JP3099175B2 - Film formation method by electrolysis - Google Patents

Film formation method by electrolysis

Info

Publication number
JP3099175B2
JP3099175B2 JP07124803A JP12480395A JP3099175B2 JP 3099175 B2 JP3099175 B2 JP 3099175B2 JP 07124803 A JP07124803 A JP 07124803A JP 12480395 A JP12480395 A JP 12480395A JP 3099175 B2 JP3099175 B2 JP 3099175B2
Authority
JP
Japan
Prior art keywords
ehigh
film
electrolysis
pulse
elow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07124803A
Other languages
Japanese (ja)
Other versions
JPH08319597A (en
Inventor
俊一 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP07124803A priority Critical patent/JP3099175B2/en
Publication of JPH08319597A publication Critical patent/JPH08319597A/en
Application granted granted Critical
Publication of JP3099175B2 publication Critical patent/JP3099175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、電解による成膜方法
に関し、さらに詳しくは、ニッケル,鉄,コバルトなど
の電荷移動律速元素の薄膜を製造することが出来る電解
による成膜方法に関する。特に、ICリードフレーム、
磁気ヘッド、コイルのコアなどの製造に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming method by electrolysis, and more particularly, to a film forming method by electrolysis capable of producing a thin film of a charge transfer controlling element such as nickel, iron and cobalt. In particular, IC lead frames,
It is useful for manufacturing magnetic heads, coil cores, and the like.

【0002】[0002]

【従来の技術】電解による成膜方法は、スパッタリング
などの他の成膜方法に較べて製造コストが各段に安価に
なる点で優れている。電解による成膜方法としては、直
流電解法とパルス電解法とがある。パルス電解法では、
電流中断時に電極表面へのイオンの補給が行われ、拡散
層が減少し、樹枝状結晶成長や粉末状電着の発生原因と
なる球状拡散が抑制され、平滑な電析膜を得ることが出
来る。しかし、従来のパルス電解法は、錫,銀,カドミ
ウムなどの拡散律速元素の成膜に用いられているが、ニ
ッケル,鉄,コバルトなどの電荷移動律速元素の成膜に
は実用的には用いられていない。この理由は、電荷移動
律速元素では、拡散律速元素のように拡散層が厚くな
く、拡散過電圧が大きくないため、パルス電解法の作用
が有効に働かないからである。
2. Description of the Related Art A film forming method by electrolysis is superior to other film forming methods such as sputtering in that the manufacturing cost becomes much lower. As a film formation method by electrolysis, there are a direct current electrolysis method and a pulse electrolysis method. In the pulse electrolysis method,
When current is interrupted, ions are replenished to the electrode surface, the diffusion layer is reduced, and spherical diffusion that causes dendritic crystal growth and powdery electrodeposition is suppressed, and a smooth electrodeposited film can be obtained. . However, the conventional pulse electrolysis method is used for forming a diffusion controlling element such as tin, silver, and cadmium, but is practically used for forming a charge transfer controlling element such as nickel, iron, and cobalt. Not been. The reason for this is that, in the case of the charge transfer rate controlling element, the diffusion layer is not thick and the diffusion overvoltage is not large unlike the diffusion rate controlling element, so that the function of the pulse electrolysis method does not work effectively.

【0003】[0003]

【発明が解決しようとする課題】上記の理由から、ニッ
ケル,鉄,コバルトなどの電荷移動律速元素の成膜に
は、従来、直流電解法が用いられている。しかし、直流
電解法により成膜すると、膜面上に水素痕が多数発生
し、平滑性が損なわれる問題点がある。そこで、この発
明の目的は、電荷移動律速元素の平滑性に優れた薄膜を
製造することができる電解による成膜方法を提供するこ
とにある。
For the above reasons, DC electrolysis has been conventionally used for depositing charge transfer controlling elements such as nickel, iron and cobalt. However, when a film is formed by a direct current electrolysis method, a large number of hydrogen traces are generated on the film surface, and there is a problem that smoothness is impaired. Therefore, an object of the present invention is to provide a film forming method by electrolysis that can produce a thin film having excellent smoothness of a charge transfer rate-controlling element.

【0004】[0004]

【課題を解決するための手段】第1の観点では、この発
明は、電析反応での電荷移動過程が律速反応となる元素
の膜を電解により得る成膜方法において、前記元素およ
び水素の結晶核の両方が発生するパルス電位Ehighと前
記元素の結晶核が発生せず且つ水素の結晶核のみが発生
するパルス電位Elowとを短時間ずつ交互に印加し、水
素痕のない電析膜を生成することを特徴とする電解によ
る成膜方法を提供する。
In Means for Solving the Problems A first aspect, the present invention is a film forming method charge transfer process in the electrodeposition reaction is obtained by electrolysis membrane element comprising a rate-limiting reaction, Oyo said element
Potential and the pulse potential at which both crystal nuclei of hydrogen and hydrogen are generated
No crystal nuclei of the above elements and only hydrogen nuclei
And a pulse potential Elow to be applied alternately for a short time.
Provided is a method for forming a film by electrolysis, characterized in that an electrodeposited film without traces is generated .

【0005】第2の観点では、この発明は、上記構成の
電解による成膜方法において、パルス電位をEhigh,E
lowとし、パルス電位Ehighの印加時間をThigh,パル
ス電位Elowの印加時間をTlowとしたとき、Ehigh≒
−2500mV、Ehigh−Elow≦−1000mVとす
ると共に、Thigh>10μs、Tlow>0とすることを
特徴とする電解による成膜方法を提供する。
According to a second aspect, the present invention provides a method for forming a film by electrolysis having the above-described structure, wherein the pulse potential is set to Ehigh, Ehigh.
low, the application time of the pulse potential Ehigh is Thigh, and the application time of the pulse potential Elow is Tlow.
-2500 mV, Ehigh-Elow ≦ -1000 mV, Thigh> 10 μs, and Tlow> 0 are provided.

【0006】第3の観点では、この発明は、上記構成の
電解による成膜方法において、パルス電位をEhigh,E
lowとし、パルス電位Ehighの印加時間をThigh,パル
ス電位Elowの印加時間をTlowとしたとき、Ehigh≒
−2500mV、Ehigh−Elow≦−1000mVとす
ると共に、Tlow/Thigh<10、Tlow>0とするこ
とを特徴とする電解による成膜方法を提供する。
In a third aspect, the present invention provides a method for forming a film by electrolysis having the above-described structure, wherein the pulse potential is set to Ehigh, Ehigh.
low, the application time of the pulse potential Ehigh is Thigh, and the application time of the pulse potential Elow is Tlow.
-2500 mV, Ehigh-Elow ≦ -1000 mV, and Tlow / Thigh <10, Tlow> 0 are provided.

【0007】第4の観点では、この発明は、上記構成の
電解による成膜方法において、パルス電位をEhigh,E
lowとし、Ehigh≒−2500mV、Ehigh−Elow≦
−1000mVとすると共に、膜厚を75nm未満とす
ることを特徴とする電解による成膜方法を提供する。
According to a fourth aspect, the present invention is directed to a method for forming a film by electrolysis having the above-described structure, wherein the pulse potential is set to Ehigh, Ehigh.
low, Ehigh ≒ -2500mV, Ehigh-Elow ≦
A film forming method by electrolysis, characterized in that the film thickness is set to −1000 mV and the film thickness is set to less than 75 nm.

【0008】第5の観点では、この発明は、上記構成の
電解による成膜方法において、パルス電位をEhigh,E
lowとし、Ehigh≒−2500mV、Ehigh−Elow≦
−1000mVとすると共に、前記元素の電解液中の濃
度を0.05mol/Lより大とすることを特徴とする
電解による成膜方法を提供する。
According to a fifth aspect, the present invention provides a method for forming a film by electrolysis having the above-described structure, wherein the pulse potential is set to Ehigh, Ehigh.
low, Ehigh ≒ -2500mV, Ehigh-Elow ≦
The present invention provides a film formation method by electrolysis, wherein the concentration is set to -1000 mV and the concentration of the element in the electrolytic solution is more than 0.05 mol / L.

【0009】第6の観点では、この発明は、上記構成の
電解による成膜方法において、パルス電位をEhigh,E
lowとし、パルス電位Ehighの印加時間をThigh,パル
ス電位Elowの印加時間をTlowとしたとき、Thigh>
10μs、Tlow>0とすると共に、前記元素の電解液
中の濃度を0.05mol/Lより大とすることを特徴
とする電解による成膜方法を提供する。
In a sixth aspect, the present invention provides a method for forming a film by electrolysis having the above-described structure, wherein the pulse potential is set to Ehigh, Ehigh.
low, the application time of the pulse potential Ehigh is Thigh, and the application time of the pulse potential Elow is Tlow, Thigh>
A film forming method by electrolysis is provided, wherein 10 μs, Tlow> 0, and the concentration of the element in the electrolytic solution is greater than 0.05 mol / L.

【0010】第7の観点では、この発明は、上記構成の
電解による成膜方法において、パルス電位をEhigh,E
lowとし、パルス電位Ehighの印加時間をThigh,パル
ス電位Elowの印加時間をTlowとしたとき、Thigh>
10μs、Tlow>0とすると共に、Tlow/Thigh<
10とすることを特徴とする電解による成膜方法を提供
する。
According to a seventh aspect of the present invention, there is provided a film forming method by electrolysis having the above-described structure, wherein the pulse potential is set to Ehigh, Ehigh.
low, the application time of the pulse potential Ehigh is Thigh, and the application time of the pulse potential Elow is Tlow, Thigh>
10 μs, Tlow> 0, and Tlow / Thigh <
The present invention provides a film formation method by electrolysis, characterized in that the method is set to 10.

【0011】第8の観点では、この発明は、上記構成の
電解による成膜方法において、パルス電位をEhigh,E
lowとし、パルス電位Ehighの印加時間をThigh,パル
ス電位Elowの印加時間をTlowとし、Tlow/Thigh
=rとしたとき、Ehigh≒−2500mV、Ehigh−E
low≦−1000mVとすると共に、Thigh/r>1
0、Tlow>0とすることを特徴とする電解による成膜
方法を提供する。
According to an eighth aspect, the present invention provides a method for forming a film by electrolysis having the above-described structure, wherein the pulse potential is set to Ehigh, Ehigh.
low, the application time of the pulse potential Ehigh is Thigh, the application time of the pulse potential Elow is Tlow, and Tlow / Thigh
= R, Ehigh ≒ -2500 mV, Ehigh-E
low ≦ −1000 mV and Thigh / r> 1
0, Tlow> 0 is provided.

【0012】[0012]

【作用】この発明の発明者は、鋭意研究の結果、電荷移
動律速元素と水素との結晶核が発生する電位に差がある
ことに着目し、この発明を完成した。すなわち、この発
明の電解による成膜方法では、前記元素および水素の結
晶核の両方が発生するパルス電位Ehighと前記元素の結
晶核が発生せず且つ水素の結晶核のみが発生するパルス
電位Elowとを短時間ずつ交互に印加する。上述のよう
に、電荷移動律速元素に対しては、上記パルス電解法の
作用は得られない。ところが、図1に示すように、パル
ス電位をEhigh,Elowとするとき、Ehigh,Elowを
電位規制し、パルス電位Ehighでは電荷移動律速元素お
よび水素の結晶核が発生し、パルス電位Elowでは水素
の結晶核のみが発生するようにすると、パルス電位Ehi
ghの印加時間Thighでは、図2に示すように、カソード
電極1の表面には、電荷移動律速元素2および微細な気
泡3aの水素3が同時に析出する。次に、パルス電位
lowの印加時間Tlowでは、図3に示すように、カソー
ド電極1の表面には、比較的大きな気泡3bの水素3の
みが発生する。このとき、先に析出していた微細な気泡
3aが比較的大きな気泡3bに吸着し、大きな気泡に成
長する。これにより、大きくなった気泡3bがカソード
電極1の表面から浮力により離脱する。そこで、次のパ
ルス電位Ehighの印加時間では、前記水素の気泡3a,
3bが離脱したカソード電極1の表面に、前記電荷移動
律速元素2が析出できる。この結果、カソード電極1の
表面に水素痕の少ない平滑な電析膜を電析することが出
来るようになる。
The inventor of the present invention has completed the present invention by focusing on the fact that there is a difference between potentials at which crystal nuclei of a charge transfer controlling element and hydrogen are generated as a result of intensive studies. That is, in the film forming method by electrolytic of the present invention, formation of the element and hydrogen
The pulse potential Ehigh at which both crystal nuclei are generated and the connection of the above elements
A pulse in which no nuclei are generated and only hydrogen nuclei are generated
The potential Elow and the potential Elow are alternately applied at short intervals . As described above, the action of the above-described pulse electrolysis method cannot be obtained for the charge transfer rate-limiting element. However, as shown in FIG. 1, when the pulse potential EHIGH, and Elow, EHIGH, were potential regulating Elow, pulsed potential EHIGH the charge transfer rate-determining element and hydrogen crystal nuclei are generated, the hydrogen in the pulse potential Elow If you like only crystal nuclei occurs, the pulse potential Ehi
At the application time Thigh of gh, as shown in FIG. 2, on the surface of the cathode electrode 1, the charge transfer rate-limiting element 2 and the hydrogen 3 of the fine bubbles 3a are simultaneously precipitated. Next, the pulse potential E
In the low application time Tlow, as shown in FIG. 3, only the hydrogen 3 of the relatively large bubbles 3b is generated on the surface of the cathode electrode 1. At this time, the fine bubbles 3a previously deposited are adsorbed by the relatively large bubbles 3b and grow into large bubbles. As a result, the enlarged bubbles 3b are separated from the surface of the cathode electrode 1 by buoyancy. Therefore, the next
During the application time of the loos potential Ehigh, the hydrogen bubbles 3a,
The charge transfer is carried out on the surface of the cathode electrode 1 from which the 3b has been separated.
The rate-limiting element 2 can be deposited. As a result, it becomes possible to deposit a smooth electrodeposited film with few hydrogen traces on the surface of the cathode electrode 1.

【0013】[0013]

【実施例】以下、図に示す実施例によりこの発明をさら
に詳細に説明する。なお、これによりこの発明が限定さ
れるものではない。図4は、定電位パルス電解システム
100の構成図である。この定電位パルス電解システム
100は、電解液10を入れた容器101と、容器10
1内に配置されたAu製のカソード電極1と、カソード
電極1の対極となるPt製のアノード電極102と、参
照電極(飽和甘コウ電極:SEC)103と、カソード
電極1の電析膜の膜厚を測定するQCM104(水晶振
動子マイクロバランス装置:MAXTEX Inc;PM740)と、Q
CM104に接続された制御部105と、制御部105
に接続されたプリンタ106と、パルスを発生するパル
スジェネレータ107(北斗電工製:HB-211)と、カソ
ード電流−電位曲線を設定するファンクションジェネレ
ータ108と、このパルス時間(Thigh,Tlow)に基
づきパルス電位(Ehigh,Elow)を設定するポテンシ
オスタット109(北斗電工製:HA-305)と、このポテ
ンシオスタット109に接続された記録部110と、電
解時の波形をモニタする電流プローブ111(SONY/TEK
TRONIX製:TM501,AM503)およびオシロスコープ112
(HEWLETT PACKARD製:54503A)と、このオシロスコー
プ112に接続されたプロッタ113とから構成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the embodiments shown in the drawings. It should be noted that the present invention is not limited by this. FIG. 4 is a configuration diagram of the constant potential pulse electrolysis system 100. The constant potential pulse electrolysis system 100 includes a container 101 containing an electrolytic solution 10 and a container 10.
1, a cathode electrode 1 made of Au, an anode electrode 102 made of Pt, which is a counter electrode of the cathode electrode 1, a reference electrode (saturated sweet pepper electrode: SEC) 103, and an electrodeposited film of the cathode electrode 1. QCM104 (quartz crystal microbalance device: MAXTEX Inc; PM740) for measuring film thickness
A control unit 105 connected to the CM 104;
, A pulse generator 107 (Hokuto Denko: HB-211) for generating a pulse, a function generator 108 for setting a cathode current-potential curve, and a pulse based on the pulse time (Thigh, Tlow) A potentiostat 109 (HA-305 manufactured by Hokuto Denko) for setting potentials (Ehigh, Elow), a recording unit 110 connected to the potentiostat 109, and a current probe 111 (SONY for monitoring the waveform during electrolysis) / TEK
TRONIX TM501, AM503) and oscilloscope 112
(Made by HEWLETT PACKARD: 54503A) and a plotter 113 connected to the oscilloscope 112.

【0014】[実験条件と実験結果] [実験1]前記パルス電位Elowを変化させて、電析膜
表面を観測した。 [実験条件]前記電解液10には、電荷移動律速元素で
あるNiを含むNiSO4・6H2O(0.1mol/
L)H3BO3(0.5mol/L)電解液を使用した。
この電解液10の水素イオン濃度はpH4であり、温度
は25℃である。前記水素イオン濃度は硫酸により調整
した。なお、Lは1000cm3 を表わす。パルス電位
Ehighは−2500mVとした。これは通常の定電位メ
ッキでは、電位が−2500mVのときに比較的平滑な
電析膜が得られるためである(−2500mV以下にし
ても変化が少ない)。また、印加時間Thighは100μ
sとし、パルス電位印加時間比r(=Tlow/Thigh)
=1とした。電析は、前記QCM104でモニタしつつ
電析膜の膜厚が50nmになるまで行なった。電析後の
電析膜表面は、走査型電子顕微鏡(SEM:日本電子株
式会社,JSM-T100)により観察した。 [実験結果]図5は、パルス電位Elowを変化させた場
合の電析膜の表面状態の変遷を示すSEM写真である。
図5の(a)〜(c)に示す場合は、電析膜の表面の水
素痕の残存量が減少している。図5の(d)は、比較の
ための直流電解法の結果である。電析膜の表面に水素痕
が表れている。
[Experimental Conditions and Results] [Experiment 1] The surface of the deposited film was observed by changing the pulse potential Elow. [Experiment conditions] The electrolytic solution 10 contained NiSO 4 .6H 2 O (0.1 mol /
L) were used H 3 BO 3 (0.5mol / L ) electrolyte.
The hydrogen ion concentration of this electrolytic solution 10 is pH 4 and the temperature is 25 ° C. The hydrogen ion concentration was adjusted with sulfuric acid. Here, L represents 1000 cm 3 . The pulse potential Ehigh was -2500 mV. This is because in normal constant potential plating, a relatively smooth electrodeposited film can be obtained when the potential is -2500 mV (there is little change even when the potential is -2500 mV or less). The application time Thigh is 100 μm.
s and pulse potential application time ratio r (= Tlow / Thigh)
= 1. The electrodeposition was performed until the film thickness of the electrodeposited film became 50 nm while monitoring with the QCM104. The surface of the deposited film after the deposition was observed with a scanning electron microscope (SEM: JEOL Ltd., JSM-T100). [Experimental Results] FIG. 5 is an SEM photograph showing the change of the surface state of the electrodeposited film when the pulse potential Elow was changed.
In the cases shown in FIGS. 5A to 5C, the remaining amount of hydrogen traces on the surface of the electrodeposited film is reduced. FIG. 5D shows the result of the DC electrolysis method for comparison. Hydrogen traces appear on the surface of the electrodeposited film.

【0015】[実験2] 前記印加時間Thigh=Tlow=Tを変化させて電析膜表
面を観測した。 [実験条件]印加時間Tを10μs,100μs,10
00μsとして測定した。前記電解液10は、上記同様
の電解液を使用した。パルス電位Ehighは−2500m
Vとした。パルス電位Elowは−1000mVとした。
電析は、前記QCM104でモニタしつつ電析膜の膜厚
が50nmになるまで行なった。電析後の電析膜表面
は、走査型電子顕微鏡(SEM:日本電子株式会社,JS
M-T100)により観察した。 [実験結果]図6は、印加時間Tを変化させた場合の電
析膜の表面状態の変遷を示すSEM写真である。図6の
(a)に示すように、印加時間T=10μsの場合に
は、細かい水素痕が存在している。これは、印加時間T
が短すぎて水素ガスの気泡が十分成長できないためと考
えられる。図6の(b)(c)に示すように、印加時間
T=100μs以上の場合には、電析膜の表面の水素痕
が減少している。
[Experiment 2] The surface of the deposited film was observed by changing the application time Thigh = Tlow = T. [Experiment conditions] The application time T was set to 10 μs, 100 μs, 10 μs.
It was measured as 00 μs. As the electrolytic solution 10, the same electrolytic solution as described above was used. Pulse potential Ehigh is -2500m
V. The pulse potential Elow was -1000 mV.
The electrodeposition was performed until the film thickness of the electrodeposited film became 50 nm while monitoring with the QCM104. The surface of the electrodeposited film after electrodeposition was measured with a scanning electron microscope (SEM: JEOL Ltd., JS
M-T100). [Experimental Results] FIG. 6 is an SEM photograph showing the change of the surface state of the electrodeposited film when the application time T was changed. As shown in FIG. 6A, when the application time T is 10 μs, fine hydrogen traces exist. This is due to the application time T
Is considered to be too short to allow hydrogen gas bubbles to grow sufficiently. As shown in FIGS. 6B and 6C, when the application time T is equal to or longer than 100 μs, hydrogen traces on the surface of the electrodeposited film are reduced.

【0016】[実験3]前記パルス電位印加時間比r
(=Tlow/Thigh)を変化させて、電析膜表面を観測
した。 [実験条件]パルス電位印加時間比rを0.1,1,1
0として測定した。電解液10は、実験2と同様の電解
液を使用した。また、実験2と同様、パルス電位Ehigh
は−2500mVとし、パルス電位Elow は−100
0mVとした。電析後の電析膜表面は、走査型電子顕微
鏡(SEM:日本電子株式会社,JSM-T100)により観察
した。 [実験結果]図7は、パルス電位印加時間比rを変化さ
せた場合の電析膜の表面状態の変遷を示すSEM写真で
ある。図7の(a)(b)に示す場合は、水素痕の少な
い平滑な電析膜が得られている。図7の(c)に示すよ
うに、パルス電位印加時間比r=10の場合には、電析
膜の表面に水素痕が残存している。
[Experiment 3] The pulse potential application time ratio r
(= Tlow / Thigh), the surface of the electrodeposited film was observed. [Experimental conditions] The pulse potential application time ratio r was 0.1, 1, 1
It was measured as 0. As the electrolytic solution 10, the same electrolytic solution as in Experiment 2 was used. Also, as in Experiment 2, the pulse potential Ehigh
Is −2500 mV, and the pulse potential Elow is −100.
0 mV. The surface of the deposited film after the deposition was observed with a scanning electron microscope (SEM: JEOL Ltd., JSM-T100). [Experimental Results] FIG. 7 is an SEM photograph showing a change in the surface state of the electrodeposited film when the pulse potential application time ratio r was changed. In the cases shown in FIGS. 7A and 7B, a smooth electrodeposited film with few hydrogen traces was obtained. As shown in FIG. 7C, when the pulse potential application time ratio r = 10, hydrogen traces remain on the surface of the electrodeposited film.

【0017】[実験4]電析膜の膜厚を変化させて、当
該電析膜表面を観測した。 [実験条件]電析膜の膜厚を10nm,25nm,50
nm,75nm,100nmとして測定した。電解液1
0は、実験2と同様の電解液を使用した。また、実験2
と同様、パルス電位Ehighは−2500mVとし、パル
ス電位Elow は−1000mVとした。また、印加時
間Thighは100μsとし、パルス電位印加時間比r=
1とした。電析後の電析膜表面は、走査型電子顕微鏡
(SEM:日本電子株式会社,JSM-T100)および走査型
トンネル顕微鏡(STM:Digital Instruments Nanosc
opeII)により観察した。 [実験結果]図8は、電析膜の膜厚を変化させた場合の
電析膜の表面状態の変遷を示すSEM写真である。図8
の(a)〜(c)に示す場合は、水素痕の少ない平滑な
電析膜が得られた。図8の(d)(e)に示すように、
膜厚が75nm以上の場合には、電析膜の表面に水素痕
が残存している。図9の(a)〜(d)は、図8の
(a)〜(d)に対応するSTM写真である。
[Experiment 4] The surface of the deposited film was observed while changing the thickness of the deposited film. [Experiment conditions] The thickness of the electrodeposited film was 10 nm, 25 nm, 50 nm.
nm, 75 nm, and 100 nm. Electrolyte 1
For 0, the same electrolytic solution as in Experiment 2 was used. Experiment 2
Similarly, the pulse potential Ehigh was -2500 mV, and the pulse potential Elow was -1000 mV. The application time Thigh is 100 μs, and the pulse potential application time ratio r =
It was set to 1. The surface of the deposited film after electrodeposition was measured by a scanning electron microscope (SEM: JEOL Ltd., JSM-T100) and a scanning tunneling microscope (STM: Digital Instruments Nanosc).
opeII). [Experimental Results] FIG. 8 is an SEM photograph showing the change of the surface state of the electrodeposited film when the thickness of the electrodeposited film was changed. FIG.
In the cases shown in (a) to (c), smooth electrodeposited films with few hydrogen traces were obtained. As shown in (d) and (e) of FIG.
When the film thickness is 75 nm or more, hydrogen marks remain on the surface of the electrodeposited film. (A) to (d) of FIG. 9 are STM photographs corresponding to (a) to (d) of FIG.

【0018】[実験5]電解液10の濃度を変化させ
て、当該電析膜表面を観測した。 [実験条件]電析液10の濃度を1mol/L,0.5
mol/L,0.1mol/L,0.05mol/L,
0.01mol/Lとして測定した。電解液10のその
他の条件は、実験2と同じとした。また、実験2と同
様、パルス電位Ehighは−2500mVとし、パルス電
位Elowは−1000mVとした。また、印加時間Thi
ghは100μsとし、パルス電位印加時間比r=1とし
た。電析後の電析膜表面は、走査型電子顕微鏡(SE
M:日本電子株式会社,JSM-T100)により観察した。 [実験結果]図10は、電析液10の濃度を変化させた
場合の電析膜の表面状態の変遷を示すSEM写真であ
る。図10の(a)〜(c)に示す場合は、水素痕の少
ない平滑な電析膜が得られた。図10の(d)(e)に
示すように、濃度が0.05mol/L以下の場合に
は、電析膜の表面に水素痕が残存した。
[Experiment 5] The surface of the electrodeposited film was observed by changing the concentration of the electrolyte 10. [Experiment conditions] The concentration of the electrodeposited solution 10 was 1 mol / L, 0.5
mol / L, 0.1 mol / L, 0.05 mol / L,
It was measured as 0.01 mol / L. Other conditions of the electrolytic solution 10 were the same as those in the experiment 2. Further, as in Experiment 2, the pulse potential Ehigh was set at -2500 mV, and the pulse potential Elow was set at -1000 mV. In addition, the application time Thi
gh was 100 μs, and the pulse potential application time ratio r was 1. The surface of the electrodeposited film after electrodeposition was scanned with a scanning electron microscope (SE
M: Observed by JEOL Ltd., JSM-T100). [Experimental Results] FIG. 10 is an SEM photograph showing the change in the surface state of the electrodeposited film when the concentration of the electrodeposited solution 10 was changed. In the cases shown in FIGS. 10A to 10C, a smooth electrodeposited film with few hydrogen traces was obtained. As shown in (d) and (e) of FIG. 10, when the concentration was 0.05 mol / L or less, hydrogen traces remained on the surface of the electrodeposited film.

【0019】以上の結果のデータ項目をまとめた。デー
タ項目の順は、データ識別子,Ni濃度(mol/
L),膜厚(nm),Ehigh(mV),Elow(m
V),Thigh(μs),Tlow(μs),r(=Tlow
/Thigh),Ehigh−Elow(mV),Thigh/r(μ
s)である。 [水素痕が少ないデータ] a,0.1,50,-2500,-500,100,100,1,-2000,100 b,0.1,50,-2500,-1000,100,100,1,-1500,100 c,0.1,50,-2500,-1500,100,100,1,-1000,100 d,0.1,50,-2500,-1000,1000,1000,1,-1500,1000 e,0.1,50,-2500,-1000,100,10,0.1,-1500,1000 f,0.1,10,-2500,-1000,100,100,1,-1500,100 g,0.1,25,-2500,-1000,100,100,1,-1500,100 h,0.5,50,-2500,-1000,100,100,1,-1500,100 i,1.0,50,-2500,-1000,100,100,1,-1500,100 [水素痕が多いデータ] j,0.1,50,-2500,-2500,100,100,1,0,100 k,0.1,50,-2500,-1000,10,10,1,-1500,10 l,0.1,50,-2500,-1000,100,1000,10,-1500,10 m,0.1,75,-2500,-1000,100,100,1,-1500,100 n,0.1,100,-2500,-1000,100,100,1,-1500,100 o,0.05,50,-2500,-1000,100,100,1,-1500,100 p,0.01,50,-2500,-1000,100,100,1,-1500,100 上記データa〜pを図11〜図17のグラフにプロット
した。
The data items resulting from the above are summarized. The order of the data items is the data identifier, Ni concentration (mol /
L), film thickness (nm), Ehigh (mV), Elow (m
V), Thigh (μs), Tlow (μs), r (= Tlow
/ Thigh), Ehigh-Elow (mV), Thigh / r (μ
s). [Data with few hydrogen traces] a, 0.1, 50, -2500, -500, 100, 100, 1, -2000, 100 b, 0.1, 50, -2500, -1000, 100, 100, 1, -1500, 100 c, 0.1,50, -2500, -1500,100,100,1, -1000,100d, 0.1,50, -2500, -1000,1000,1000,1, -1500,1000 e, 0.1,50 , -2500, -1000, 100, 10, 0.1, -1500, 1000 f, 0.1, 10, -2500, -1000, 100, 100, 1, -1500, 100 g, 0.1, 25, -2500, -1000 , 100,100,1, -1500,100h, 0.5,50, -2500, -1000,100,100,1, -1500,100i, 1.0,50, -2500, -1000,100,100,1 , -1500,100 [Data with many hydrogen traces] j, 0.1,50, -2500, -2500,100,100,1,0,100k, 0.1,50, -2500, -1000,10,10,1 , -1500,10 l, 0.1,50, -2500, -1000,100,1000,10, -1500,10 m, 0.1,75, -2500, -1000,100,100,1, -1500,100 n , 0.1,100, -2500, -1000,100,100,1, -1500,100 o, 0.05,50, -2500, -1000,100,100,1, -1500,100p, 0.01,5 0, -2500, -1000, 100, 100, 1, -1500, 100 The above data a to p were plotted on the graphs of FIGS.

【0020】図11から判るように、Ehigh≒−250
0mV、Ehigh−Elow≦−1000mVとすると共
に、Thigh>10μs、Tlow>0とするのが好まし
い。図12から判るように、Ehigh≒−2500mV、
Ehigh−Elow≦−1000mVとすると共に、Tlow
/Thigh<10、Tlow>0とすることが好ましい。図
13から判るように、Ehigh≒−2500mV、Ehigh
−Elow≦−1000mVとすると共に、膜厚を75n
m未満とするのが好ましい。図14から判るように、E
high≒−2500mV、Ehigh−Elow≦−1000m
Vとすると共に、前記元素の電解液中の濃度を0.05
mol/Lより大とすることが好ましい。図15から判
るように、Thigh>10μs、Tlow>0とすると共
に、前記元素の電解液中の濃度を0.05mol/Lよ
り大とするのが好ましい。図16から判るように、Thi
gh>10μs、Tlow>0とすると共に、Tlow/Thi
gh<10とするのが好ましい。図17から判るように、
Tlow/Thigh=rとしたとき、Ehigh≒−2500m
V、Ehigh−Elow≦−1000mVとすると共に、T
high/r>10、Tlow>0とするのが好ましい。
As can be seen from FIG. 11, Ehigh ≒ -250
0 mV, Ehigh−Elow ≦ −1000 mV, Thigh> 10 μs, and Tlow> 0 are preferable. As can be seen from FIG. 12, Ehigh ≒ -2500 mV,
Ehigh−Elow ≦ −1000 mV and Tlow
/ Thigh <10, Tlow> 0 is preferable. As can be seen from FIG. 13, Ehigh ≒ -2500 mV, Ehigh
−Elow ≦ −1000 mV and a film thickness of 75 n
It is preferably less than m. As can be seen from FIG.
high ≒ -2500mV, Ehigh-Elow ≦ -1000m
V and the concentration of the element in the electrolyte is 0.05
It is preferably larger than mol / L. As can be seen from FIG. 15, it is preferable that Thigh> 10 μs and Tlow> 0, and the concentration of the element in the electrolyte be greater than 0.05 mol / L. As can be seen from FIG.
gh> 10 μs, Tlow> 0, and Tlow / Thi
Preferably, gh <10. As can be seen from FIG.
When Tlow / Thigh = r, Ehigh ≒ -2500m
V, Ehigh−Elow ≦ −1000 mV, and T
It is preferable that high / r> 10 and Tlow> 0.

【0021】[0021]

【発明の効果】この発明の電解による成膜方法によれ
ば、ニッケル,鉄,コバルトなどの電荷移動律速元素の
薄膜を水素痕なく製造することが出来る。また、低濃度
溶液を使用することが出来るので、生産コストを低減で
きる。
According to the film formation method by electrolysis of the present invention, a thin film of a charge transfer rate-controlling element such as nickel, iron, and cobalt can be produced without a trace of hydrogen. Further, since a low-concentration solution can be used, production costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】パルス波形図である。FIG. 1 is a pulse waveform diagram.

【図2】Ehigh印加時間中のニッケルおよび水素の還元
状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a reduction state of nickel and hydrogen during an Ehigh application time.

【図3】Elow印加時間中の水素の還元状態を示す説明
図である。
FIG. 3 is an explanatory diagram showing a reduced state of hydrogen during an Elow application time.

【図4】この発明にかかる定電位パルス電解システムを
示す構成図である。
FIG. 4 is a configuration diagram showing a constant potential pulse electrolysis system according to the present invention.

【図5】パルス電圧Elowを変化させた場合の電析膜の
表面状態を示すSEM写真である。
FIG. 5 is an SEM photograph showing a surface state of an electrodeposited film when a pulse voltage Elow is changed.

【図6】印加時間Thighを変化させた場合の電析膜の表
面状態を示すSEM写真である。
FIG. 6 is an SEM photograph showing a surface state of an electrodeposited film when an application time Thigh is changed.

【図7】パルス電位印加時間比rを変化させた場合の電
析膜の表面状態を示すSEM写真である。
FIG. 7 is an SEM photograph showing a surface state of an electrodeposited film when a pulse potential application time ratio r is changed.

【図8】膜厚を変化させた場合の電析膜の表面状態を示
すSEM写真である。
FIG. 8 is an SEM photograph showing a surface state of an electrodeposited film when the film thickness is changed.

【図9】膜厚を変化させた場合の電析膜の表面状態の変
遷を示すSTM写真である。
FIG. 9 is an STM photograph showing changes in the surface state of the electrodeposited film when the film thickness is changed.

【図10】電析液の濃度を変化させた場合の電析膜の表
面状態の変遷を示すSEM写真である。
FIG. 10 is an SEM photograph showing a change in the surface state of the electrodeposited film when the concentration of the electrodeposited solution is changed.

【図11】(Ehigh−Elow)軸とThigh軸の座標上に
データをプロットしたグラフ図である。
FIG. 11 is a graph in which data is plotted on coordinates of an (Ehigh-Elow) axis and a Thigh axis.

【図12】(Ehigh−Elow)軸とr軸の座標上にデー
タをプロットしたグラフ図である。
FIG. 12 is a graph in which data is plotted on coordinates of an (Ehigh-Elow) axis and an r-axis.

【図13】(Ehigh−Elow)軸と膜厚軸の座標上にデ
ータをプロットしたグラフ図である。
FIG. 13 is a graph in which data is plotted on coordinates of an (Ehigh-Elow) axis and a film thickness axis.

【図14】(Ehigh−Elow)軸とNi濃度軸の座標上
にデータをプロットしたグラフ図である。
FIG. 14 is a graph in which data is plotted on coordinates of an (Ehigh-Elow) axis and a Ni concentration axis.

【図15】Thigh軸とNi濃度軸の座標上にデータをプ
ロットしたグラフ図である。
FIG. 15 is a graph in which data is plotted on coordinates of a Thigh axis and a Ni concentration axis.

【図16】Thigh軸とr軸の座標上にデータをプロット
したグラフ図である。
FIG. 16 is a graph in which data is plotted on the coordinates of the Thigh axis and the r axis.

【図17】(Ehigh−Elow)軸とThigh/r軸の座標
上にデータをプロットしたグラフ図である。
FIG. 17 is a graph in which data is plotted on coordinates of an (Ehigh-Elow) axis and a Thigh / r axis.

【符号の説明】[Explanation of symbols]

1 カソード電極 2 ニッケル 3 水素ガス 3a,3b 気泡 100 定電位パルス電解システム 10 電解液 101 容器 102 アノード電極 103 参照電極 104 QCM 105 制御部 106 プリンタ 107 パルス発生器 108 ファンクションジェネレータ 109 ポテンシオスタット 110 記録部 111 電流プローブ 112 オシロスコープ 113 プロッタ DESCRIPTION OF SYMBOLS 1 Cathode electrode 2 Nickel 3 Hydrogen gas 3a, 3b Bubble 100 Constant potential pulse electrolysis system 10 Electrolyte 101 Container 102 Anode electrode 103 Reference electrode 104 QCM 105 Control unit 106 Printer 107 Pulse generator 108 Function generator 109 Potentiostat 110 Recording unit 111 Current probe 112 Oscilloscope 113 Plotter

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25D 5/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C25D 5/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電析反応での電荷移動過程が律速反応と
なる元素の膜を電解により得る成膜方法において、前記元素および水素の結晶核の両方が発生するパルス電
位Ehighと前記元素の結晶核が発生せず且つ水素の結晶
核のみが発生するパルス電位Elowとを短時間ずつ交互
に印加し、水素痕のない電析膜を生成する ことを特徴と
する電解による成膜方法。
In a film forming method for obtaining, by electrolysis, a film of an element whose charge transfer process in the electrodeposition reaction is a rate-determining reaction, a pulse voltage generating both crystal nuclei of the element and hydrogen is provided.
No crystal nuclei of the element Ehigh and the above elements and hydrogen crystals
Alternating the pulse potential Elow that generates only nuclei for a short time
And forming an electrodeposited film having no hydrogen trace by electrolysis.
JP07124803A 1995-05-24 1995-05-24 Film formation method by electrolysis Expired - Fee Related JP3099175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07124803A JP3099175B2 (en) 1995-05-24 1995-05-24 Film formation method by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07124803A JP3099175B2 (en) 1995-05-24 1995-05-24 Film formation method by electrolysis

Publications (2)

Publication Number Publication Date
JPH08319597A JPH08319597A (en) 1996-12-03
JP3099175B2 true JP3099175B2 (en) 2000-10-16

Family

ID=14894521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07124803A Expired - Fee Related JP3099175B2 (en) 1995-05-24 1995-05-24 Film formation method by electrolysis

Country Status (1)

Country Link
JP (1) JP3099175B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY128333A (en) 1998-09-14 2007-01-31 Ibiden Co Ltd Printed wiring board and its manufacturing method
ES2172479B1 (en) * 2001-03-13 2003-12-16 Fundacion Cidetec METALS AND RECTIFIER ELECTRODEPOSITION PROCESS FOR THIS PROCESS.

Also Published As

Publication number Publication date
JPH08319597A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
Go´ mez et al. Electrodeposition of Co–Ni alloys
US6843902B1 (en) Methods for fabricating metal nanowires
JP4732668B2 (en) Method for producing cobalt iron molybdenum alloy and cobalt iron molybdenum alloy plated magnetic thin film
US4242710A (en) Thin film head having negative magnetostriction
Valizadeh et al. Template synthesis of Au/Co multilayered nanowires by electrochemical deposition
Andreasen et al. Kinetics of particle coarsening at gold electrode/electrolyte solution interfaces followed by in situ scanning tunneling microscopy
JPH08503522A (en) Nano crystalline metal
CN102965719A (en) Low-rate electrochemical etch of thin film metals and alloys
Dobrev et al. Electrochemical growth of copper single crystals in pores of polymer ion-track membranes
Bai et al. Iron–cobalt and iron–cobalt–nickel nanowires deposited by means of cyclic voltammetry and pulse-reverse electroplating
Gómez et al. Electrodeposition of Co+ Ni alloys on modified silicon substrates
Gomez et al. Characterisation of cobalt/copper multilayers obtained by electrodeposition
JP3099175B2 (en) Film formation method by electrolysis
JP4374439B2 (en) Metal nanotube manufacturing apparatus and metal nanotube manufacturing method
JP2003510465A (en) Electrodeposition method of metal multilayer
JP2006312785A (en) Electroplating method
Gelchinski et al. Pulse Plating of Chromium‐Cobalt Alloys Containing a Phase with the A‐15 Structure
Cerisier et al. Morphology of Nanometer‐Thick Electrolytic Copper Layers Investigated by Atomic Force Microscopy
KR100635300B1 (en) Method of preparing crystalline molybdenium-cobalt alloy thin film using electrodeposition
JPH02500069A (en) magnetic recording material
Jovićević et al. Electrodeposition of disperse non-dendritic zinc on foreign substrates
JPH0230790A (en) Method for electrodepositing alloy
Tabaković et al. Roughness development in electrodeposited soft magnetic CoNiFe films in the presence of organic additives
Popov et al. Definitions, Principles and Concepts
KR100635302B1 (en) Method of preparing nanocrystalline cobalt metal thin film using electrodeposition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees