JP3100592B2 - Shoe outsole - Google Patents

Shoe outsole

Info

Publication number
JP3100592B2
JP3100592B2 JP11249613A JP24961399A JP3100592B2 JP 3100592 B2 JP3100592 B2 JP 3100592B2 JP 11249613 A JP11249613 A JP 11249613A JP 24961399 A JP24961399 A JP 24961399A JP 3100592 B2 JP3100592 B2 JP 3100592B2
Authority
JP
Japan
Prior art keywords
outsole
rubber
styrene
scaffold
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11249613A
Other languages
Japanese (ja)
Other versions
JP2000189207A (en
Inventor
育子 梅澤
章裕 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP11249613A priority Critical patent/JP3100592B2/en
Publication of JP2000189207A publication Critical patent/JP2000189207A/en
Application granted granted Critical
Publication of JP3100592B2 publication Critical patent/JP3100592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は靴のアウトソールに
関し、特に、グリップ性を高めて、凹凸が激しく且つ濡
れた足場であっても優れた防滑性が得られ、安全性を向
上させて、トレッキングシューズのアウトソールとして
好適に用いられるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shoe outsole, and more particularly to a shoe outsole capable of improving gripping properties, providing excellent anti-slip properties even on a scaffold having a severe unevenness and wetness, and improving safety. It is suitably used as an outsole for trekking shoes.

【0002】[0002]

【従来の技術】靴の防滑性は、靴にとって重要な性能で
あり、靴底、すなわち、足場(地面)に接触する部分で
あるアウトソールをゴム組成物で形成して、ゴム特有の
粘着摩擦力によって防滑性が得られるようにしている。
2. Description of the Related Art The anti-slip property of shoes is an important performance for shoes, and a sole, that is, an outsole that is in contact with a scaffold (ground), is formed of a rubber composition to form an adhesive friction characteristic of rubber. Slip resistance is obtained by force.

【0003】しかしながら、ゴム成形体からなるアウト
ソールは足場が乾燥状態の場合は、概ね優れた防滑性が
得られるものの、雨の日や、水辺等の濡れた状態の足場
では、防滑性が低下し、運動範囲を制限する必要が生じ
たり、最悪の場合には転倒する危険性がある。これは、
足場が濡れると、アウトソール表面と足場との間に水膜
が介在し、この水膜により両者間の粘着摩擦力が低下し
てしまうためである。
[0003] However, an outsole made of a rubber molded article can provide generally excellent anti-slip properties when the scaffold is in a dry state, but has a reduced anti-slip property when it is wet on a rainy day or on a waterside. However, there is a danger that the range of exercise may need to be restricted, or in the worst case, a fall may occur. this is,
When the scaffold is wet, a water film is interposed between the outsole surface and the scaffold, and the water film reduces the adhesive friction force between the two.

【0004】[0004]

【発明が解決しようとする課題】そこで、濡れた足場で
あっても滑りにくくするために、従来、ゴム組成物に吸
水性に優れた材料を用いてアウトソールと足場との間に
介在する水膜をアウトソールが吸い取って防滑性を向上
させることが試みられている。しかしながら、この提案
では、吸い込む水の量に限界がある上、水を吸い込むこ
とによって靴が重くなり、歩行(運動)しづらくなると
いう問題がある。
Therefore, in order to prevent slippage even on a wet scaffold, conventionally, a rubber composition made of a material having excellent water absorbency has been used to remove water interposed between the outsole and the scaffold. Attempts have been made to improve the anti-slip properties by absorbing the membrane with an outsole. However, in this proposal, there is a problem that the amount of water to be sucked is limited, and that shoes become heavy due to sucking water, making it difficult to walk (exercise).

【0005】また、上記吸水性に優れた材料を用いるこ
ととは逆に、本件出願人は、特開平9−322806号
公報において、吸水率が重量基準で0%以上、1%以下
の水が付着しにくくしたゴム組成物でアウトソールを形
成し、アウトソールが濡れた足場に接触した時にアウト
ソールと足場の間に介在する水をアウトソールの周囲に
排出しやすくして、滑りにくくしている。しかしなが
ら、トレッキングシューズのような岩場等の凹凸の激し
い足場を歩行する靴のアウトソールでは、アウトソール
を構成するゴムの吸水率を減じても、足場が濡れた場合
には満足できる防滑性を得ることはできない。
Contrary to the use of the above-described material having excellent water absorption, the present applicant discloses in Japanese Patent Application Laid-Open No. 9-322806 that water having a water absorption of 0% or more and 1% or less on a weight basis. The outsole is formed with a rubber composition that is difficult to adhere, and when the outsole comes into contact with a wet scaffold, the water interposed between the outsole and the scaffold is easily discharged around the outsole, making it less slippery I have. However, in the outsole of a shoe that walks on a highly uneven scaffold such as a rocky place such as trekking shoes, even if the water absorption of the rubber constituting the outsole is reduced, satisfactory anti-slip properties are obtained when the scaffold is wet. It is not possible.

【0006】よって、凹凸が激しく、かつ、濡れた足場
で使用する靴のアウトソールでは、アウトソールを構成
するゴム材料の吸水性を制御しても滑りにくくすること
は困難であり、足場に対するアウトソールのグリップ力
を更に高める必要がある。
[0006] Therefore, in the case of an outsole of a shoe used on a scaffold which has severe irregularities and is wet, it is difficult to prevent the rubber material constituting the outsole from slipping even if the water absorption is controlled. It is necessary to further increase the grip of the sole.

【0007】本発明は上記のような事情に鑑みてなされ
たものであり、アウトソールの足場へのグリップ力を一
層高めて、凹凸が激しく、かつ、濡れた足場に対して
も、良好な防滑性が得られるようにすることを課題とし
ている。
The present invention has been made in view of the above circumstances, and further enhances the grip force of an outsole on a scaffold, and provides a good anti-slip property even on a highly uneven and wet scaffold. The goal is to obtain the character.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明者は、濡れた岩場での靴のアウトソールの防
滑性と加硫ゴム成形体からなるアウトソールの粘弾性挙
動との関係を調べた。その結果、図5に示すように、加
硫ゴムの周波数10Hzでの動的粘弾性の歪み分散にお
いて、動歪2.0%における温度−10℃の損失係数
(tanδ)及び複素弾性率(E)が大きいほどアウ
トソールのグリップ性が向上するという知見を得た。図
5において、複素弾性率(E)と損失係数(tan
δ)とは概ね相関性を示し、一般に損失係数(tan
δ)が大きくなると複素弾性率(E)も大きくなって
いる。なお、一般にゴムの動的粘弾性の歪み分散におい
て、損失係数(tanδ)が大きい程、ゴム変形時のゴ
ムの接触物に対するヒステリシス摩擦力が大きく、ま
た、複素弾性率(E)が大きい程ゴム変形時のゴムの
接触物に対するエッジ効果による摩擦力が大きくなるこ
とが知られている。
In order to solve the above-mentioned problems, the present inventor has proposed a relationship between the slip resistance of a shoe outsole and a viscoelastic behavior of an outsole made of a vulcanized rubber molded article in a wet rocky place. Was examined. As a result, as shown in FIG. 5, in the dynamic viscoelastic strain dispersion of the vulcanized rubber at a frequency of 10 Hz, a loss coefficient (tan δ) at a temperature of −10 ° C. at a dynamic strain of 2.0% and a complex elastic modulus (E). * ) It was found that the larger the value of), the better the grip of the outsole. In FIG. 5, the complex elastic modulus (E * ) and the loss coefficient (tan)
δ) generally shows a correlation, and generally has a loss factor (tan
As δ) increases, the complex modulus (E * ) also increases. In general, in the distortion dispersion of dynamic viscoelasticity of rubber, the larger the loss coefficient (tan δ), the larger the hysteresis frictional force of rubber against a contact object at the time of rubber deformation, and the larger the complex elastic modulus (E * ). It is known that frictional force due to an edge effect on a contact object of rubber at the time of rubber deformation increases.

【0009】一方、加硫ゴムの温度依存による損失係数
(tanδ)を測定したところ、図6に示すように、−
100℃〜100℃の温度範囲において、損失係数(t
anδ)のピーク値と加硫ゴムを構成する基材ゴムのガ
ラス転移温度(Tg)とが一致することが判明した。
On the other hand, when a loss coefficient (tan δ) of the vulcanized rubber depending on temperature was measured, as shown in FIG.
In the temperature range of 100 ° C to 100 ° C, the loss factor (t
anδ) and the glass transition temperature (Tg) of the base rubber constituting the vulcanized rubber were found to match.

【0010】そこで、本発明は、基材ゴムの主成分とし
て各種機械的特性のバランスに優れ、特に、耐摩耗性が
良好なスチレンブタジエンゴムを用いることを前提に、
上記得られた知見に基づいて、基材ゴムに用いるスチレ
ンブタジエンゴムとしてそのガラス転移温度(Tg)が
できるだけ−10℃に近いものを用いて、これを加硫成
形してアウトソールとすることにより、アウトソールの
動歪2.0%における温度−10℃の複素弾性率
(E)及び損失係数(tanδ)を増大させて、アウ
トソールの足場へのグリップ力を従来よりも飛躍的に向
上させている。
Therefore, the present invention is based on the premise that styrene-butadiene rubber having excellent balance of various mechanical properties and excellent abrasion resistance is used as a main component of the base rubber.
Based on the findings obtained above, a styrene butadiene rubber having a glass transition temperature (Tg) as close as possible to −10 ° C. is used as a base rubber and vulcanized to form an outsole. The complex modulus (E * ) and the loss coefficient (tan δ) of the outsole at a dynamic strain of 2.0% at a temperature of −10 ° C. are increased, and the grip force of the outsole on a scaffold is dramatically improved. Let me.

【0011】すなわち、本発明は、ゴム組成物の加硫成
形体からなる靴のアウトソールであって、このゴム組成
物の基材ゴムがスチレンブタジエンゴムを70〜100
重量%含み、該スチレンブタジエンゴムは、ガラス転移
温度(Tg)が−33℃以上、−10℃以下で、周波数
10Hzでの動的粘弾性の歪み分散において、動歪2.
0%における温度−10℃の損失係数(tanδ)が、
0.26より大きく、1.5以下であり、かつ、同条件
での複素弾性率(E)が150kgf/cm2 より大
きく、750kgf/cm2 以下であることを特徴とす
る靴のアウトソールを提供している。
That is, the present invention relates to an outsole for a shoe comprising a vulcanized molded article of a rubber composition, wherein the base rubber of the rubber composition comprises styrene-butadiene rubber of 70 to 100.
The styrene-butadiene rubber has a glass transition temperature (Tg) of −33 ° C. or higher and −10 ° C. or lower and a dynamic strain of dynamic viscoelasticity at a frequency of 10 Hz.
The loss factor (tan δ) at a temperature of −10 ° C. at 0% is:
Greater than 0.26, 1.5 or less, and the complex elastic modulus at the same conditions (E *) is greater than 150 kgf / cm 2, the shoe outsole, characterized in that it is 750 kgf / cm 2 or less Is provided.

【0012】理想的には、前記知見より、−10℃付近
にガラス転移温度(Tg)を示すスチレンブタジエンゴ
ムを用いるのが好ましいが、このような高いガラス転移
温度(Tg)を示すスチレンブタジエンゴムを得ること
は現状の重合技術では困難である。よって、本発明で
は、従来のアウトソールに用いていた最も高いガラス転
移温度(−34℃)のスチレンブタジエンゴムよりも更
に高いガラス転移温度のスチレンブタジエンゴムを選択
して使用している。具体的には、例えば、日本ゼオン社
製のNS116(商品名)[溶液重合スチレンブタジエ
ンゴム、ガラス転移温度(Tg):−25℃]を挙げる
ことができる。この具体例に限らず、スチレンブタジエ
ンゴムの共重合組成比、共重合構造、分子量等を調整し
て、スチレンブタジエンゴムの機械的特性が損なわれな
い範囲で、ガラス転移温度(Tg)が−33℃以上で、
−10℃により近いものを用いるのが好ましい。さらに
好ましくは、−30℃以上、最も好ましくは、−25℃
以上で、−10℃以下のものを用いることが好ましい。
ちなみに、従来の靴のアウトソールに用いるスチレンブ
タジエンゴムのガラス転移温度(Tg)は多くのものが
−55℃〜−45℃の範囲で、タイヤやその他の工業用
ゴム製品に用いるスチレンブタジエンゴムのそれと同等
であった。
Ideally, from the above findings, it is preferable to use a styrene-butadiene rubber having a glass transition temperature (Tg) around -10 ° C., but a styrene-butadiene rubber having such a high glass transition temperature (Tg) is preferably used. Is difficult with current polymerization techniques. Therefore, in the present invention, a styrene-butadiene rubber having a higher glass transition temperature than the styrene-butadiene rubber having the highest glass transition temperature (−34 ° C.) used for the conventional outsole is selected and used. Specifically, for example, NS116 (trade name) manufactured by Zeon Corporation [solution-polymerized styrene-butadiene rubber, glass transition temperature (Tg): −25 ° C.] can be mentioned. Not limited to this specific example, the glass transition temperature (Tg) is −33 within the range where the mechanical properties of the styrene-butadiene rubber are not impaired by adjusting the copolymer composition ratio, the copolymer structure, the molecular weight, and the like of the styrene-butadiene rubber. Above ℃
It is preferable to use one closer to -10 ° C. More preferably, -30 ° C or higher, most preferably -25 ° C.
As described above, it is preferable to use a material having a temperature of −10 ° C. or less.
Incidentally, the glass transition temperature (Tg) of styrene-butadiene rubber used for the outsole of conventional shoes is often in the range of -55 ° C to -45 ° C, and that of styrene-butadiene rubber used for tires and other industrial rubber products is high. It was equivalent.

【0013】本発明のアウトソールでは、基材ゴムであ
るスチレンブタジエンゴムのガラス転移温度(Tg)が
−33℃以上、−10℃以下であり、該基材ゴムを加硫
成形したアウトソールの温度依存の粘弾性は、スチレン
ブタジエンゴムのガラス転移温度(Tg)である、−3
3℃以上、−10℃以下の温度範囲に損失係数(tan
δ)のピーク値を示す。よって、本発明のアウトソール
の−10℃における損失係数(tanδ)は従来のアウ
トソール(ガラス転移温度(Tg)が−34℃以下のス
チレンブタジエンゴムの加硫成形体)のそれよりも大き
く、結果として、動歪2.0%における温度−10℃の
損失係数(tanδ)及び複素弾性率(E)が従来の
アウトソールよりも大きくなって、足場に対するグリッ
プ性が向上し、その結果、凹凸が激しく且つ濡れた岩場
に対しても強いグリップ力で把持して滑りにくくなる。
In the outsole of the present invention, the glass transition temperature (Tg) of the styrene butadiene rubber as the base rubber is not less than −33 ° C. and not more than −10 ° C., and the outsole obtained by vulcanizing the base rubber is used. The temperature-dependent viscoelasticity is the glass transition temperature (Tg) of styrene butadiene rubber, -3.
In a temperature range of 3 ° C. or more and −10 ° C. or less, the loss factor (tan)
δ) shows the peak value. Therefore, the loss coefficient (tan δ) at −10 ° C. of the outsole of the present invention is larger than that of the conventional outsole (vulcanized molded article of styrene butadiene rubber having a glass transition temperature (Tg) of −34 ° C. or less), As a result, the loss coefficient (tan δ) and the complex modulus (E * ) at a temperature of −10 ° C. at a dynamic strain of 2.0% are larger than those of the conventional outsole, and the grip on the scaffold is improved. It can be gripped with strong gripping power even on wet rocky areas with severe irregularities, making it hard to slip.

【0014】本発明のアウトソールは、周波数10Hz
での動的粘弾性の歪み分散での、動歪2.0%における
温度−10℃の損失係数(tanδ)が0.26より大
きく、好ましくは0.30以上、さらに好ましくは0.
40以上を示し、かつ、複素弾性率(E)が155k
gf/cm より大きく、好ましくは200kgf/
cm 以上、さらに好ましくは260kgf/cm
以上を示す。すなわち、足場に対するヒステリシス摩擦
力及びエッジ効果による摩擦力が従来に比して大きくな
っている。
The outsole of the present invention has a frequency of 10 Hz.
The loss coefficient (tan δ) at a temperature of −10 ° C. at a dynamic strain of 2.0% in the dynamic viscoelastic strain dispersion at 0.2% is greater than 0.26, preferably 0.30 or more, and more preferably 0.
Shows 40 or more and has a complex elastic modulus (E * ) of 155 k
gf / cm 2 , preferably 200 kgf / cm 2
cm 2 or more, more preferably 260 kgf / cm 2
The above is shown. That is, the hysteresis frictional force against the scaffold and the frictional force due to the edge effect are larger than those in the related art.

【0015】なお、損失係数(tanδ)と複素弾性率
(E)とは大きければ大きいほど高いグリップ性が得
られるが、グリップ性が高くなり過ぎると、靴が全く滑
らなくなり、足首等を痛めやすくなる。よって、損失係
数(tanδ)は1.5以下、好ましくは1.2以下、
さらに好ましくは1.0以下である。また、複素弾性率
(E)が大きくなり過ぎるとアウトソールの衝撃吸収
性が低下する傾向となる。よって、複素弾性率(E
は750kgf/cm 以下、好ましくは600kg
f/cm以下である。
The larger the loss coefficient (tan δ) and the complex elastic modulus (E * ), the higher the grip performance. However, if the grip performance is too high, the shoes will not slip at all, causing damage to the ankle and the like. It will be easier. Therefore, the loss coefficient (tan δ) is 1.5 or less, preferably 1.2 or less,
More preferably, it is 1.0 or less. Further, when the complex elastic modulus (E * ) is too large, the shock absorption of the outsole tends to decrease. Therefore, the complex elastic modulus (E * )
Is 750 kgf / cm 2 or less, preferably 600 kgf
f / cm 2 or less.

【0016】本発明で使用するスチレンブタジエンゴム
はガラス転移温度(Tg)が−33℃以上、−10℃以
下であれば、油展ゴム、非油展ゴムに限らず使用するこ
とが可能であるが、靴のアウトソールの明色性や環境汚
染等を考慮した場合、非油展ゴムを用いるのが好まし
い。これは、油展ゴムは添加オイルにより黒色度の高い
ものが多く、靴のアウトソールの明色性を損ない、ま
た、添加オイルは一般にアロマ系オイルが多く、アロマ
系オイルは環境に悪影響を与え、近年できるだけ使用し
ない方向に向かっているためである。
The styrene-butadiene rubber used in the present invention is not limited to oil-extended rubber and non-oil-extended rubber as long as the glass transition temperature (Tg) is from -33 ° C to -10 ° C. However, in consideration of lightness of the outsole of the shoe, environmental pollution, and the like, it is preferable to use a non-oil-extended rubber. This is because oil-extended rubber often has a high degree of blackness due to added oil, which impairs the lightness of outsole of shoes.Additionally, added oil generally has a lot of aroma oil, and aroma oil has a bad influence on the environment. This is because they have been moving in a direction of not using them in recent years.

【0017】また、スチレンブタジエンゴムは、結合ス
チレン量が15〜25重量%で、かつ、結合ビニル量が
35〜70重量%である共重合組成のものを用いるのが
好ましい。該共重合組成のものを用いることにより、加
硫ゴム組成物は引張強度、耐摩耗性及び安定性に優れた
ものとなり、上記アウトソールの高いグリップ力が長期
に亘って維持されることとなる。
The styrene-butadiene rubber preferably has a copolymer composition having a bound styrene content of 15 to 25% by weight and a bound vinyl content of 35 to 70% by weight. By using the copolymer composition, the vulcanized rubber composition becomes excellent in tensile strength, wear resistance and stability, and the high grip force of the outsole is maintained for a long time. .

【0018】また、上記ガラス転移温度(Tg)が−3
3℃以上、−10℃以下のスチレンブタジエンゴムで基
材ゴム全体を構成しない場合、他のゴムと混合して使用
する。他のゴムとしては、天然ゴム(NR)、イソプレ
ンゴム(IR)、ブタジエンゴム(BR)、アクリルニ
トリル−ブタジエンゴム(NBR)、エチレン−プロピ
レン−ジエンゴム(EPDM)、クロロプレンゴム(C
R)、ブチルゴム(IIR)、アクリルゴム(AC
M)、ウレタンゴム等を挙げることができる。これらは
1種又は2種以上を用いることができる。
The glass transition temperature (Tg) is -3.
When the whole base rubber is not composed of styrene butadiene rubber having a temperature of 3 ° C. or more and −10 ° C. or less, it is used by mixing with another rubber. Other rubbers include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (C
R), butyl rubber (IIR), acrylic rubber (AC
M), urethane rubber and the like. These can be used alone or in combination of two or more.

【0019】基材ゴムを加硫する加硫剤としては、例え
ば、硫黄、有機含硫黄化合物、有機過酸化物、キノンジ
オキシム類等を使用する。これら加硫剤は基材ゴム10
0重量部当たり一般に1〜3重量部、好ましくは1.5
〜2.5重量部用いるのがよい。また、硫黄や有機含硫
黄化合物の加硫剤を用いる場合、加硫促進剤を用いても
よい。加硫促進剤としては、例えば、消石灰、マグネシ
ア(MgO)、リサージ(PbO)等の無機促進剤や、
チアゾール系加硫促進剤、スルフェンアミド系加硫促進
剤、チウラム系加硫促進剤、ジチオカルバミン酸塩系加
硫促進剤等の有機促進剤を使用することができる。これ
ら加硫促進剤は基材ゴム100重量部当たり一般に0.
5〜4重量部、好ましくは1〜2.5重量部用いるのが
よい。また、加硫促進助剤を配合することもでき、例え
ば、亜鉛華などの金属化合物やステアリン酸、オレイン
酸、綿実脂肪酸等の脂肪酸を使用することができる。こ
れら加硫促進剤は基材ゴム100重量部当たり一般に1
〜5重量部、好ましくは1〜3重量部用いるのがよい。
更に老化防止剤、軟化剤(可塑剤)等を適宜配合しても
よい。
As the vulcanizing agent for vulcanizing the base rubber, for example, sulfur, organic sulfur-containing compounds, organic peroxides, quinone dioximes and the like are used. These vulcanizing agents are base rubber 10
Generally, 1 to 3 parts by weight, preferably 1.5 parts by weight per 0 parts by weight
It is preferred to use up to 2.5 parts by weight. When a vulcanizing agent for sulfur or an organic sulfur-containing compound is used, a vulcanization accelerator may be used. Examples of the vulcanization accelerator include inorganic accelerators such as slaked lime, magnesia (MgO), and litharge (PbO);
Organic accelerators such as a thiazole vulcanization accelerator, a sulfenamide vulcanization accelerator, a thiuram vulcanization accelerator, and a dithiocarbamate vulcanization accelerator can be used. These vulcanization accelerators are generally used in an amount of 0.1 parts per 100 parts by weight of the base rubber.
It is preferable to use 5 to 4 parts by weight, preferably 1 to 2.5 parts by weight. Further, a vulcanization accelerating aid can be blended, and for example, a metal compound such as zinc white and a fatty acid such as stearic acid, oleic acid and cottonseed fatty acid can be used. These vulcanization accelerators are generally used in an amount of 1 per 100 parts by weight of the base rubber.
55 parts by weight, preferably 1-3 parts by weight.
Further, an anti-aging agent, a softener (plasticizer) and the like may be appropriately blended.

【0020】また、加硫ゴムの粘弾性の調整、耐摩耗性
の付与、硬度調整等のために、シリカ、カーボン等の充
填剤を配合したり、撥水性の付与、粘弾性等の調整のた
めにシランカップリング剤やシリル化剤を配合してもよ
い。
In order to adjust the viscoelasticity of the vulcanized rubber, impart abrasion resistance, adjust the hardness, etc., a filler such as silica or carbon may be blended, water repellency may be imparted, and viscoelasticity etc. may be adjusted. For this purpose, a silane coupling agent or a silylating agent may be blended.

【0021】本発明では加硫ゴムを成形してアウトソー
ルとするが、通常、加硫剤及び必要に応じて配合する各
種配合剤を混練し、該混練物をアウトソール用金型に入
れて成形と同時に加硫を行ってアウトソールを作成す
る。また、ゴム、加硫剤及び必要に応じて配合する各種
配合剤を混練する段階で加硫し、得られた加硫ゴムをア
ウトソール用金型に入れて成形してもよい。なお、成形
は射出成形、プレス成形等の任意の成形方法を用いるこ
ができる。
In the present invention, a vulcanized rubber is formed into an outsole. Usually, a vulcanizing agent and various compounding agents to be compounded as required are kneaded, and the kneaded product is put into a mold for outsole. Vulcanization is performed simultaneously with molding to produce an outsole. Alternatively, vulcanization may be performed at the stage of kneading rubber, a vulcanizing agent, and various compounding agents to be compounded as needed, and the obtained vulcanized rubber may be put into a mold for an outsole and molded. The molding can be performed by any molding method such as injection molding and press molding.

【0022】アウトソールの形状は、底面に溝を形成し
てその先端面が足場と接触する複数のブロック部を区画
形成した形状とするのが好ましい。複数のブロック部の
各形状は、概ね側面が溝底面より垂直若しくは傾斜して
切り立った角柱形状、角錐台形状、円柱形状、円錐台形
状、複数の角柱及び/又は円柱を複合した形状等の種々
の形状とすることができる。なお、一般的なアウトソー
ルでは底面の土踏まずに対応する部分は大きな凹部とし
て足場に接触しないようにしており、上記溝及び複数の
ブロック部は、底面の爪先から甲裏までの領域を支える
部分及び踵を支える部分に形成している。
The shape of the outsole is preferably a shape in which a groove is formed in the bottom surface and a plurality of block portions whose leading end surfaces are in contact with the scaffold are defined. Each of the shapes of the plurality of block portions may have various shapes such as a prism shape, a truncated pyramid shape, a cylindrical shape, a truncated cone shape, a shape obtained by combining a plurality of prisms and / or cylinders, and the like, in which the side surface is substantially perpendicular or inclined from the groove bottom surface. Shape. In a general outsole, the portion corresponding to the arch of the bottom is a large recess so as not to contact the scaffold, and the groove and the plurality of blocks are portions supporting the region from the toe to the instep of the bottom and Formed on the part supporting the heel.

【0023】上記溝深さ(ブロック部の高さ)は2〜7
mmの範囲にするのが好ましい。この範囲にすると、複
数のブロック部が足場の凹凸面の形状に応じて変形して
足場の凹凸面への追従性が良くなり、グリップ性が一層
向上する。また、足に加わる衝撃が効果的に緩和される
と共に、履き心地及び運動時の反発性をも良化すること
ができる。
The groove depth (height of the block portion) is 2 to 7
mm. In this range, the plurality of block portions are deformed according to the shape of the uneven surface of the scaffold, so that the followability to the uneven surface of the scaffold is improved, and the grip performance is further improved. In addition, the impact applied to the foot can be effectively reduced, and the comfort and resilience during exercise can be improved.

【0024】本発明の靴のアウトソールは岩場等で使用
するトレッキングシューズに最適であるが、釣り用の長
靴、ダイビング用シューズ、バイク用シューズ、お風呂
靴、レインシューズ、ビーチサンダル等の頻繁に水で濡
れた状態となる足場で使用する靴のアウトソールにも好
適である。もちろん、これら以外の靴にも使用できる。
The outsole of the shoe of the present invention is most suitable for trekking shoes used on rocky places and the like, but is frequently used for fishing boots, diving shoes, motorcycle shoes, bath shoes, rain shoes, beach sandals and the like. It is also suitable for an outsole of shoes used on a scaffold that is wet with water. Of course, it can be used for shoes other than these.

【0025】[0025]

【発明の実施の形態】以下、本発明を実施例及び比較例
により更に詳しく説明する。下記表1の上段に示す処方
の混練物を調整し、各混練物をアウトソール用金型に入
れて160℃、10分の条件にて加硫成形して実施例1
〜3及び比較例1〜3のアウトソールを作成した。な
お、これらのアウトソールの形状は図1及び図2に示す
形状とした。すなわち、アウトソール100は足の爪先
から甲裏部を支える第1ソール部51、足の踵部を支え
る第2ソール部52、及び、これら第1ソール部51と
第2ソール部52を繋ぐ土踏まず部53とからなる。そ
して、第1ソール部51及び第2ソール部52には幅1
〜20mm、深さ2.0〜5.5mmの範囲内にある複
数の溝1を縦、横、斜め方向に形成し、種々形状の複数
のブロック部2を区画形成している。アウトソールの底
面全体の面積は250mmとし、複数のブロック部2
の各先端面の面積は0.1〜8cm の範囲内とし、
複数のブロック部2の総面積は65cm とした。な
お、土踏まず部53は全体が接地しない凹部となってい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. Example 1 A kneaded product having the formulation shown in the upper part of Table 1 below was prepared, and each kneaded product was placed in a mold for an outsole and vulcanized and formed at 160 ° C. for 10 minutes.
Outsole of Comparative Examples 1 to 3 and Comparative Examples 1 to 3 were prepared. In addition, the shape of these outsole was made into the shape shown in FIG.1 and FIG.2. That is, the outsole 100 includes a first sole portion 51 that supports the sole of the foot from the toe of the foot, a second sole portion 52 that supports the heel portion of the foot, and an arch that connects the first sole portion 51 and the second sole portion 52. And 53. The first sole portion 51 and the second sole portion 52 have a width 1
A plurality of grooves 1 having a length of 20 mm and a depth of 2.0 mm to 5.5 mm are formed in the vertical, horizontal, and oblique directions, and a plurality of blocks 2 having various shapes are defined. The area of the entire bottom surface of the outsole is 250 mm 2 , and a plurality of block portions 2
The area of each tip surface of is within the range of 0.1 to 8 cm 2 ,
The total area of the plurality of blocks 2 was 65 cm 2 . Note that the arch portion 53 is a concave portion that is not entirely grounded.

【0026】[0026]

【表1】 [Table 1]

【0027】*1:溶液重合スチレンブタジエンゴム
[ガラス転移温度(Tg):−25℃、結合スチレン
量:21%、結合ビニル量:63%]、NS116(商
品名)、日本ゼオン社製 *2:乳化重合スチレンブタジエンゴム[ガラス転移温
度(Tg):−55℃、結合スチレン量:23.5%、
結合ビニル量:20%]、SBR1502(商品名)、
日本合成ゴム社製 *3:ブタジエンゴム[ガラス転移温度(Tg):−1
10℃]、BR11(商品名)、日本合成ゴム社製 *4:シランカップリング剤〔ビス−(3−トリエトキ
シシリルプロピル)テトラスルフェン〕 Si69(商
品名)、デグサ社製 *5:プロセスオイル PW380(商品名)、出光興
産社製 *6:ノクラック200(商品名)、大内新興化学工業
社製 *7:ノクセラーNS(商品名)、大内新興化学工業社
製 *8:溶液重合スチレンブタジエンゴム[ガラス転移温
度(Tg):−39℃、結合スチレン量:25%、結合
ビニル量:39.5%]、SE9191(商品名)、住
友化学社製
* 1: Solution-polymerized styrene-butadiene rubber [glass transition temperature (Tg): -25 ° C., bound styrene amount: 21%, bound vinyl amount: 63%], NS116 (trade name), manufactured by Zeon Corporation * 2 : Emulsion polymerized styrene butadiene rubber [Glass transition temperature (Tg): -55 ° C, bound styrene amount: 23.5%,
Bound vinyl content: 20%], SBR1502 (trade name),
* 3: Butadiene rubber [Glass transition temperature (Tg): -1]
10 ° C.], BR11 (trade name), manufactured by Nippon Synthetic Rubber Co., Ltd. * 4: Silane coupling agent [bis- (3-triethoxysilylpropyl) tetrasulfene] Si69 (trade name), manufactured by Degussa * 5: Process Oil PW380 (trade name), manufactured by Idemitsu Kosan Co., Ltd. * 6: Nocrack 200 (trade name), manufactured by Ouchi Shinko Chemical Industry Co., Ltd. * 7: Noxeller NS (trade name), manufactured by Ouchi Shinko Chemical Industry Co., Ltd. * 8: Solution polymerization Styrene butadiene rubber [glass transition temperature (Tg): -39 ° C, bound styrene amount: 25%, bound vinyl amount: 39.5%], SE9191 (trade name), manufactured by Sumitomo Chemical Co., Ltd.

【0028】上記各々作製した実施例及び比較例のアウ
トソールについて、周波数10Hzでの動的粘弾性の歪
分散において、動歪2.0%における温度−10℃での
損失係数(tanδ)と複素弾性率(E)とについて
測定した。また、防滑性の指標となるグリップ指数を測
定した。また、アウトソールを靴本体に取り付けてトレ
ッキングシューズを作製し、モニターテストを行った。
With respect to the outsole of each of the examples and comparative examples produced above, the loss coefficient (tan δ) at a temperature of −10 ° C. at a dynamic strain of 2.0% and the complex in the dynamic viscoelastic strain dispersion at a frequency of 10 Hz. The elastic modulus (E * ) was measured. Further, a grip index as an index of slip resistance was measured. In addition, a trekking shoe was prepared by attaching the outsole to the shoe body, and a monitor test was performed.

【0029】上記損失係数(tanδ)と複素弾性率
(E)とは島津製作所社製の粘弾性スペクトロメータ
(VA−200改造型)を用いて測定した。
The above loss coefficient (tan δ) and complex elastic modulus (E * ) were measured using a viscoelastic spectrometer (VA-200 modified type) manufactured by Shimadzu Corporation.

【0030】グリップ指数は、アウトソールを所定の形
状(76mm×25mm×6mm)にカットし、図3に
示すポータブルスキッドレジスタンステスターを用い
て、濡れた岩場上でのアウトソールの摩擦抵抗を測定し
た。これは、ゴムの付いた振り子を所定の高さから振り
降ろし、振り子が路面を擦って振り上る高さを読み取る
ことで相対的な摩擦抵抗を読み取るものである。なお、
図4に示すように濡れた岩場への接地領域は12.7c
mとした。評価は比較例1のアウトソールの摩擦抵抗を
100とした時の指数で評価した。
For the grip index, the outsole was cut into a predetermined shape (76 mm × 25 mm × 6 mm), and the frictional resistance of the outsole on a wet rocky place was measured using a portable skid resistance tester shown in FIG. . In this method, the relative frictional resistance is read by swinging down a pendulum with rubber from a predetermined height and reading the height at which the pendulum rubs on the road surface and swings up. In addition,
As shown in Fig. 4, the contact area to the wet rocky area is 12.7c.
m. The evaluation was performed using an index when the frictional resistance of the outsole of Comparative Example 1 was set to 100.

【0031】モニターテストは10人のテスターが実際
に各実施例及び比較例のトレッキングシューズを履いて
濡れた岩場をトレッキングし、グリップ性を最重要項目
にして使用感を5点法で官能評価した。
In the monitor test, ten testers actually trekked on a wet rocky place using the trekking shoes of each of the examples and comparative examples, and made the grip performance the most important item, and evaluated the feeling of use by a 5-point method. .

【0032】実施例1、2及び3のアウトソールは、損
失係数(tanδ)が0.40以上、複素弾性率
(E)が260以上を示し、グリップ指数が145以
上で、使用感の評価点も4.3以上となり、濡れた岩場
で優れた防滑性を有すると共に良好な履き心地が得られ
るものであった。
The outsoles of Examples 1, 2, and 3 have a loss factor (tan δ) of 0.40 or more, a complex elastic modulus (E * ) of 260 or more, a grip index of 145 or more, and evaluation of feeling of use. The number of points was 4.3 or more, indicating that the rubber composition had excellent anti-slip properties on a wet rocky place and good comfort was obtained.

【0033】一方、比較例1、2及び3のアウトソール
は、損失係数(tanδ)が0.25以下、複素弾性率
(E)が152以下を示し、グリップ指数が100以
下で、使用感の評価点も3.0以下であり、濡れた岩場
で良好な防滑性を有ることはできなかった。
On the other hand, the outsoles of Comparative Examples 1, 2, and 3 exhibited a loss coefficient (tan δ) of 0.25 or less, a complex elastic modulus (E * ) of 152 or less, a grip index of 100 or less, and a feeling of use. Was also 3.0 or less, and it was not possible to have good slip resistance on a wet rocky site.

【0034】[0034]

【発明の効果】以上の説明より明らかなように、本発明
の靴のアウトソールによれば、ガラス転移温度(Tg)
が−33℃以上、−10℃以下のスチレンブタジエンゴ
ムを70〜100重量%含む基材ゴムが用いられること
により、動歪2.0%における温度−10℃の損失係数
(tanδ)及び複素弾性率(E)が従来よりも大き
くなって足場に対して極めて高いグリップ力を得ること
ができ、その結果、凹凸が激しい足場で、該足場が濡れ
た状態で使用した場合にも、高いグリップ力により滑る
ことがなく、良好な防滑性を得ることができる。よっ
て、例えば、岩場を歩行するトレッキングシューズのア
ウトソールとして好適である。
As is apparent from the above description, the outsole of the shoe of the present invention has a glass transition temperature (Tg).
Using a base rubber containing 70 to 100% by weight of styrene butadiene rubber having a temperature of −33 ° C. or higher and −10 ° C. or lower, a loss coefficient (tan δ) at a temperature of −10 ° C. at a dynamic strain of 2.0% and a complex elasticity Since the rate (E * ) is larger than before, it is possible to obtain a very high gripping force on the scaffold. As a result, even when the scaffold is used in a wet condition with a highly uneven surface, Good slip resistance can be obtained without slipping due to force. Therefore, for example, it is suitable as an outsole of trekking shoes walking on a rocky place.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例によるアウトソールの底面図
である。
FIG. 1 is a bottom view of an outsole according to an embodiment of the present invention.

【図2】 本発明の実施例によるアウトソールの側面図
である。
FIG. 2 is a side view of an outsole according to an embodiment of the present invention.

【図3】 ポータブルスキッドレジスタンステスターの
斜視図である。
FIG. 3 is a perspective view of a portable skid resistance tester.

【図4】 図3のポータブルスキッドレジスタンステス
ターを用いた摩擦抵抗測定時の測定条件を示す概略図で
ある。
FIG. 4 is a schematic diagram showing measurement conditions when measuring frictional resistance using the portable skid resistance tester of FIG. 3;

【図5】 加硫ゴム組成物からなるアウトソールの周波
数10Hzでの動的粘弾性の歪み分散の動歪2.0%に
おける温度−10℃の損失係数(tanδ)及び複素弾
性率(E)と防滑性の関係を示した図である。
FIG. 5 shows a loss coefficient (tan δ) at a temperature of −10 ° C. and a complex elastic modulus (E * ) at a dynamic strain of 2.0% of a dynamic viscoelastic strain dispersion at a frequency of 10 Hz of an outsole made of a vulcanized rubber composition . FIG. 4 is a diagram showing the relationship between the non-slip property and the non-slip property.

【図6】 加硫ゴム組成物の温度と損失係数(tan
δ)の関係を示した図である。
FIG. 6 shows the temperature and loss factor (tan) of the vulcanized rubber composition.
FIG. 6 is a diagram showing the relationship of δ).

【符号の説明】[Explanation of symbols]

1 溝 2 ブロック部 51 第1ソール部 52 第2ソール部 53 土踏まず部 100 アウトソール DESCRIPTION OF SYMBOLS 1 Groove 2 Block part 51 1st sole part 52 2nd sole part 53 Arch part 100 Outsole

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A43B 13/00 - 13/42 C08J 3/24 C08J 5/00 C08L 9/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) A43B 13/00-13/42 C08J 3/24 C08J 5/00 C08L 9/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ゴム組成物の加硫成形体からなる靴のア
ウトソールであって、このゴム組成物の基材ゴムがスチ
レンブタジエンゴムを70〜100重量%含み、該スチ
レンブタジエンゴムは、ガラス転移温度(Tg)が−3
3℃以上、−10℃以下で、周波数10Hzでの動的粘
弾性の歪み分散において、動歪2.0%における温度−
10℃の損失係数(tanδ)が、0.26より大き
く、1.5以下であり、かつ、同条件での複素弾性率
(E )が150kgf/cm 2 より大きく、750k
gf/cm 2 以下であることを特徴とする靴のアウトソ
ール。
1. A outsole of a shoe comprising a vulcanized molded article of a rubber composition, the base rubber of the rubber composition Steel
70 to 100% by weight of lenbutadiene rubber,
Lenbutadiene rubber has a glass transition temperature (Tg) of -3.
3 ° C or higher, -10 ° C or lower, dynamic viscosity at a frequency of 10 Hz
In elastic strain dispersion, the temperature at dynamic strain 2.0%-
The loss factor (tan δ) at 10 ° C. is greater than 0.26
And 1.5 or less, and the complex modulus under the same conditions
(E * ) is larger than 150 kgf / cm 2 and 750 k
gsf / cm 2 or less .
【請求項2】 上記スチレンブタジエンゴムの結合スチ
レン量が15〜25重量%であり、かつ、結合ビニル量
が35〜70重量%である請求項1に記載の靴のアウト
ソール。
2. The outsole of a shoe according to claim 1, wherein the styrene-butadiene rubber has a bound styrene content of 15 to 25% by weight and a bound vinyl content of 35 to 70% by weight.
JP11249613A 1998-10-21 1999-09-03 Shoe outsole Expired - Fee Related JP3100592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11249613A JP3100592B2 (en) 1998-10-21 1999-09-03 Shoe outsole

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30022698 1998-10-21
JP10-300226 1998-10-21
JP11249613A JP3100592B2 (en) 1998-10-21 1999-09-03 Shoe outsole

Publications (2)

Publication Number Publication Date
JP2000189207A JP2000189207A (en) 2000-07-11
JP3100592B2 true JP3100592B2 (en) 2000-10-16

Family

ID=26539391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11249613A Expired - Fee Related JP3100592B2 (en) 1998-10-21 1999-09-03 Shoe outsole

Country Status (1)

Country Link
JP (1) JP3100592B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279822B1 (en) * 2017-04-19 2018-02-14 株式会社アシックス Outsole and shoes
EP3841904A1 (en) 2019-12-23 2021-06-30 ASICS Corporation Shoe-sole rubber composition and shoe

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038694A (en) * 2001-08-02 2003-02-12 Sumitomo Rubber Ind Ltd Grip for golf club and golf club
JP3969358B2 (en) * 2003-07-24 2007-09-05 株式会社ジャパーナ Shoe sole
KR101110165B1 (en) 2010-04-12 2012-01-31 한국신발피혁연구소 Micro-eisen shape non-slip pad for shoes outsole and The manufacture method thereof
JP2016189969A (en) * 2015-03-31 2016-11-10 日本ゼオン株式会社 Rubber composition for sole
KR101917736B1 (en) * 2017-03-31 2018-11-12 화인케미칼 주식회사 Rubber composition for shoe sole and molded article comprising the same
CN108652119A (en) * 2018-07-14 2018-10-16 泉州华景进出口贸易有限公司 One kind is driven shoes and preparation method thereof
EP4059372B1 (en) * 2019-12-27 2023-12-20 ASICS Corporation Shoe member and shoe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279822B1 (en) * 2017-04-19 2018-02-14 株式会社アシックス Outsole and shoes
WO2018193555A1 (en) 2017-04-19 2018-10-25 株式会社アシックス Outsole and shoes
EP3412163A4 (en) * 2017-04-19 2018-12-12 ASICS Corporation Outsole and shoes
US10952494B2 (en) 2017-04-19 2021-03-23 Asics Corporation Outsole and shoe
EP3841904A1 (en) 2019-12-23 2021-06-30 ASICS Corporation Shoe-sole rubber composition and shoe

Also Published As

Publication number Publication date
JP2000189207A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
EP2862464B1 (en) Slip-resistant shoe sole
US6335392B1 (en) Outsole of shoes
US6793996B1 (en) Shoes
US6266897B1 (en) Ground-contacting systems having 3D deformation elements for use in footwear
JP3100592B2 (en) Shoe outsole
JP3405719B2 (en) Outsole and shoes provided with the same
WO2019203284A1 (en) Rubber composition for prosthetic leg sole, and prosthetic leg sole
JP2957480B2 (en) Shoe outsole
JP2000041704A (en) Outsole for footgear
JP3338350B2 (en) Outsole for footwear
JP2014218554A (en) Rubber composition and shoe sole and shoe using the same
JP3478373B2 (en) shoes
JPH09322806A (en) Outsole of shoes
JP2002355103A (en) Outsole and shoes provided with the same
JP2915349B2 (en) Shoe outsole
JP2006175141A (en) Outsole and shoes having thereof
JP2627245B2 (en) Anti-slip soles
JP3262661B2 (en) shoes
JP2002300902A (en) Outsole and shoes provided with the same
JP2003033202A (en) Outsole and shoe equipped therewith
JP7407301B2 (en) Anti-slip members for fitted items or sports equipment, fitted items and sporting goods
JP2002017403A (en) Outsole and shoes therewith
JP2003204805A (en) Outer sole and golf shoes
JP3009955U (en) Top lift with abrasion resistance and slip resistance
JPH09322807A (en) Outsole of shoes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000725

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees