JP3103884B1 - Low defect surface coating layer composed of stainless steel with low defects or stainless steel formed on a substrate - Google Patents

Low defect surface coating layer composed of stainless steel with low defects or stainless steel formed on a substrate

Info

Publication number
JP3103884B1
JP3103884B1 JP11191190A JP19119099A JP3103884B1 JP 3103884 B1 JP3103884 B1 JP 3103884B1 JP 11191190 A JP11191190 A JP 11191190A JP 19119099 A JP19119099 A JP 19119099A JP 3103884 B1 JP3103884 B1 JP 3103884B1
Authority
JP
Japan
Prior art keywords
stainless steel
coating layer
substrate
potential
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11191190A
Other languages
Japanese (ja)
Other versions
JP2001020060A (en
Inventor
弘 南條
徳雄 真田
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP11191190A priority Critical patent/JP3103884B1/en
Application granted granted Critical
Publication of JP3103884B1 publication Critical patent/JP3103884B1/en
Publication of JP2001020060A publication Critical patent/JP2001020060A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【要約】 【課題】 ステンレス鋼又はステンレス鋼による表面被
覆層およびこれらの表面における微小欠陥の補修方法を
提供する。 【解決手段】 電気化学的手法により、微小欠陥及びそ
の周辺の表面を覆っている汚れや酸化皮膜を液体に振動
を与えながら除去して表面清浄化した後、直ちに静止液
体中において電流密度が最低となる電位又はこの電位を
中心に±100mVの範囲内の電位で不働態化処理し、
その後大気中に保持することにより、酸化物の粒子状又
は帯状の構造を成長させ、その過程で微小欠陥を補修す
る。
An object of the present invention is to provide a stainless steel or a surface coating layer made of stainless steel and a method for repairing minute defects on the surface thereof. SOLUTION: An electrochemical method removes dirt and an oxide film covering a microdefect and its surrounding surface while applying vibration to the liquid and cleans the surface. Passivation or at a potential within the range of ± 100 mV around this potential,
After that, the oxide particles are kept in the atmosphere to grow an oxide particle-like or band-like structure, and repair minute defects in the process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般構造材料とし
て使用されるステンレス鋼に存在するナノメータスケー
ルの微小な表面欠陥を補修して、耐孔食性や耐割れ性を
向上させる技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for repairing minute surface defects on the nanometer scale existing in stainless steel used as a general structural material to improve pitting corrosion resistance and crack resistance. .

【0002】本表面処理法は孔食の始まりや割れ初生を
遅延させることにより、材料の長寿命化を図ることを目
的とした表面処理方法に関するものである。
[0002] This surface treatment method relates to a surface treatment method intended to extend the life of a material by delaying the onset of pitting and the initiation of cracks.

【0003】[0003]

【従来の技術】欠陥の補修方法には、メッキ法(特開平
6−49613)、ろう付け法(特開平11−4370
6)、金属(特開平8−29580)や樹脂(特開平8
−145275)等でのコーティング法などもあるが、
溶接(特開平6−289184)や溶融(実開平7−2
6079)による補修方法が多数提案されている。それ
らはいずれもマイクロメータ以上の大きな欠陥を対象と
したものであり、それらの方法では、本発明が対象とす
るナノメータスケールの微小欠陥を補修できるとは言い
難い。
2. Description of the Related Art Defect repair methods include a plating method (JP-A-6-49613) and a brazing method (JP-A-11-4370).
6), metals (JP-A-8-29580) and resins (JP-A-8-29580).
-145275) and the like,
Welding (Japanese Unexamined Patent Publication No. 6-289184)
6079). All of them are intended for large defects of a micrometer or more, and it is difficult to say that these methods can repair nanometer-scale minute defects targeted by the present invention.

【0004】酸洗い(特開平6−315779)、切削
や放電加工(特開平6−289183)などで、欠陥部
の汚れを除去する重要性が暗示されているが、その後の
処理が前項のように大きな欠陥の補修を対象としてお
り、微小な欠陥は前項の補修部において新たに生じる場
合が多い。よって本発明で対象とする微小欠陥の補修
は、溶接等従来の補修方法を施した後に重ねて適用して
も効果が上がり得る。
[0004] The importance of removing stains on defective portions by pickling (JP-A-6-315779), cutting or electric discharge machining (JP-A-6-289183) is implied, but the subsequent processing is as described in the preceding section. The repair of a large defect is a target, and a small defect is often newly generated in the repair part described in the preceding paragraph. Therefore, the effect of repairing a minute defect targeted by the present invention can be improved even if a conventional repair method such as welding is applied and applied repeatedly.

【0005】[0005]

【発明が解決しようとする課題】本発明はマイクロメー
タ以上の大きな欠陥の補修を対象とするものではなく、
従来補修対象として来なかった、ステンレス鋼が製造後
に自然に持っているナノメータスケールの微小欠陥の補
修を対象としている。材料の長寿命化を図る一つの方法
として、大きな欠陥が生じてから、それを補修するとい
う考え方があるが、大きな欠陥が生じる前に、大きな欠
陥の原因となるナノメータスケールの微小欠陥を補修す
ることがより効果的であり、長寿命化を図る上で重要で
ある。微小な欠陥の補修は大きな欠陥の発生を抑制した
り、大きな欠陥の初生までの時間を遅延したりする顕著
な効果がある。本発明によりナノメータスケールの微小
欠陥を補修し、未処理の物に比べて欠陥密度の小さい表
面へと改修し、耐孔食性、耐割れ性の向上および材料の
長寿命化を図る。
SUMMARY OF THE INVENTION The present invention is not intended for repairing large defects larger than micrometers.
It is intended for the repair of nanometer-scale minute defects that stainless steel naturally has after production, which has not come as a repair target in the past. One way to prolong the life of a material is to repair large defects after they occur, but before the large defects occur, repair nanometer-scale minute defects that cause large defects. Is more effective, and is important in extending the life. Repair of a minute defect has a remarkable effect of suppressing the occurrence of a large defect or delaying the time until the initiation of a large defect. According to the present invention, nanometer-scale minute defects are repaired, the surface is repaired to have a defect density smaller than that of an untreated one, and pitting and cracking resistance is improved and the material has a longer life.

【0006】[0006]

【課題を解決するための手段】本発明者らは、電気化学
的処理方法について鋭意研究を重ねた結果、通常、ステ
ンレス鋼の微小欠陥内を覆っている汚れや非晶質の酸化
皮膜を液体に振動を与えながら除去した後、直ちに静止
液体中で不働態化し、その後、大気中に保持することに
より、粒子状又は帯状の表面構造が徐々に成長し、10
00nm未満の微小欠陥を補修することができ、上記の
問題を解決できるとの知見を得た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the electrochemical treatment method, and as a result, the dirt or amorphous oxide film covering the inside of the minute defect of stainless steel is usually removed by a liquid. Is immediately passivated in a stationary liquid, and then kept in the atmosphere, whereby a particulate or band-shaped surface structure gradually grows,
It has been found that it is possible to repair minute defects smaller than 00 nm, and to solve the above-mentioned problems.

【0007】この知見に基づき本発明は、1)表面開口
径0.6nm以上1000nm未満の微小欠陥の密度が
60個/μm2以下であり、表面の微小欠陥密度が極め
て低いことを特徴とするステンレス鋼又は基体に形成さ
れたステンレス綱からなる表面被覆層、2)スパッタリ
ングにより被覆した被覆層であることを特徴とする上記
1)の表面欠陥密度の低い基体に形成されたステンレス
綱からなる表面被覆層、3)ステンレス鋼を希硫酸中で
液体に振動を与えながら、カソード還元し、微小欠陥内
およびその周囲の皮膜や汚れを除去して表面を清浄化す
ることを特徴とする上記1)の表面欠陥密度の低いステ
ンレス鋼又は基体に形成されたステンレス綱からなる表
面被覆層、4)表面清浄化後の電気化学的処理として、
静止液体中で不働態維持電流密度が最も小さい電位又は
この電位を中心に±100mVの範囲内の電位に10分
間以上保持して不働態化処理することを特徴とする上記
1)の表面欠陥密度の低いステンレス鋼又は基体に形成
されたステンレス綱からなる表面被覆層、5)不働態化
処理後、大気中に保持し、表面の粒子状又は帯状の構造
を成長させ、その過程で微小欠陥を酸化皮膜で覆うこと
を特徴とする上記1)の表面欠陥密度の低いステンレス
鋼又は基体に形成されたステンレス綱からなる表面被覆
層、6)上記1)の表面欠陥密度の低いステンレス鋼又
は基体に形成されたステンレス綱からなる表面被覆層へ
欠陥補修方法、を提供するものである。
Based on this finding, the present invention provides: 1) a stainless steel characterized in that the density of minute defects having a surface opening diameter of 0.6 nm or more and less than 1000 nm is 60 / μm 2 or less, and the density of minute defects on the surface is extremely low. Formed on steel or substrate
2) A stainless steel formed on a substrate having a low surface defect density according to 1) above, wherein the stainless steel is a coating layer made of a stainless steel and 2) a coating layer coated by sputtering.
Surface coating layer made of steel, 3) while applying vibrations to the liquid stainless steel in dilute sulfuric acid, and cathodic reduction, and characterized in that cleaning the surface to remove the minute defects in and surrounding the coating and dirt Table consisting of stainless steel having a low surface defect density or stainless steel formed on a substrate as described in 1) above.
Surface coating layer , 4) as an electrochemical treatment after surface cleaning,
The surface defect density according to the above 1), wherein the passivation treatment is performed by maintaining a passivation maintaining current density in a static liquid at a minimum potential or a potential within a range of ± 100 mV for at least 10 minutes with respect to this potential. Formed on low-strength stainless steel or substrate
Surface coating layer made of stainless steel that is, 5) after the passivation treatment, and held in the air, to grow particulate or band structure of the surface, and wherein the covering in the process of minute defects in the oxide film Surface coating made of stainless steel having a low surface defect density or stainless steel formed on a substrate as described in 1) above
6) stainless steel or stainless steel having a low surface defect density according to 1) above;
To the surface coating layer made of stainless steel on the base
Defect repairing method, there is provided a.

【0008】[0008]

【発明の実施の形態】本発明の欠陥補修方法は、次の工
程からなる。 (1)機械研磨工程 (2)欠陥表面の清浄化処理工程 (3)不働態化処理工程 (4)酸化皮膜成長工程 これらの工程により、請求項3〜5に記載の内容を具体
的に実施することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The defect repairing method of the present invention comprises the following steps. (1) Mechanical polishing step (2) Defect surface cleaning treatment step (3) Passivation treatment step (4) Oxide film growth step By these steps, the contents of claims 3 to 5 are concretely described.
It can be implemented in a practical manner .

【0009】次に上記工程をそれぞれ詳しく説明する。
前記(1)の機械研磨工程においては、例えば#250
〜#3000までのいくつかの耐水研磨紙を用いて研磨
した後、1μm以下、好ましくは0.25μmのダイヤ
モンドぺーストを用いてバフ研磨する。その後、エチル
アルコール、プロピルアルコール又はアセトン中で超音
波洗浄機を用いて脱脂洗浄する。スパッタリング等によ
る被覆層を形成した材料では、すでに被覆層自体が研磨
面と同等以上の平滑面を有しているので、この機械研磨
工程は不要であり、主として板材等のバルク材に用い
る。
Next, each of the above steps will be described in detail.
In the mechanical polishing step (1), for example, # 250
After polishing using several water-resistant abrasive papers up to # 3000, buffing is performed using a diamond paste of 1 μm or less, preferably 0.25 μm. Thereafter, degrease cleaning is performed in ethyl alcohol, propyl alcohol or acetone using an ultrasonic cleaner. In the case of a material having a coating layer formed by sputtering or the like, the coating layer itself has a smooth surface equal to or higher than the polished surface. Therefore, this mechanical polishing step is unnecessary, and is mainly used for a bulk material such as a plate material.

【0010】前記(2)の表面清浄化処理工程において
は、希硫酸、好ましくは0.1M/Lの硫酸水溶液中に
おいて−800mV〜−2000mV(飽和カロメル電
極基準)のいくつかの電位で、液体に振動、好ましくは
超音波振動を与えながら、10分間以上カソード領域に
保持することによって欠陥内およびその周囲の非晶質な
空気酸化皮膜や汚れを除去し、欠陥表面の清浄化を図
る。
[0010] In the surface cleaning treatment step (2), in a sulfuric acid aqueous solution of dilute sulfuric acid, preferably 0.1 M / L, at several potentials of -800 mV to -2000 mV (based on a saturated calomel electrode), the liquid By applying a vibration, preferably an ultrasonic vibration, to the cathode region for at least 10 minutes, an amorphous air oxide film and dirt in and around the defect are removed, and the defect surface is cleaned.

【0011】前記(3)の不働態化処理工程において
は、清浄化処理後、他の電位を経由することなく、直ち
に不働態維持電流密度が最も小さい電位又はこの電位を
中心に±100mVの範囲内の電位に10分間以上保持
する。また、酸化物の成長を促すため、前記(2)の清
浄化処理で行った液体の振動を中止し、静止液体中で不
働態化処理を行う。
In the passivation treatment step (3), after the cleaning treatment, the potential at which the passive state maintaining current density is the lowest or the range of ± 100 mV around this potential immediately without passing through another potential. It is kept at the internal potential for 10 minutes or more. Further, in order to promote the growth of the oxide, the vibration of the liquid performed in the cleaning treatment (2) is stopped, and the passivation treatment is performed in the stationary liquid.

【0012】前記(4)の酸化皮膜成長工程において
は、不働態化処理後、蒸留水やイオン交換水で表面を洗
い流し、水を吹き飛ばした後、大気中、又は20%以上
の酸素を含む気体中に保持する。この工程において、不
働態化により形成された酸化物の粒子状又は帯状の構造
が成長し、その過程で微小欠陥を覆って補修する。酸化
物の表面構造の変化は走査型トンネル顕微鏡で観測する
ことにより確認できる。このとき、粒子直径又は帯の幅
より小さい微小欠陥は補修可能となる。
In the oxide film growth step (4), after the passivation treatment, the surface is rinsed with distilled water or ion-exchanged water, and the water is blown off. Then, a gas containing at least 20% oxygen Hold in. In this step, a particulate or band-like structure of the oxide formed by the passivation grows, and covers and repairs the minute defects in the process. Changes in the surface structure of the oxide can be confirmed by observation with a scanning tunneling microscope. At this time, a minute defect smaller than the particle diameter or the width of the band can be repaired.

【0013】[0013]

【発明の効果】本発明はステンレス鋼母材表面又はステ
ンレス鋼による表面被覆層の表面における微小欠陥密度
が小さい点において格段に優れた表面を有する。このよ
うな表面は未処理表面に比べ、耐孔食性又は耐割れ性を
向上させることができる他、ステンレス鋼の長寿命化が
図れる優れた効果を有する。また、スパッタリング等の
表面被覆層にも適用できるので、ステンレス鋼板もしく
はそれ以外の金属又はセラミックス等の材料を基板とし
てステンレス鋼による表面被覆層を形成し、上記と同様
な効果を得ることができる著しい特長を有している。
According to the present invention, the surface of the stainless steel base material or the surface of the surface coating layer made of stainless steel is remarkably excellent in that the density of minute defects is small. Such a surface can improve pitting corrosion resistance or crack resistance as compared with an untreated surface, and has an excellent effect of extending the life of stainless steel. In addition, since the present invention can be applied to a surface coating layer such as sputtering, a surface coating layer made of stainless steel is formed using a material such as a stainless steel plate or other metal or ceramics as a substrate, and the same effect as described above can be obtained. Has features.

【0014】下記の例では特定のステンレス鋼を用いて
説明しているが、これらの例以外のステンレス鋼におい
ても当然本発明が適用でき、同等の作用・効果を有す
る。また、本発明において使用できるステンレス鋼はス
テンレス鋼板等のバルク材だけではなく、ステンレス鋼
と同成分の皮膜をめっき、スパッタリング等の物理的蒸
着法、化学的蒸着法等の手段により、ステンレス鋼板
(バルク材)や他の金属またはセラミックス等に被覆層
を形成した材料にも適用できる。例えば機械研磨ができ
ないような装置や器具の構造あるいは材料に対しては、
スパッタリング等によりステンレス鋼と同成分の被覆層
を形成し、これに本発明による表面処理を施し、空気酸
化膜の性状を改善して欠陥を補修することができる。い
ずれの場合においても、ステンレス鋼又は同等の表面被
覆層を持つ表面の問題であり、本発明の条件を達成でき
れば、同等の作用・効果を有する。
Although the following examples are described using specific stainless steels, the present invention is naturally applicable to stainless steels other than these examples, and has the same functions and effects. The stainless steel that can be used in the present invention is not only a bulk material such as a stainless steel plate, but also a stainless steel plate (plated with a film having the same composition as the stainless steel, a physical vapor deposition method such as sputtering, and a chemical vapor deposition method). The present invention can also be applied to a material in which a coating layer is formed on a bulk material) or another metal or ceramic. For example, for the structure or material of equipment or instruments that cannot be mechanically polished,
A coating layer having the same composition as that of stainless steel is formed by sputtering or the like, and a surface treatment according to the present invention is performed on the coating layer to improve the properties of the air oxide film and repair defects. In any case, it is a problem of the surface having stainless steel or an equivalent surface coating layer, and if the conditions of the present invention can be achieved, the same operation and effect can be obtained.

【0015】本発明で処理したステンレス鋼表面の構造
変化の概念図と走査型トンネル顕微鏡観察例を、それぞ
れ図1および図2に示す。図1はステンレス鋼に本発明
の処理を施した後に起こる変化の模式図を示す。ステン
レス鋼の製造後には空気酸化膜や汚れが微小欠陥の表面
やその周囲を覆っている。それを電気化学的に表面処理
すると、空気酸化膜や汚れが除去されて清浄表面で不働
態皮膜が粒子状に成長し、微小欠陥を覆って補修する。
図2はステンレス鋼(SUS304)を基盤上にスパッ
タリングして薄膜層を形成し、これに本発明の処理を施
した後に起こる変化を示す。電気化学的に表面処理して
空気中に取り出すと、14分後には小さい粒子状構造が
見られるが、これが25時間後には大きな粒子に成長し
た。この間に微小欠陥が酸化皮膜で覆われ、補修されて
いる。
FIGS. 1 and 2 show a conceptual diagram of the structural change on the surface of the stainless steel treated by the present invention and an example observed by a scanning tunneling microscope. FIG. 1 shows a schematic diagram of the changes that occur after subjecting a stainless steel to the treatment of the present invention. After the stainless steel is manufactured, the air oxide film and dirt cover the surface of the micro defect and its surroundings. When it is subjected to electrochemical surface treatment, the air oxide film and dirt are removed, and the passivation film grows in the form of particles on the clean surface, and covers and repairs minute defects.
FIG. 2 shows the changes that occur after stainless steel (SUS304) is sputtered on a substrate to form a thin film layer and subjected to the treatment of the present invention. Electrochemical surface treatment and removal into the air revealed a small particulate structure after 14 minutes, which grew to larger particles after 25 hours. During this time, minute defects are covered with an oxide film and repaired.

【0016】[0016]

【実施例および比較例】次に実施例および比較例により
本発明をさらに詳細に説明するが、本発明は、これらの
例によってなんら限定されるものではない。すなわち、
本発明の技術思想の範囲における他の例、態様あるいは
変形等を当然含むものである。
Examples and Comparative Examples Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. That is,
Naturally, other examples, modes, modifications, and the like within the scope of the technical idea of the present invention are included.

【0017】(実施例1)ステンレス鋼(JIS規格S
US430)の板材を供試材として処理した。これを#
400,#600、#1000、#1500の耐水研磨
紙および0.25μmのダイヤモンドペーストを用いて
機械研磨し、エチルアルコール、イソプロピルアルコー
ルおよびアセトン中で各3分間づつ超音波洗浄した。そ
の後0.1M/Lの硫酸水溶液中で超音波振動を与えな
がら、飽和カロメル電極基準で−1000mVに5分
間、−1500mVに3秒間、−1000mVに2分
間、−800mVに1分間保持した。その直後に静止液
体中で+400mVに15分間保持した後、水洗し、大
気中に保持した。その後、走査型トンネル顕微鏡で表面
構造の変化を観測したところ、研磨傷が消失し、60〜
100nmの粒子状の構造に成長した。このとき酸化物
が60nm以下の微小欠陥を覆って補修し、欠陥密度の
低減ができた。
(Example 1) Stainless steel (JIS standard S)
US430) was processed as a test material. this#
It was mechanically polished using 400, # 600, # 1000, and # 1500 water-resistant abrasive paper and a 0.25 μm diamond paste, and ultrasonically washed in ethyl alcohol, isopropyl alcohol, and acetone for 3 minutes each. Thereafter, while applying ultrasonic vibration in a 0.1 M / L sulfuric acid aqueous solution, the sample was held at -1000 mV for 5 minutes, -1500 mV for 3 seconds, -1000 mV for 2 minutes, and -800 mV for 1 minute based on a saturated calomel electrode. Immediately after that, it was kept at +400 mV for 15 minutes in a stationary liquid, washed with water, and kept in the atmosphere. After that, when the change in the surface structure was observed with a scanning tunneling microscope, the polishing scratch disappeared, and
It grew to a particle structure of 100 nm. At this time, the oxide covered and repaired minute defects of 60 nm or less, and the defect density was reduced.

【0018】(実施例2)ステンレス鋼(JIS規格S
US304)の板材を供試材として処理した。これを#
400,#600、#1000、#1500の耐水研磨
紙および0.25μmのダイヤモンドペーストを用いて
機械研磨し、エチルアルコール、イソプロピルアルコー
ルおよびアセトン中で各3分間づつ超音波洗浄した。そ
の後0.1M/Lの硫酸水溶液中で超音波振動を与えな
がら、飽和カロメル電極基準で−1000mVに5分
間、−1500mVに3秒間、−1000mVに2分
間、−800mVに1分間保持した。その直後に静止液
体中で+400mVに15分間保持した後、水洗し、大
気中に保持した。その後、走査型トンネル顕微鏡で観測
したところ、研磨傷のいくつかが消失し、幅60nm程
度の帯状の構造に成長した。よって、酸化物が60nm
以下の微小欠陥を覆って補修し、表面における欠陥密度
を低減させた。
(Example 2) Stainless steel (JIS standard S)
US304) was treated as a test material. this#
It was mechanically polished using 400, # 600, # 1000, and # 1500 water-resistant abrasive paper and a 0.25 μm diamond paste, and ultrasonically washed in ethyl alcohol, isopropyl alcohol, and acetone for 3 minutes each. Thereafter, while applying ultrasonic vibration in a 0.1 M / L sulfuric acid aqueous solution, the sample was held at -1000 mV for 5 minutes, -1500 mV for 3 seconds, -1000 mV for 2 minutes, and -800 mV for 1 minute based on a saturated calomel electrode. Immediately after that, it was kept at +400 mV for 15 minutes in a stationary liquid, washed with water, and kept in the atmosphere. After that, when observed with a scanning tunneling microscope, some of the polishing scratches disappeared and grown into a band-like structure with a width of about 60 nm. Therefore, the oxide has a thickness of 60 nm.
The following small defects were covered and repaired to reduce the defect density on the surface.

【0019】(実施例3)SUS304ステンレス鋼を
ターゲットにしてスパッターし、シリコン基板上に15
0nmだけ、積層したステンレス鋼を供試材として処理
した。この場合には機械研磨はしていない。次にこれを
アセトン中で1分間超音波洗浄後、0.1M/Lの硫酸
水溶液中で振動を与えながら、飽和カロメル電極基準で
−1000mVに5分間、−1500mVに3秒間、−
1000mVに2分間、−800mVに1分間保持し
た。その直後に静止液体中で+400mVに15分間保
持した後、水洗し、大気中に保持した。粒子状の表面構
造が1時間経過後まで急速に成長し、5時間後にほぼ成
長が止まった。大気中における表面構造の変化を走査型
トンネル顕微鏡で観測したところ、14分後に35nm
であった粒子が、25時間後には220nmまで成長し
た。よって、酸化物が220nm以下の微小欠陥を覆っ
て補修し、表面における欠陥密度の低減ができた。
(Example 3) Sputtering was performed using SUS304 stainless steel as a target, and 15 sputtered on a silicon substrate.
The laminated stainless steel was treated as a test material by 0 nm. In this case, no mechanical polishing was performed. Next, this was subjected to ultrasonic cleaning in acetone for 1 minute, and then subjected to vibration in a 0.1 M / L sulfuric acid aqueous solution for 5 minutes at -1000 mV and -3500 mV for 3 seconds based on a saturated calomel electrode while applying vibration.
It was held at 1000 mV for 2 minutes and at -800 mV for 1 minute. Immediately after that, it was kept at +400 mV for 15 minutes in a stationary liquid, washed with water, and kept in the atmosphere. The particulate surface structure grew rapidly until after 1 hour, and almost stopped after 5 hours. When a change in the surface structure in the atmosphere was observed with a scanning tunneling microscope, 35 nm was observed after 14 minutes.
Grew to 220 nm after 25 hours. Therefore, the oxide covered and repaired minute defects of 220 nm or less, and the defect density on the surface was reduced.

【0020】(比較例1)SUS304ステンレス鋼を
ターゲットとしてスパッターし、シリコン基板上に15
0nmだけ積層したステンレス鋼を供試材として処理し
た。この場合には機械研磨はしていない。次にこれをア
セトン中で1分間超音波洗浄した後、0.1M/Lの硫
酸水溶液中で飽和カロメル電極基準で−1000mVに
5分間、−1500mVに3秒間、−1000mVに2
分間、−800mVに1分間保持した。その後、静止液
体中で、電位を−420mVに2分間保持してから不働
態電位である+400mVに15分間保持した後、水洗
し、大気中に保持した。−420mVを経由することに
より、欠陥に水酸化物等も生成し、その後不働態化処理
しても酸化物と水酸化物が混合した層となるため、25
時間経過しても、粒子成長が見られず、30nm程度で
あった。よってこのとき、液体中で補修された欠陥はあ
り得るが、高々30nm以下であり、実施例3の効果に
比べて格段に小さい。
(Comparative Example 1) Sputtering was performed using SUS304 stainless steel as a target, and 15 sputtered on a silicon substrate.
The stainless steel laminated by 0 nm was processed as a test material. In this case, no mechanical polishing was performed. Next, this was ultrasonically cleaned in acetone for 1 minute, and then in a 0.1 M / L aqueous sulfuric acid solution for 5 minutes at -1000 mV, 3 seconds at -1500 mV, and 2 -1000 mV based on a saturated calomel electrode.
And held at -800 mV for 1 minute. Thereafter, in a stationary liquid, the potential was held at −420 mV for 2 minutes, then at a passive potential of +400 mV for 15 minutes, washed with water, and held in the atmosphere. By passing through −420 mV, hydroxides and the like are also generated in the defect, and even if the passivation treatment is performed, the layer becomes a layer in which the oxide and the hydroxide are mixed.
Even after a lapse of time, no particle growth was observed, and it was about 30 nm. Therefore, at this time, although a defect repaired in the liquid may exist, the defect is at most 30 nm or less, which is much smaller than the effect of the third embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ステンレス鋼に本発明の処理を施した後に起こ
る変化の模式図を示す。ステンレス鋼の製造後にできた
空気酸化膜や汚れが微小欠陥の表面やその周囲を覆って
いる。それを電気化学的に表面処理すると、空気酸化膜
や汚れが除去され、清浄表面で不働態皮膜が粒子状に成
長し、微小欠陥を覆って補修する。
FIG. 1 shows a schematic diagram of the changes that occur after subjecting a stainless steel to the treatment of the present invention. The air oxide film and dirt formed after the production of stainless steel cover the surface of the minute defect and its surroundings. When it is electrochemically surface-treated, the air oxide film and dirt are removed, and the passivation film grows in the form of particles on the clean surface, covering and repairing minute defects.

【図2】ステンレス鋼(SUS304)を基盤上にスパ
ッタリングして薄膜層を形成し、これに本発明の処理を
施した後に起こる変化を示す。電気化学的に表面処理し
て空気中に取り出した後、14分後には小さい粒子状の
構造が見られるが、これが26時間後には大きな粒子に
成長した。
FIG. 2 illustrates the changes that occur after stainless steel (SUS304) is sputtered on a substrate to form a thin film layer and subjected to the treatment of the present invention. After being electrochemically surface-treated and taken out into the air, a small particulate structure was observed after 14 minutes, which grew into large particles after 26 hours.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C23C 28/00 C25D 11/02 JICSTファイル(JOIS)Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 14/00-14/58 C23C 28/00 C25D 11/02 JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面開口径0.6nm以上1000nm未
満の微小欠陥の密度が60個/μm2以下であり、表面
の微小欠陥密度が極めて低いことを特徴とするステンレ
ス鋼又は基体に形成されたステンレス鋼からなる表面被
覆層
1. A stainless steel formed on a substrate or a stainless steel formed on a substrate, wherein the density of minute defects having a surface opening diameter of 0.6 nm or more and less than 1000 nm is 60 / μm 2 or less and the minute defect density on the surface is extremely low. Surface coating made of steel
Covering layer .
【請求項2】スパッタリングにより被覆した被覆層であ
ることを特徴とする請求項1に記載の表面欠陥密度の低
いステンレス鋼又は基体に形成されたステンレス綱から
なる表面被覆層
2. A stainless steel having a low surface defect density or a stainless steel formed on a substrate according to claim 1, wherein the coating is a coating layer coated by sputtering.
Surface coating layer .
【請求項3】ステンレス鋼を希硫酸中でカソード還元
し、微小欠陥内およびその周囲の皮膜や汚れを除去して
表面を清浄化することを特徴とする請求項1に記載の表
面欠陥密度の低いステンレス鋼又は基体に形成されたス
テンレス綱からなる表面被覆層
3. The surface defect density according to claim 1, wherein the stainless steel is subjected to cathodic reduction in dilute sulfuric acid to remove the coating and dirt in and around the micro defects to clean the surface. scan formed lower stainless steel or substrate
Surface coating layer made of stainless steel .
【請求項4】請求項3に記載の表面清浄化の後の電気化
学的処理として、静止液体中で不働態維持電流密度が最
も小さい電位又はこの電位を中心に±100mVの範囲
内の電位に10分間以上保持して不働態化処理すること
を特徴とする請求項1に記載の表面欠陥密度の低いステ
ンレス鋼又は基体に形成されたステンレス綱からなる表
面被覆層
4. The electrochemical treatment after the surface cleaning according to claim 3, wherein the potential in the static liquid is a potential at which the passive state maintaining current density is the smallest or a potential within a range of ± 100 mV around this potential. The table made of stainless steel having a low surface defect density or a stainless steel formed on a substrate according to claim 1, wherein the passivation treatment is performed by holding for 10 minutes or more.
Surface coating layer .
【請求項5】請求項4に記載の不働態化処理の後、大気
中に保持し、表面の粒子状又は帯状の構造を成長させ、
その過程で微小欠陥を酸化皮膜で覆うことを特徴とする
請求項1に記載の表面欠陥密度の低いステンレス鋼又は
基体に形成されたステンレス綱からなる表面被覆層
5. After the passivation treatment according to claim 4, it is kept in the air to grow a particulate or band-like structure on the surface.
The stainless steel having a low surface defect density according to claim 1, wherein the minute defects are covered with an oxide film in the process.
A surface coating layer made of stainless steel and formed on a substrate .
JP11191190A 1999-07-06 1999-07-06 Low defect surface coating layer composed of stainless steel with low defects or stainless steel formed on a substrate Expired - Lifetime JP3103884B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11191190A JP3103884B1 (en) 1999-07-06 1999-07-06 Low defect surface coating layer composed of stainless steel with low defects or stainless steel formed on a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11191190A JP3103884B1 (en) 1999-07-06 1999-07-06 Low defect surface coating layer composed of stainless steel with low defects or stainless steel formed on a substrate

Publications (2)

Publication Number Publication Date
JP3103884B1 true JP3103884B1 (en) 2000-10-30
JP2001020060A JP2001020060A (en) 2001-01-23

Family

ID=16270410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11191190A Expired - Lifetime JP3103884B1 (en) 1999-07-06 1999-07-06 Low defect surface coating layer composed of stainless steel with low defects or stainless steel formed on a substrate

Country Status (1)

Country Link
JP (1) JP3103884B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200481393Y1 (en) * 2014-08-06 2016-09-27 김상열 Smart slim stand

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130799B1 (en) 2009-09-28 2012-03-28 에스티엑스메탈 주식회사 Surface Treatment Method of Stainless Steel for End Plate of Proton Exchange Membrane Fuel Cell
CN106967950A (en) * 2017-06-06 2017-07-21 马鞍山市润启新材料科技有限公司 A kind of stainless steel plate coating machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第43回腐食防食討論会講演集、(1996)南条 弘、真田徳雄p.389−390

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200481393Y1 (en) * 2014-08-06 2016-09-27 김상열 Smart slim stand

Also Published As

Publication number Publication date
JP2001020060A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JP4988597B2 (en) Decontamination of silicon electrode assembly surface with acid solution
JP4870254B2 (en) Method for removing an aluminide coating from a substrate
US5074970A (en) Method for applying an abrasive layer to titanium alloy compressor airfoils
CN101205621A (en) Method for cleaning aluminium parts
JP2918638B2 (en) Electroplating of titanium alloy
JP3103884B1 (en) Low defect surface coating layer composed of stainless steel with low defects or stainless steel formed on a substrate
EP1580292A1 (en) Method of producing a substrate
WO2000023201A9 (en) Superalloy component with abrasive grit-free coating
CN113373453B (en) Cleaning method used before coating of hard alloy numerical control blade
US8354146B2 (en) Methods for repairing gas turbine engine components
Zipp et al. Preparation and preservation of fracture specimens
CN110296877B (en) Preparation method of pure titanium metallographic sample
CN107313086A (en) A kind of composite-making process of Ultra-fine Grained/nanocrystalline Cr coatings
Forsyth Corrosion behaviour of aluminium alloy machining defects and quality of subsequently formed anodised oxide coatings
CN115305474B (en) Cleaning method for nondestructively removing steel surface protective coating and application thereof
KR101893680B1 (en) Method of chromium nitride coating layer for hydraulic parts
JP4523234B2 (en) Fuel cell separator
CN115679432A (en) Titanium alloy super-corrosion-resistant surface modification method
KR102268236B1 (en) Sputtering target member, sputtering target assembly and manufacturing method of sputtering target member
US20240042736A1 (en) Surface treatment of carbon fiber epoxy composites through diazonium admolecule modification
JP2010030012A (en) Carrier for holding polishing material
TWI633293B (en) Method of preparing specimen for carbon film of transmission electron microscope
US20210324524A1 (en) STRIPPING OF COATINGS Al-CONTAINING COATINGS
JP4006512B2 (en) Surface treatment method of surface coating layer with pure iron or steel or pure iron or steel
CN111593298A (en) Surface-modified titanium alloy material and preparation method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3103884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term