JP3105502B1 - Noble metal sol and method for producing the same - Google Patents

Noble metal sol and method for producing the same

Info

Publication number
JP3105502B1
JP3105502B1 JP11304163A JP30416399A JP3105502B1 JP 3105502 B1 JP3105502 B1 JP 3105502B1 JP 11304163 A JP11304163 A JP 11304163A JP 30416399 A JP30416399 A JP 30416399A JP 3105502 B1 JP3105502 B1 JP 3105502B1
Authority
JP
Japan
Prior art keywords
noble metal
methanesulfonate
sol
colloidal
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11304163A
Other languages
Japanese (ja)
Other versions
JP2001032092A (en
Inventor
グール ディーター
ホンゼルマン フランク
クンツ ペーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Goldschmidt GmbH
Goldschmidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Goldschmidt GmbH, Goldschmidt GmbH filed Critical Evonik Goldschmidt GmbH
Application granted granted Critical
Publication of JP3105502B1 publication Critical patent/JP3105502B1/en
Publication of JP2001032092A publication Critical patent/JP2001032092A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/206Use of metal other than noble metals and tin, e.g. activation, sensitisation with metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Abstract

【要約】 【課題】 パラジウムをベースとする公知のコロイド系
と同様に、しかしながらジグフレーム材料を同時にメタ
ライジングせずに、非導電性基材を差し替えなしに芽晶
形成しかつメタライジングすることができる廉価な貴金
属を有するコロイド系を提供すること 【解決手段】 後続する外部電流なしのメタライジング
もしくは電気メッキによるメタライジングの前に非導電
性基材を前処理するための、微細粒の貴金属芽晶を設置
するためのコロイド状メタンスルホン酸性貴金属ゾル
Kind Code: A1 Similar to known colloidal systems based on palladium, but without the need to simultaneously metallize the jig frame material and to sprout and metallize the non-conductive substrate without replacement. PROBLEM TO BE SOLVED: To provide a colloid system having a precious metal which can be inexpensive. A fine-grained precious metal bud for pretreating a non-conductive substrate before subsequent metallization without external current or metallization by electroplating. Colloidal methanesulfone acidic noble metal sol for installing crystals

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中で貴金属−メ
タンスルホン酸塩、メタンスルホン酸及びメタンスルホ
ン酸スズ(II)から製造された、後続する電気メッキ
のための非導電性表面の前処理用の新規コロイド系に関
する。
The present invention relates to the pretreatment of non-conductive surfaces made from noble metal-methanesulphonate, methanesulphonic acid and tin (II) methanesulphonate in water for subsequent electroplating. A new colloidal system for

【0002】[0002]

【従来の技術】メタライジング浴中で金属の析出を開始
させるために、プラスチック又はセラミックからなる非
導電性表面上には、外部電流なしの金属析出のため還元
浴の準安定平衡を妨害し、金属芽晶の表面上に金属析出
を開始させる金属芽晶(Metallkeim)が存在しなければ
ならないか、もしくは直接電気メッキによるメタライジ
ングを行えるほど多量の金属芽晶が存在しなければなら
ない。
BACKGROUND OF THE INVENTION In order to initiate metal deposition in metallizing baths, non-conductive surfaces made of plastic or ceramic impede the metastable equilibrium of the reducing bath due to metal deposition without external current, There must be a metal germ on the surface of the metal germ that initiates metal deposition, or there must be so much metal germ that metallization by direct electroplating can be performed.

【0003】このような金属芽晶は公知のように適当な
活性剤溶液中への浸漬によって設置することができる。
公知の活性化金属はパラジウム、銀及び金が記載されて
いる。20年以来このような非導電性表面を活性化する
ためのイオノゲン系及びコロイド系は公知であり、例え
ば Kunststoff-Metallisierung, Handbuch fuer Teorie
und Praxis, Leuze Verlag, Saulgau又はドイツ国特許
第1197720号明細書を参照。
[0003] Such metal germs can be installed by immersion in a suitable activator solution, as is known.
Known activating metals include palladium, silver and gold. Ionogenic and colloidal systems for activating such non-conductive surfaces have been known since 20 years, for example Kunststoff-Metallisierung, Handbuch fuer Teorie
See und Praxis, Leuze Verlag, Saulgau or DE 1197720.

【0004】イオノゲン系の場合には活性化のためにス
ズ(II)塩溶液、例えば塩化スズ(II)溶液中へ浸
漬される。水中で濯ぐ際に表面上に付着する酸化スズ水
和物からなるゲルが生じる。引き続き貴金属塩、例えば
硝酸銀(I)溶液又は塩化パラジウム(II)溶液中へ
浸漬する際にゲル層中に含まれるスズ(II)が部分的
に酸化されてスズ(IV)になり、反対に貴金属イオン
は還元されて貴金属芽晶になり、ゲル層中へ埋め込まれ
る。このイオノゲン系は全表面に芽晶形成させるため、
つまり物品ホルダーも被覆されるため、活性化された基
材は引き続く化学的メタライジングの前に活性化されて
いない物品ホルダーに掛け替えて、物品ホルダーのメタ
ライジングを回避するか、又は物品ホルダーを定期的に
脱メタライジングしなければならない。
In the case of an ionogen system, it is immersed in a tin (II) salt solution, for example, a tin (II) chloride solution for activation. Upon rinsing in water, a gel consisting of tin oxide hydrate adheres to the surface. Subsequently, when immersed in a noble metal salt, for example, a silver nitrate (I) solution or a palladium (II) chloride solution, tin (II) contained in the gel layer is partially oxidized to tin (IV). The ions are reduced to noble metal buds and embedded in the gel layer. This ionogen system causes bud formation on the entire surface,
This means that the article holder is also covered, so that the activated substrate can be replaced with a non-activated article holder before the subsequent chemical metallization to avoid metallization of the article holder or to periodically replace the article holder. Must be demetalized.

【0005】物品ホルダーの差し替えもしくは規則的な
脱メタライジングは著しく費用がかかるため、選択的に
作用できるコロイド系にパラジウムコロイドを混入し、
それによりジグフレーム材料(Gestellmaterial)のメ
タライジングを伴わずにメタライジングすべき物品の十
分な芽晶形成が可能である。このような溶液は塩化パラ
ジウム(II)を塩酸性溶液中で塩化スズ(II)と反
応させることにより製造される。ここでもレドックス反
応においてパラジウム(II)は還元されて金属パラジ
ウムになり、反対にスズ(II)は酸化されてスズ(I
V)になる。パラジウム芽晶はこの場合形成された酸化
スズ水和物ゲルにより取り囲まれ、溶液中でコロイド状
に保たれる。こうして製造された溶液は、レドックス反
応において形成される金属芽晶によって暗色でかつ不透
明である。化学的金属析出のために必要な金属芽晶は、
既にコロイド状の活性化溶液中に含まれている。基材を
このコロイド溶液中へ浸漬する場合、封入されたパラジ
ウム芽晶を有するゲル粒子の十分な量が物品表面上へ吸
着されるが、同じ程度にジグフレーム材料上へは吸着し
ない。引き続きアルカリ性又は酸性の溶液中で洗浄する
際に、酸化スズ水和物は部分的に溶解し、パラジウム芽
晶が露出する。
[0005] The replacement or regular demetallization of article holders is very costly, so that palladium colloids are mixed in a colloidal system which can act selectively,
As a result, a sufficient germination of the article to be metallized is possible without the metallization of the jig frame material. Such solutions are prepared by reacting palladium (II) chloride with tin (II) chloride in a hydrochloric acid solution. Again, in the redox reaction, palladium (II) is reduced to metallic palladium, while tin (II) is oxidized to tin (I
V). The palladium buds are surrounded by the tin oxide hydrate gel formed in this case and are kept colloidal in solution. The solution thus produced is dark and opaque due to metal germs formed in the redox reaction. The metal blasts required for chemical metal deposition are:
It is already contained in the colloidal activation solution. When the substrate is immersed in this colloidal solution, a sufficient amount of the encapsulated palladium germ-containing gel particles is adsorbed onto the article surface, but not to the same extent on the jig frame material. Upon subsequent washing in an alkaline or acidic solution, the tin oxide hydrate partially dissolves, exposing palladium blasts.

【0006】今までに主に廉価な貴金属をベースとする
コロイド系は公知でないため、非導電性表面の芽晶形成
のために工業的に飛び抜けて最も重要な金属はパラジウ
ムである。
[0006] Since no inexpensive precious metal-based colloid systems have been known so far, palladium is by far the most important metal in industry for the budding of non-conductive surfaces.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の工業
的課題は、非導電性基材を、パラジウムをベースとする
公知のコロイド系と同様に、しかしながらジグフレーム
材料を同時にメタライジングせずに差し替えなしに芽晶
形成しかつメタライジングすることができる廉価な貴金
属を有するコロイド系を見出すことであった。
It is therefore an industrial object of the present invention to provide a non-conductive substrate in a manner similar to the known colloidal systems based on palladium, but without simultaneously metallizing the jig frame material. The aim was to find a colloidal system with inexpensive precious metals that could sprout and metallize without replacement.

【0008】[0008]

【課題を解決するための手段】貴金属メタンスルホン酸
塩、特にメタンスルホン酸銀(I)をメタンスルホン酸
溶液中でメタンスルホン酸スズ(II)と反応させて銀
金属芽晶を有するコロイド溶液にすることに成功し、そ
れにより前記課題は解決された。塩化パラジウム/塩化
スズの系と同様に、この場合でもレドックス反応におい
て貴金属イオンが還元され金属になり、反対にスズ(I
I)は酸化されスズ(IV)になる。
The noble metal methanesulfonate, in particular silver (I) methanesulfonate, is reacted with tin (II) methanesulfonate in a methanesulfonic acid solution to form a colloidal solution having silver metal blasts. And the above-mentioned problem was solved. As in the case of the palladium chloride / tin chloride system, in this case too, the redox reaction reduces the noble metal ions to metal and conversely tin (I
I) is oxidized to tin (IV).

【0009】従って、本発明の第1の実施態様は、後続
する外部電流なしのもしくは電気メッキによるメタライ
ジングの前に非導電性基材を前処理するための、微細粒
の貴金属芽晶を設置するためのコロイド状の貴金属メタ
ンスルホン酸塩ゾルである。
Accordingly, a first embodiment of the present invention provides a fine-grained noble metal germ for pretreating a non-conductive substrate without subsequent external current or prior to metallization by electroplating. Is a colloidal noble metal methanesulfonate sol.

【0010】このようなコロイド系を製造することがで
きる適当な貴金属、特に銀−塩溶液及びスズ(II)−
塩溶液の捜索は困難である。
Suitable noble metals from which such colloidal systems can be prepared, in particular silver-salt solutions and tin (II)-
Searching for salt solutions is difficult.

【0011】たいてい工業的に供給可能な貴金属塩、特
に銀塩は、例えば塩化銀又は硫酸銀であり、溶解性が比
較的悪いか又はこれらは例えば硝酸銀又はシアン化銀と
同様に工業的に提供可能な酸性スズ(II)塩溶液と混
合できない。例えばスズ(II)イオンはコロイド形成
においてニトロ化により有害に酸化され、一方、アルカ
リ性のシアン化銀溶液は酸性のスズ(II)塩溶液と有
毒の青酸蒸気の形成下に反応する。しかしながら、良好
に可溶性の、場合により相互に相容性のフルオリド含有
貴金属塩、特に銀塩及びスズ塩、例えばフッ化物、ケイ
フッ化物又はホウフッ化物は、毒物学的理由から、その
比較的高い腐食性及びその排水の取り扱いの問題のため
に特に本発明の目的のために適当ではない。
Most industrially available noble metal salts, especially silver salts, are, for example, silver chloride or silver sulphate, which have a relatively poor solubility or which are provided industrially as, for example, silver nitrate or silver cyanide. Incompatible with possible acid tin (II) salt solutions. For example, tin (II) ions are harmfully oxidized by nitration in colloid formation, while alkaline silver cyanide solutions react with acidic tin (II) salt solutions with the formation of toxic hydrocyanic acid vapors. However, well-soluble and possibly mutually compatible fluoride-containing noble metal salts, in particular silver and tin salts, such as fluoride, silicofluoride or borofluoride, are, for toxicological reasons, relatively susceptible to their relatively high corrosivity. And its drainage handling problems are not particularly suitable for the purposes of the present invention.

【0012】意外に有利な方法において、この問題は、
通常の金属塩化物の代わりに貴金属メタンスルホン酸塩
を使用し、通常の塩酸性溶液の代わりにメタンスルホン
酸塩を使用することにより解決することができた。
In a surprisingly advantageous way, the problem is:
The problem could be solved by using the noble metal methanesulfonate instead of the normal metal chloride and using methanesulfonate instead of the normal hydrochloric acid solution.

【0013】この本発明によるこの組合せは、たいてい
の貴金属メタンスルホン酸、例えばメタンスルホン酸銀
(I)並びにメタンスルホン酸スズ(II)はメタンス
ルホン酸の溶液中に比較的容易に可溶性であり、広い濃
度範囲にわたり相互に混合可能であるという利点を有す
る。金属塩及び活性化溶液の製造のためのメタンスルホ
ン酸は、今日工業的に十分な量で提供可能である。取り
扱い及び廃棄は今日使用されているパラジウムコロイド
を有する塩酸性の系と比較可能である。メタンスルホン
酸の系の腐食性は有利に塩酸の系よりも明らかに少な
い。生じた廃水の処理は簡単であり、特別な投資なしに
実施可能である。今日部分的にパラジウムコロイドを有
する塩酸性の形の最適化のために使用されるようなたい
てい自体公知の添加物及び緩衝剤は、メタンスルホン酸
をベースとする本発明によるコロイド系でも適用でき
る。
This combination according to the invention shows that most noble metal methanesulfonic acids such as silver (I) methanesulphonate and tin (II) methanesulphonate are relatively easily soluble in solutions of methanesulphonic acid, It has the advantage that it can be mixed with one another over a wide concentration range. Methanesulfonic acid for the production of metal salts and activation solutions is available today in industrially sufficient quantities. Handling and disposal are comparable to the hydrochloric acid systems with palladium colloids used today. The corrosivity of the methanesulfonic acid system is advantageously significantly less than that of the hydrochloric acid system. The treatment of the resulting wastewater is simple and can be carried out without special investment. Most additives and buffers known per se, such as are used today for the optimization of the hydrochloric form with partially palladium colloids, can also be applied in the colloidal systems according to the invention based on methanesulfonic acid.

【0014】パラジウムコロイドを有する塩酸の系と同
様に、短時間並びに長時間安定性のメタンスルホン酸の
貴金属コロイド系を製造することができる。数ヶ月間安
定性の系は、例えばプリント配線板製造における長期間
使用のために特に適しているという利点を有する。数時
間又は数日間だけ安定性である溶液は、不連続的な作業
法の場合、例えば貴金属粒子の析出の後に比較的大きな
部品及び少量生産品のメタライジングの場合、液体及び
高価な貴金属は相互に容易に分離可能であり、相応して
廃棄処理又は再利用を行うことができるという利点を有
する。
Similar to hydrochloric acid systems with palladium colloids, short and long term stable methanesulfonic acid precious metal colloid systems can be prepared. A system that is stable for several months has the advantage that it is particularly suitable for long-term use, for example in the production of printed wiring boards. Solutions that are stable for only a few hours or days may require liquids and expensive noble metals in the case of discontinuous working methods, e.g., in the case of metallizing relatively large parts and small-volume products after the deposition of noble metal particles. Has the advantage that it can be easily separated and can be disposed of or recycled accordingly.

【0015】これは総合的に本発明のメタンスルホン酸
のコロイド系を用いて、例えば廉価な銀の使用下で、通
常の非導電性基材のメタライジングが可能であることを
意味する。メタライジングの品質は、全ての観点におい
て、今日塩酸性のパラジウムコロイドゾルを用いて達成
される先行技術に一致する。
This means that the metallizing of ordinary non-conductive substrates is possible using the colloidal system of methanesulfonic acid according to the invention, for example, using inexpensive silver. The quality of the metallization is in all respects consistent with the prior art achieved today with palladium colloidal sols which are hydrochloric.

【0016】記載されたメタンスルホン酸の系は、この
場合、例えばプリント配線板製造において装置および基
材に対して腐食性が明らかに少ない。前記したように銀
ベースのメタンスルホン酸の貴金属コロイド系を製造す
る場合、このコロイド系は、今日常用の塩酸性のパラジ
ウムコロイド系よりも著しく廉価である。
The methanesulfonic acid system described is in this case clearly less corrosive to equipment and substrates, for example in the production of printed wiring boards. When preparing the precious metal colloidal system of silver-based methanesulfonic acid as described above, this colloidal system is significantly less expensive than the now common hydrochloric acid palladium colloidal system.

【0017】[0017]

【実施例】コロイドの例: 例1:1リットルのメスフラスコ中に、脱塩水約800
ml、70質量%のメタンスルホン酸17g、51質量
%のメタンスルホン酸スズ(II)溶液26g及び38
質量%のメタンスルホン酸銀溶液5gを注ぎ込み、脱塩
水で1リットルになるまで補充した。
EXAMPLES Examples of Colloids: Example 1: Approximately 800 demineralized water in a one liter volumetric flask.
ml, 17 g of 70% by weight of methanesulfonic acid, 26 g of a 51% by weight solution of tin (II) methanesulfonate and 38%
5 g of a mass% silver methanesulfonate solution was poured in and replenished to 1 liter with demineralized water.

【0018】室温で約8時間後に、実際に最初は無色透
明の溶液が暗褐色でかつ不透明になった。このコロイド
系自体は均質で、出願時点で既に1年以上安定であっ
た。
After about 8 hours at room temperature, the initially clear, colorless solution became dark brown and opaque. The colloid system itself was homogeneous and was stable for more than one year at the time of filing.

【0019】例2:脱塩水800mlを、1リットルの
メスフラスコ中に装入し、注意深くメタンスルホン酸
5.7g(70質量%)、メタンスルホン酸スズ(I
I)溶液20.8g(51質量%)及びメタンスルホン
酸銀(I)溶液5g(38質量%)と混合し、脱塩水で
1リットルになるまで補充した。この溶液は約20分後
に暗色になり、数時間後に実際に黒色となった。薄層で
はこの溶液は透明でかつ暗褐色であった。
Example 2 800 ml of demineralized water was charged into a 1 liter volumetric flask, and 5.7 g (70% by weight) of methanesulfonic acid and tin methanesulfonate (I
I) The solution was mixed with 20.8 g (51% by mass) of the solution and 5 g (38% by mass) of the silver (I) methanesulfonate solution, and replenished with demineralized water to 1 liter. The solution turned dark after about 20 minutes and after several hours it actually turned black. In a thin layer, the solution was clear and dark brown.

【0020】希釈例:この溶液の一部で脱塩水を用いて
希釈物(1/2、1/4及び1/8)を付加的に製造し
た。この溶液を室温で貯蔵して観察した。1ヶ月後に希
釈物1/4及び1/8は底部沈殿物の析出下に分解し
た。出発溶液及び希釈物1/2は2ヶ月後でもなお安定
であった。
Dilution example: Dilutions (1/2, 1/4 and 1/8) were additionally produced in a part of this solution using demineralized water. This solution was stored at room temperature and observed. After one month, the dilutions 1/4 and 1/8 had decomposed with the precipitation of a bottom precipitate. The starting solution and dilution 1/2 were still stable after 2 months.

【0021】メタライジング例:非導電性材料を電気メ
ッキによる被覆を用いてメタライジングするという課題
は、この技術において主に2つの適用において生じる。
一方はガラス繊維強化したエポキシ樹脂からなる層状プ
レス材料の銅メッキ(プリント配線板技術)であり、他
方はグラフト重合したABS−プラスチックからなる加
工品の電気メッキである。ガラス、セラミック並びに多
数の異なるプラスチック材料、例えばポリカーボネー
ト、テトラフルオロエチレン又はポリエチレンテレフタ
レートは、一般に他の方法、例えば高真空蒸着によって
メタライジングされるが、これらの材料を電気メッキ法
で被覆するという技術が重要になってきている、それと
いうのもこの場合、費用の利点があるためである。
Metallizing Example: The problem of metallizing non-conductive materials using electroplating coatings arises in this technology mainly in two applications.
One is copper plating (printed wiring board technology) of a layered press material made of glass fiber reinforced epoxy resin, and the other is electroplating of a processed product made of graft-polymerized ABS-plastic. Glass, ceramic and a number of different plastic materials, such as polycarbonate, tetrafluoroethylene or polyethylene terephthalate, are generally metallized by other methods, for example, high vacuum deposition, but the technique of coating these materials by electroplating has been developed. It is becoming important because in this case there is a cost advantage.

【0022】上記のように製造された非導電体のメタラ
イジングのための銀ゾルの適性を調査するために、顕微
鏡観察用のガラス対象支持体並びにプリント配線板(ガ
ラス強化されたEP−樹脂)用のベース材料からなるス
トランド、ABS−プラスチックからなるストランド並
びにPVC−プラスチゾル被覆銅帯状物を、絶縁された
電気メッキジグフレーム用のモデルとして製造した。
In order to investigate the suitability of the silver sol for metallizing non-conductors produced as described above, a glass target support for microscopy and a printed wiring board (glass-reinforced EP-resin) Strands made of base material, ABS-plastic and PVC-plastisol coated copper strips were produced as models for insulated electroplated jig frames.

【0023】全ての試料に同じ処理を行った: − 市販のクリーナー(Mucasol(R))中で予備洗浄 − 脱塩水中で濯ぐ − ABSプラスチックだけを室温で5分間クロム硫酸
1中に浸漬、ジグフレームゴム化 − エポキシ樹脂だけを室温で5分間96質量%の硫酸
中に浸漬、ジグフレームゴム化 − 濯ぐ − 室温で1分、2分、4分及び8分間例22によるコ
ロイドで活性化/芽晶形成 − 濯ぐ − 1モルシュウ酸中で室温で1分間浸漬 − 濯ぐ − 電流なしで銅メッキ3、(プラスチック試料5分、
ガラス試料15分) − 濯ぐ − 純粋アルコール(エタノール)で濯ぐ − 乾燥1 CrO3 75g/l、 H2SO4 250g/l、
残り水2 数日間経った出発溶液及び希釈3 F.A. Lowenheim, Modern Electroplating, 3. Ed 19
74, p.: 736, John Wiley & Sons, New Yorkからの調製
3により調合結果: 全ての試料は、ジグフレーム絶縁物を除き、処理
後にメタライジングされた。
All samples were subjected to the same treatment:-pre-wash in a commercial cleaner (Mucasol® ) -rinse in demineralized water-only ABS plastic for 5 minutes at room temperature with chromic sulfuric acid
Immersion in 1 and rubberization of jig frame-Only epoxy resin is immersed in 96 wt% sulfuric acid at room temperature for 5 minutes, rubberization of jigframe-Rinse-1 minute, 2 minutes, 4 minutes and 8 minutes at room temperature Example 2 Activation / germination with colloid according to 2- Rinse-Immersion in 1 molar oxalic acid for 1 min at room temperature-Rinse-Copper plating without current 3 (plastic sample 5 min,
15 minutes glass sample) - rinsing - rinsing with pure alcohol (ethanol) - Drying 1 CrO 3 75g / l, H 2 SO 4 250g / l,
The starting solution was passed remaining water 2 days and diluted 3 FA Lowenheim, Modern Electroplating, 3. Ed 19
74, p .: 736, Formulated by Preparation 3 from John Wiley & Sons, New York : All samples were metallized after processing, except for the jig frame insulation.

【0024】ガラス対象支持体は表面上の銀芽晶の密度
が最も低く、これは閉じた銅層になるまで約15分間必
要とした。
The glass object support had the lowest density of silver germs on the surface, which required about 15 minutes to form a closed copper layer.

【0025】プラスチック試料は記載された腐食処理の
後に均質な艶消し表面を示した。引き続くメタンスルホ
ン酸の銀ゾルを用いた芽晶形成の際の芽晶密度は高く、
各試料ストランドは5分間の間に完全にメタライジング
された。
The plastic samples showed a homogeneous matte surface after the described corrosion treatment. The germination density at the time of germination formation using silver sol of methanesulfonic acid is high,
Each sample strand was completely metallized for 5 minutes.

【0026】ジグフレーム絶縁物はプラスチック試料と
同様に全く同じ処理を行った。表面は芽晶形成され、次
いで自己触媒作用のある銅浴中で曇ったまとまりのない
銅の沈積物が生じた。しかしながらこの沈積物は引き続
く電流を流すプロセスにおいてさらに強化されなかっ
た。電気メッキサイクルの次の実施の際に、薄い銅メッ
キ層は次のチャージのエッチングの際に問題なく取り除
かれた。
The jig frame insulator was treated in exactly the same manner as the plastic sample. The surface sprouted, followed by a cloudy, disorganized copper deposit in an autocatalytic copper bath. However, this deposit was not further enhanced in the subsequent current-carrying process. In the next run of the electroplating cycle, the thin copper plating layer was successfully removed during the next charge etch.

【0027】非導電体のメタライジングの課題は、メタ
ライジングされた部品を金属性の部品のように処理する
ことが可能な、非導電体の表面上での金属層の製造であ
る。金属性の状態の特徴は、可視光の高い反射及び導電
性である。これは処理によって達成される。
The problem of non-conductor metallization is the production of a metal layer on the surface of the non-conductor, which allows the metallized part to be treated like a metallic part. Characteristic of the metallic state is high reflection of visible light and conductivity. This is achieved by processing.

【0028】設置された層の金属性の状態の他にこの層
は非導電体表面上に強固に付着しなければならない。試
験のためにガラス対象支持体において、ストランドに接
着フィルム(Tesa(R))を設置し、次いで急激に表
面から引き剥がした。このフィルムは表面から銅粒子な
しに引き剥がされた。
In addition to the metallic state of the deposited layer, this layer must adhere firmly on the non-conductive surface. In the glass object support for testing, set up an adhesive film into strands (Tesa (R)), and then peeled off rapidly from the surface. The film was peeled from the surface without copper particles.

【0029】ABS及びEPからなる試料の場合、付加
的に格子状の切り込みを入れ、その上に接着フィルム
(Tesa(R))を接着し、次いで急激に引き剥がした
(DIN53151)。銅粒子は引き剥がされなかっ
た。
In the case of a sample consisting of ABS and EP, additionally placed a grid cut, bonding the adhesive film thereon (Tesa (R)), and then rapidly peeled off (DIN 53 151). The copper particles were not stripped.

【0030】この試験結果は、本発明により設置された
銅層が、市販の接着フィルム(Tesa(R))の銅上で
の接着強度よりもより良好であることを示した。この結
果は市販の塩酸性パラジウムコロイド系を使用する先行
技術と一致する。
The test results showed that the copper layer provided according to the invention was better than the adhesive strength on copper of a commercially available adhesive film (Tesa® ) . This result is consistent with the prior art using commercially available palladium hydrochloride colloid systems.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ペーター クンツ ドイツ連邦共和国 ホイヒリンゲン イ ン デア ブライテ 22 (58)調査した分野(Int.Cl.7,DB名) C23C 18/00 - 18/54 C25C 1/20 C25D 5/54 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Peter Kunz Germany Feichlingen in der Breite 22 (58) Fields studied (Int. Cl. 7 , DB name) C23C 18/00-18/54 C25C 1 / 20 C25D 5/54

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 後続する外部電流なしのメタライジング
もしくは電気メッキによるメタライジングの前に非導電
性基材を前処理するための、微細粒の貴金属芽晶を設置
するためのコロイド状貴金属メタンスルホン酸塩ゾル。
1. A colloidal noble metal methanesulfone for setting up fine-grained noble metal germs for pretreating a non-conductive substrate prior to subsequent metallization without external current or metallization by electroplating. Acid salt sol.
【請求項2】 さらに塩酸性パラジウムゾルの公知の添
加剤を含有する、請求項1記載のコロイド状貴金属メタ
ンスルホン酸塩ゾル。
2. The colloidal noble metal meta according to claim 1, further comprising a known additive of a hydrochloric palladium sol.
Sulfonic acid sol.
【請求項3】 コロイド形成剤として酸化スズ水和物を
使用する、請求項1記載のコロイド状貴金属メタンスル
ホン酸塩ゾル。
3. The colloidal noble metal methanesulphate according to claim 1, wherein tin oxide hydrate is used as the colloid-forming agent.
Fonate sol.
【請求項4】 貴金属が銀、金、白金及びパラジウムか
らなるグループから選択される、請求項1記載のコロイ
ド状貴金属メタンスルホン酸塩ゾル。
4. The colloidal noble metal methanesulfonate sol of claim 1, wherein the noble metal is selected from the group consisting of silver, gold, platinum and palladium.
【請求項5】 脱イオン水、メタンスルホン酸、メタン
スルホン酸スズ(II)及び貴金属メタンスルホン酸塩
を使用することを特徴とする、請求項1から4までのい
ずれか1項記載のコロイド状貴金属メタンスルホン酸塩
ゾルの製造方法。
5. The colloid according to claim 1, wherein deionized water, methanesulfonic acid, tin (II) methanesulfonate and noble metal methanesulfonate are used. Production method of noble metal methanesulfonate sol.
【請求項6】 メタンスルホン酸1〜100g/l、メ
タンスルホン酸スズ(II)0.5〜50g/l及び貴
金属メタンスルホン酸塩0.1〜10g/lを使用す
る、請求項5記載の方法。
6. The process according to claim 5, wherein 1 to 100 g / l of methanesulfonic acid, 0.5 to 50 g / l of tin (II) methanesulfonate and 0.1 to 10 g / l of the noble metal methanesulfonate are used. Method.
JP11304163A 1999-07-16 1999-10-26 Noble metal sol and method for producing the same Expired - Fee Related JP3105502B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19933444.7 1999-07-16
DE19933444 1999-07-16

Publications (2)

Publication Number Publication Date
JP3105502B1 true JP3105502B1 (en) 2000-11-06
JP2001032092A JP2001032092A (en) 2001-02-06

Family

ID=7915056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11304163A Expired - Fee Related JP3105502B1 (en) 1999-07-16 1999-10-26 Noble metal sol and method for producing the same

Country Status (6)

Country Link
JP (1) JP3105502B1 (en)
KR (1) KR20000012545A (en)
AR (1) AR031365A1 (en)
BR (1) BRPI9907495A2 (en)
HU (1) HU9903690D0 (en)
PL (1) PL336450A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107564B2 (en) 2018-03-03 2022-07-27 三和コンクリート工業株式会社 Underground shelter and its installation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030026470A (en) * 2001-09-25 2003-04-03 전정식 preprocessing method for plating non conducting material with gold
JP3881614B2 (en) * 2002-05-20 2007-02-14 株式会社大和化成研究所 Circuit pattern forming method
US7166152B2 (en) 2002-08-23 2007-01-23 Daiwa Fine Chemicals Co., Ltd. Pretreatment solution for providing catalyst for electroless plating, pretreatment method using the solution, and electroless plated film and/or plated object produced by use of the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107564B2 (en) 2018-03-03 2022-07-27 三和コンクリート工業株式会社 Underground shelter and its installation method

Also Published As

Publication number Publication date
PL336450A1 (en) 2001-01-29
AR031365A1 (en) 2003-09-24
BRPI9907495A2 (en) 2017-01-24
JP2001032092A (en) 2001-02-06
KR20000012545A (en) 2000-03-06
HU9903690D0 (en) 1999-12-28

Similar Documents

Publication Publication Date Title
US5250105A (en) Selective process for printing circuit board manufacturing
US3119709A (en) Material and method for electroless deposition of metal
EP0913502B1 (en) Method of electroplating nonconductive plastic molded product
Barker Electroless deposition of metals
JP6195857B2 (en) Method for metallizing non-conductive plastic surface
US5110633A (en) Process for coating plastics articles
JP6150822B2 (en) Method for metallizing non-conductive plastic surface
JP3281417B2 (en) Electroplating method and composition
KR20120081107A (en) Process for applying a metal coating to a non-conductive substrate
JP3105502B1 (en) Noble metal sol and method for producing the same
US3698939A (en) Method and composition of platinum plating
US4082557A (en) Silver base activating solutions for electroless copper deposition
US5298058A (en) Electroless copper plating bath
EP0044878B1 (en) A stable aqueous colloid for the activation of non-conductive substrates and the method of activating
CN102482780A (en) Method for depositing a palladium layer suitable for wire bonding on conductors of a printed circuit board and palladium bath for use in said method
CA2023846A1 (en) Process for the direct metallization of a non-conducting substrate
US3667972A (en) Chemical nickel plating baths
EP1483430B1 (en) Non-cyanide copper plating process for zinc and zinc alloys
CN111876805B (en) Method and apparatus for reducing tin whisker growth on tin and tin plated surfaces by doping tin with germanium
JP2003013241A (en) Pretreatment solution for electroless nickel plating onto copper or copper alloy and method for electroless nickel plating
JP4789361B2 (en) Method for producing a conductive layer on a dielectric surface
JP2002348673A (en) Electroless copper plating method without using formaldehyde, and electroless copper plating solution therefor
KR100568389B1 (en) Surface treatment agent, and surface-treated article and electroless nickel plating method using the same
JP2005047752A (en) Method for controlling film structure of zinc oxide film
EP0079975B1 (en) Copper colloid and method of activating insulating surfaces for subsequent electroplating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees