、
発振回路41を設けたプリント板4は外部周囲温度の変
化の影響を多少受けるが、バラクタダイオードを用いた
温度補正回路で比較的容易に発振周波数に及ぼす影響を
軽減することができる。
FIG. 5 shows the rise characteristics of power consumption with the ambient temperature as a parameter. The horizontal axis represents the elapsed time after power-on, and the vertical axis represents power consumption. The rise characteristic of the power consumption can be almost explained by the equivalent circuit of FIG. still,
Although the printed circuit board 4 provided with the oscillation circuit 41 is slightly affected by changes in the external ambient temperature, the influence on the oscillation frequency can be relatively easily reduced by a temperature correction circuit using a varactor diode.

【0016】図2に示した従来構成では、ケーシング内
に設けた断熱材11の形状寸法や取付位置によりヒータ
の消費電力を管理していたが、断熱材11の存在によっ
て対流の速度低下やむらが生じ、プリント板4の温度分
布のむらが大きくなるから、結果として温度補正が不適
切となったり、発振周波数のゆらぎを引き起こすことと
なる。このため、ケーシングの内壁の温度が一様で、対
流の邪魔や乱流を引き起こすような物体を置かないこと
が望まれる。したがって、本発明では、ケーシングの蓋
1の外壁に、熱容量を増やさずに等価熱伝達抵抗を大き
くするための手段として断熱シート13を分散して貼り
付けている。これにより、図3の等価熱伝達抵抗r
1aを、図4において24Ωから48Ωと大きめの値にで
き、ヒータ巻線31等による消費電力の制御が可能とな
る。
In the conventional structure shown in FIG. 2, the power consumption of the heater is controlled by the shape and size of the heat insulating material 11 provided in the casing and the mounting position. And the unevenness of the temperature distribution of the printed circuit board 4 becomes large. As a result, the temperature correction becomes inappropriate or the oscillation frequency fluctuates. For this reason, it is desired that the temperature of the inner wall of the casing be uniform and that no object be placed in such a manner as to obstruct convection or cause turbulence. Therefore, in the present invention, the heat insulating sheet 13 is dispersed and attached to the outer wall of the lid 1 of the casing as a means for increasing the equivalent heat transfer resistance without increasing the heat capacity. Thereby, the equivalent heat transfer resistance r of FIG.
1a can be set to a relatively large value from 24Ω to 48Ω in FIG. 4, and the power consumption can be controlled by the heater winding 31 and the like.

【0017】[0017]

【発明の効果】以上説明したように本発明は、ケーシン
グを金属製基台と金属製蓋とを気密構造とし、かつ該蓋
面上に箔状の断熱材を部分的かつ分散して貼り付け、こ
の薄い断熱材によりケーシングの内部と外部の間を伝達
する熱量に対する熱伝達抵抗を調整可能としているの
で、温度変化が厳しい屋外環境においても、作動後の立
ち上がり時間が短く、しかも周波数安定度が良好で、低
消費電力及び小型の恒温制御水晶発振器を得ることがで
きる。
As described above, according to the present invention present invention, casings
A metal base and a metal lid in an airtight structure;
Paste the foil-like heat insulating material partially and dispersed on the surface,
Transmission between the inside and outside of the casing due to the thin insulation material
The heat transfer resistance to the amount of heat that can be adjusted is adjustable, so even in an outdoor environment where temperature changes are severe, a short rise time after operation, good frequency stability, low power consumption and a small size constant temperature controlled crystal oscillator can be obtained. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の恒温制御水晶発振器の断面図である。FIG. 1 is a sectional view of a constant temperature controlled crystal oscillator of the present invention.

【図2】従来の恒温制御水晶発振器の断面図である。FIG. 2 is a cross-sectional view of a conventional constant temperature controlled crystal oscillator .

【図3】本発明にかかる恒温槽の等価熱伝達の等価回路
図である。
3 is an equivalent circuit diagram of an equivalent heat transfer of the thermostatic chamber according to the present invention.

【図4】図3を簡略した具体例の等価回路図である。FIG. 4 is an equivalent circuit diagram of a specific example obtained by simplifying FIG. 3;

【図5】消費電力の立ち上がり特性図である。FIG. 5 is a rise characteristic diagram of power consumption.

【符号の説明】[Explanation of symbols]

1 蓋 2 基台 3 水晶振動子収納ケース 4,5 プリント板 13 断熱シート DESCRIPTION OF SYMBOLS 1 Lid 2 Base 3 Crystal oscillator storage case 4, 5 Printed board 13 Heat insulation sheet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−216642(JP,A) 実開 昭57−155810(JP,U) 実開 昭63−40014(JP,U) 実開 昭63−191714(JP,U) 実開 平1−195706(JP,U) (58)調査した分野(Int.Cl.7,DB名) H03B 5/30 - 5/42 H03H 9/00 H05K 5/00 - 13/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-221642 (JP, A) JP-A 57-155810 (JP, U) JP-A 63-4014 (JP, U) JP-A 63-155 191714 (JP, U) Japanese Utility Model 1-195706 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H03B 5/30-5/42 H03H 9/00 H05K 5/00- 13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 恒温槽のケーシング内に水晶振動子と発
振回路と温度制御回路と発熱体と温度センサとを装備し
てなる恒温制御水晶発振器において、前記ケーシングは
金属製基台と金属製蓋からなる気密構造とし、かつ該蓋
面上に箔状の断熱材を部分的かつ分散して貼り付けるこ
とにより、該ケーシングの内部と外部の間を伝達する熱
量に対する熱伝達抵抗を調整可能にしたことを特徴とす
る恒温制御水晶発振器
A quartz oscillator is provided in a casing of a thermostat.
Equipped with a vibration circuit, a temperature control circuit, a heating element, and a temperature sensor.
In the constant temperature controlled crystal oscillator,
An airtight structure comprising a metal base and a metal lid, and the lid
Paste the foil-like heat insulation material partially and dispersed on the surface
The heat transmitted between the inside and the outside of the casing
Characterized in that the heat transfer resistance to the quantity can be adjusted
Temperature controlled crystal oscillator .
JP04073051A 1992-02-26 1992-02-26 Constant temperature controlled crystal oscillator Expired - Fee Related JP3105623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04073051A JP3105623B2 (en) 1992-02-26 1992-02-26 Constant temperature controlled crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04073051A JP3105623B2 (en) 1992-02-26 1992-02-26 Constant temperature controlled crystal oscillator

Publications (2)

Publication Number Publication Date
JPH0750523A JPH0750523A (en) 1995-02-21
JP3105623B2 true JP3105623B2 (en) 2000-11-06

Family

ID=13507185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04073051A Expired - Fee Related JP3105623B2 (en) 1992-02-26 1992-02-26 Constant temperature controlled crystal oscillator

Country Status (1)

Country Link
JP (1) JP3105623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509593A (en) * 2012-02-28 2015-03-30 デサイ,アキル,ラージェーンドラ Urine receiver for women

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634228B2 (en) * 2000-03-02 2005-03-30 日本電波工業株式会社 Oscillator using a thermostatic chamber
KR100426663B1 (en) * 2001-12-26 2004-04-14 신성전자공업 주식회사 An equilibrated OCXO at room temperature and its control process
KR100466490B1 (en) * 2002-11-20 2005-01-24 주식회사 에이스테크놀로지 Apparatus for up converting/down converting frequency with modulation quality using ocxo
JP4804813B2 (en) * 2005-06-24 2011-11-02 日本電波工業株式会社 Piezoelectric oscillator
JP5998872B2 (en) * 2012-11-26 2016-09-28 セイコーエプソン株式会社 Piezoelectric oscillator
JP6191220B2 (en) 2013-04-25 2017-09-06 セイコーエプソン株式会社 Electronic devices, electronic devices, and moving objects
JP6197349B2 (en) 2013-04-25 2017-09-20 セイコーエプソン株式会社 Electronic devices, electronic devices, and moving objects
JP6307869B2 (en) 2013-12-24 2018-04-11 セイコーエプソン株式会社 Electronic components, crystal oscillators with thermostatic chambers, electronic devices, and moving objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509593A (en) * 2012-02-28 2015-03-30 デサイ,アキル,ラージェーンドラ Urine receiver for women

Also Published As

Publication number Publication date
JPH0750523A (en) 1995-02-21

Similar Documents

Publication Publication Date Title
US6362700B1 (en) Temperature controlled compensated oscillator
JP3105623B2 (en) Constant temperature controlled crystal oscillator
JP4744578B2 (en) Constant temperature crystal oscillator
WO2002033826A2 (en) Dual oven oscillator using a thermoelectric module
JP2003309432A (en) Highly stable piezoelectric oscillator
US3201621A (en) Thermally stabilized crystal units
JP4499478B2 (en) Constant temperature crystal oscillator using crystal resonator for surface mounting
JP4483138B2 (en) Structure of highly stable piezoelectric oscillator
JP4345549B2 (en) Thin high stability piezoelectric oscillator and surface mount thin high stability piezoelectric oscillator
CA2369434C (en) Crystal oscillator and a signal oscillation method thereof
JPH0314303A (en) Crystal oscillator including thermostat
US3252109A (en) Crystal oscillator and oven assembly
JP2006191327A (en) Thin high stable piezoelectric oscillator
US3299300A (en) Oscillator oven
JP2010183228A (en) Constant-temperature piezoelectric oscillator
JPH11214929A (en) Piezoelectric oscillator
JP2010187060A (en) Constant temperature piezoelectric oscillator
JPH0583075A (en) Electronic component
JP3909569B2 (en) Piezoelectric oscillator and thermal insulation structure thereof
JPS6327454Y2 (en)
JPH07135421A (en) Crystal oscillator
JP2011217302A (en) Constant-temperature piezoelectric oscillator
JPS622811Y2 (en)
EP0065406A2 (en) Frequency sources
JPS6244570Y2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees