JP3098654B2 - Surface treatment method and apparatus by electric discharge machining - Google Patents

Surface treatment method and apparatus by electric discharge machining

Info

Publication number
JP3098654B2
JP3098654B2 JP05089340A JP8934093A JP3098654B2 JP 3098654 B2 JP3098654 B2 JP 3098654B2 JP 05089340 A JP05089340 A JP 05089340A JP 8934093 A JP8934093 A JP 8934093A JP 3098654 B2 JP3098654 B2 JP 3098654B2
Authority
JP
Japan
Prior art keywords
machining
surface treatment
discharge
electric discharge
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05089340A
Other languages
Japanese (ja)
Other versions
JPH06280044A (en
Inventor
齋藤長男
毛利尚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP05089340A priority Critical patent/JP3098654B2/en
Publication of JPH06280044A publication Critical patent/JPH06280044A/en
Application granted granted Critical
Publication of JP3098654B2 publication Critical patent/JP3098654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、放電加工による表面処
理技術に関し、より詳しくは、放電による爆発圧力によ
って起こる堆積層の飛散を抑制して、平滑にして均一な
被覆層を形成する表面処理方法及び装置に関し、一次表
面処理として、或いは適当な一次表面処理後の二次表面
処理として、導電性材料(例、金属)等からなる被処理材
料の上に、耐摩耗性、耐食性或いは低い摩擦係数を与え
るための表面処理として適している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment technique by electric discharge machining, and more particularly, to a surface treatment for forming a smooth and uniform coating layer by suppressing scattering of a deposited layer caused by an explosion pressure due to electric discharge. Regarding the method and apparatus, as a primary surface treatment, or as a secondary surface treatment after an appropriate primary surface treatment, abrasion resistance, corrosion resistance or low friction on a material to be treated such as a conductive material (eg, metal). It is suitable as a surface treatment for giving a coefficient.

【0002】[0002]

【従来の技術】従来より、金属表面に耐摩耗性、耐食性
などを与えるための手段として、CVD(化学蒸着)、P
VD(真空蒸着)、電着、窒化、電気化学的めっき、無電
解めっき等が知られている。
2. Description of the Related Art Conventionally, as means for imparting abrasion resistance and corrosion resistance to metal surfaces, CVD (chemical vapor deposition), P
VD (vacuum deposition), electrodeposition, nitriding, electrochemical plating, electroless plating and the like are known.

【0003】しかし、CVD、PVDはいずれも、母材
の温度を360℃以上、1100℃程度まで上昇してコ
ーティングするため、母材が寸法変化又は硬度低下を生
じるという欠点があることは、広く知られている。硬化
層も数μmと薄い。また、窒化も、鋼材を500℃程度
にまで加熱して処理するという難点がある。
However, both CVD and PVD have the drawback that the base material has a drawback of causing a dimensional change or a decrease in hardness because the coating is performed by raising the temperature of the base material from 360 ° C. or higher to about 1100 ° C. Are known. The hardened layer is as thin as several μm. In addition, nitriding also has a disadvantage in that a steel material is heated to about 500 ° C. for treatment.

【0004】電着による表面は、母材に析出金属が単に
堆積若しくは析出するだけであり、拡散していないた
め、剥離し易いことは良く知られており、また水素脆性
を生ずるなどの欠点がある。電気化学的めっき、無電解
めっきの場合も同様である。
[0004] It is well known that the electrodeposited surface is easy to peel off because the deposited metal simply deposits or precipitates on the base material and is not diffused, and has the disadvantage that it causes hydrogen embrittlement. is there. The same applies to electrochemical plating and electroless plating.

【0005】溶射により母材表面に堆積させたものは、
多孔質で且つ剥離し易いことは既に知られている。ま
た、これをレーザー光で再溶融させようとしても、入熱
がスポットの位置により不均一となり、またビーム進行
の境界に条痕を発生するため、美麗な表面を得ることが
できない。また、レーザー光等では、三次元の加工形状
には、構造上、適用困難である。
[0005] What has been deposited on the base material surface by thermal spraying,
It is already known that it is porous and easy to peel off. Further, even if this is to be re-melted with a laser beam, the heat input becomes non-uniform depending on the position of the spot, and streaks are generated at the boundary of the beam progress, so that a beautiful surface cannot be obtained. Further, it is difficult to apply a laser beam or the like to a three-dimensional processed shape due to its structure.

【0006】また、従来の表面処理法では、母材への拡
散が殆ど生じないので、ファインセラミックスなどの拡
散しにくい材料を充分な厚さ(例、数10μm〜100μ
m)でコーティングすることは困難である。
In addition, in the conventional surface treatment method, since hardly any diffusion into the base material occurs, a material such as fine ceramics, which is difficult to diffuse, has a sufficient thickness (for example, several tens μm to 100 μm).
m) is difficult to coat.

【0007】[0007]

【発明が解決しようとする課題】一方、本発明者は、こ
れらの表面処理法とは異なり、母材の金属材料全体を高
温に保つことにより生ずる寸法変化、母材の硬度(強度)
の低下、皮膜剥離等の欠点がなく、しかも充分な厚みで
耐食性、耐熱性等々の所望の表面特性を有する強固な被
覆層を形成し得る表面処理方法を先に提案した(特願平
3−329499号)。これは、まず、金属母材表面に
放電析出、蒸着、溶射等の方法により金属、セラミック
ス等の被覆を形成(一次加工)した後、被覆しようとする
材料(例、WC、TiC、TiB2、TiN、VCなどの硬
質材料及びW、Ti、V、Moなどの金属)を圧粉体とし
て電極形状に成形したものを電極として、被表面処理材
料(例、炭素鋼など)の上にパルス放電加工(二次加工)に
よって移転堆積せしめる方法である。
On the other hand, the present inventors differ from these surface treatment methods in that the dimensional changes and the hardness (strength) of the base material caused by keeping the entire metal material of the base material at a high temperature.
A surface treatment method capable of forming a strong coating layer having desired surface characteristics such as corrosion resistance and heat resistance with a sufficient thickness without causing defects such as reduction in film thickness and film peeling has been previously proposed (Japanese Patent Application No. Hei. No. 329499). In this method, first, a coating of metal, ceramics, etc. is formed (primary processing) on the surface of a metal base material by a method such as discharge deposition, vapor deposition, thermal spraying, and then the material to be coated (eg, WC, TiC, TiB 2 , Pulse discharge on a material to be surface-treated (eg, carbon steel, etc.), using a compact made of a hard material such as TiN, VC, etc. and a metal such as W, Ti, V, Mo, etc. This is a method of transferring and depositing by processing (secondary processing).

【0008】上記提案の方法によれば、放電析出、蒸
着、溶射等によって母材表面をコーティング(一次加工)
した場合は、付着力が弱く、組成も緻密でないが、液中
又は気体中でパルス放電(二次加工)を行うことにより、
微視的に放電点に発生する高温高圧力によって放電点を
再溶融及び母材に対して拡散させるので、全体の平均温
度を母材の寸法変化や硬度変化を生じる温度まで高める
ことなく、強固な表面被覆を形成することができる。
According to the method proposed above, the base material surface is coated by discharge deposition, vapor deposition, thermal spraying, etc. (primary processing)
In the case where the adhesive force is weak, the composition is not dense, but by performing pulse discharge (secondary processing) in liquid or gas,
Since the discharge point is re-melted and diffused into the base material due to the high temperature and high pressure generated at the discharge point microscopically, the entire average temperature can be strengthened without increasing the average temperature to a temperature that causes dimensional change and hardness change of the base material. A suitable surface coating can be formed.

【0009】しかし、この方法は、数回の加工操作を繰
り返す必要があり、特に厚い表面被覆層を形成する際に
は極めて有効であるが、20〜50μm程度の厚みでよ
い場合には、1回の一次加工、二次加工のプロセスで表
面層の形成を完了するのが好ましい。このようなプロセ
スに対して、上記方法では、一次加工で堆積したものが
二次加工で飛散するため、加工層が一様な厚みに堆積し
ない場合がある。
However, this method requires several repetitions of the processing operation, and is extremely effective particularly when a thick surface coating layer is formed. It is preferable that the formation of the surface layer be completed by the primary processing and the secondary processing. In contrast to such a process, in the above-described method, since a layer deposited in the primary processing is scattered in the secondary processing, the processed layer may not be deposited to a uniform thickness.

【0010】本発明は、先の提案に係る表面処理技術を
改善して、50μm以下の如く薄い表面被覆層であって
も、平滑にして均一な被覆層を形成し得る放電加工によ
る表面処理技術を提供することを目的とするものであ
る。
The present invention is an improvement of the surface treatment technology according to the prior proposal, and is a surface treatment technology by electric discharge machining capable of forming a smooth and uniform coating layer even with a thin surface coating layer as thin as 50 μm or less. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】本発明者は、先の提案に
係る表面処理技術において一次加工で堆積したものが二
次加工で飛散する原因について検討した結果、二次加工
における放電発生直後の放電圧力が高すぎるために、飛
散力を大きくしていることが判明し、そして、放電圧力
を緩和し得る効果的な方法を見出し、ここに本発明を完
成したものである。
Means for Solving the Problems The present inventor has studied the cause of what is deposited in the primary processing and scatters in the secondary processing in the surface treatment technology according to the above-mentioned proposal, and as a result, immediately after the occurrence of electric discharge in the secondary processing. It has been found that the scattering pressure is increased because the discharge pressure is too high, and an effective method capable of relaxing the discharge pressure has been found, and the present invention has been completed here.

【0012】すなわち、本発明は、導電性又は非導電性
材料を被表面処理材料の表面にパルス放電加工により堆
積させる表面処理に際して、放電によって有毒ガスを生
成しない気体を加工液と共に加工極間に供給することに
より、放電による爆発圧力によって起こる堆積層の飛散
を抑制して平滑な且つ均一の表面被覆層を得ることを特
徴とする放電加工による表面処理方法を要旨としてい
る。
That is, according to the present invention, in a surface treatment for depositing a conductive or non-conductive material on a surface of a material to be treated by pulse discharge machining, a gas which does not generate a toxic gas by electric discharge is formed between the machining electrodes together with a machining fluid. The gist of the present invention is to provide a surface treatment method by electric discharge machining, characterized in that by supplying, a scatter of a deposited layer caused by an explosion pressure due to electric discharge is suppressed to obtain a smooth and uniform surface coating layer.

【0013】他の本発明は、導電性又は非導電性材料を
被表面処理材料の表面にパルス放電加工により堆積させ
る表面処理に際して、放電電流の立上りを抑制し得る電
流を流して放電痕の電流密度を小さくすることにより、
放電による爆発圧力によって起こる堆積層の飛散を抑制
して平滑な且つ均一の表面被覆層を得ることを特徴とす
る放電加工による表面処理方法を要旨としている。
Another object of the present invention is to provide a method for depositing a conductive or non-conductive material on a surface of a material to be treated by pulsed discharge machining, by supplying a current capable of suppressing the rise of a discharge current, thereby forming a discharge mark current. By reducing the density,
The gist of the present invention is a surface treatment method by electric discharge machining, characterized in that scattering of a deposited layer caused by explosion pressure due to electric discharge is suppressed to obtain a smooth and uniform surface coating layer.

【0014】更に、他の本発明は、導電性又は非導電性
材料を被表面処理材料の表面にパルス放電加工により堆
積させる表面処理装置において、放電によって有毒ガス
を生成しない気体を加工液と共に加工極間に供給する手
段を有していることを特徴とする放電加工による表面処
理装置を要旨としている。
Still another object of the present invention is to provide a surface treatment apparatus for depositing a conductive or non-conductive material on a surface of a material to be treated by pulse discharge machining, wherein a gas which does not generate a toxic gas by electric discharge is machined together with a machining fluid. A gist of the present invention is a surface treatment apparatus using electric discharge machining, which has a means for supplying a gap.

【0015】更に、他の本発明は、導電性又は非導電性
材料を被表面処理材料の表面にパルス放電加工により堆
積させる表面処理装置において、放電電流の立上りを抑
制し得る電流を流して放電爆発圧力を小さくする放電加
工回路を有することを特徴とする放電加工による表面処
理装置を要旨としている。
Still another object of the present invention is to provide a surface treatment apparatus for depositing a conductive or non-conductive material on a surface of a material to be treated by pulse electric discharge machining, by supplying a current capable of suppressing the rise of the discharge current. The gist of the present invention is a surface treatment apparatus by electric discharge machining, which has an electric discharge machining circuit for reducing the explosion pressure.

【0016】[0016]

【作用】以下に本発明について更に詳細に説明する。The present invention will be described below in more detail.

【0017】前述の如く、本発明の骨子は、要するに、
パルス放電加工に際し、放電極間に気体を混入するこ
とによって、放電圧力を緩和して飛散圧力を減少せしめ
る、或いは、放電回路に流れる絶縁破壊直後の電流の
立ち上がりを抑えて、電流が徐々に増加するように制御
することによって、飛散力を減少せしめる、というもの
である。勿論、とを併用できる。
As described above, the gist of the present invention is,
At the time of pulse electric discharge machining, gas is mixed between the discharge electrodes to reduce the discharge pressure and reduce the scattering pressure, or to suppress the rise of current immediately after dielectric breakdown in the discharge circuit and gradually increase the current. The control is to reduce the scattering force. Of course, and can be used together.

【0018】(1)放電極間への気体の混入 図1は放電極間に気体を混入する装置を備えたパルス放
電加工装置の一例を示している。図中、1は一次加工後
の堆積層(例、60〜80μm)、2は被表面処理材料、
3は放電加工用電極(例、銅)、4は放電加工パルス電
源、5は加工液、6は気体(例、Arガス)投入ボンベ、
7は減圧バルブ、8は気体拡散用ノズル、9はサーボ機
構を表わしている。
(1) Mixing of gas between discharge electrodes FIG. 1 shows an example of a pulse discharge machining apparatus provided with a device for mixing gas between discharge electrodes. In the figure, 1 is a deposited layer after primary processing (eg, 60 to 80 μm), 2 is a material to be treated,
3 is an electric discharge machining electrode (eg, copper), 4 is an electric discharge machining pulse power supply, 5 is a machining liquid, 6 is a gas (eg, Ar gas) charging cylinder,
Reference numeral 7 denotes a pressure reducing valve, 8 denotes a gas diffusion nozzle, and 9 denotes a servo mechanism.

【0019】適当な方法による一次加工によって形成し
た堆積層に対し、この放電加工装置を用い、アルゴンガ
スを加工液中に噴射して二次加工を行う。すなわち、ア
ルゴンガスが封入されたボンベ6より減圧バルブ7を通
してアルゴンガス拡散用ノズル8により、極間近くに供
給する。電極3は通常、サーボ機構により上下動しなが
ら(加工対向時は数秒〜10秒、各上下動時間:数秒)加
工をしているため、アルゴンガスは極間に拡散され、次
の放電は気泡を含んだ液中での加工となる。放電加工液
中に気体が混入され極間に供給されるが、これを効果的
ならしめるためには、電極を加工方向に近接及び離間さ
せて加工を行う場合に、極間が離れている時間内に加工
液が供給されるのが好ましい。
The secondary machining is performed on the deposited layer formed by the primary machining by an appropriate method by injecting argon gas into the machining fluid using this electric discharge machining apparatus. That is, the argon gas is supplied from the cylinder 6 filled with argon gas through the pressure reducing valve 7 to the vicinity of the gap by the argon gas diffusion nozzle 8. Since the electrode 3 is usually processed while moving up and down by the servo mechanism (several seconds to 10 seconds when facing the processing, each vertical movement time: several seconds), the argon gas is diffused between the electrodes, and the next discharge is caused by bubbles. It is processed in a liquid containing. Gas is mixed into the electric discharge machining liquid and supplied to the gap.To make this effective, when machining is performed by moving the electrode close to and away from the machining direction, the time between the poles is large. Preferably, a working fluid is supplied into the inside.

【0020】極間における気体混入加工液の作用は次の
とおりである。
The operation of the gas-mixed working fluid in the gap is as follows.

【0021】極間が近接すれば放電加工が始まるが、混
入気体が存在しているところは、絶縁耐力が液中より大
きいので、放電は起こらず、液体だけが存在している個
所で放電が発生する。その場合に3つの現象が生じる。
Electric discharge machining starts when the gaps are close to each other. However, where the mixed gas exists, since the dielectric strength is higher than in the liquid, no electric discharge occurs, and the electric discharge occurs in a place where only the liquid exists. Occur. In that case, three phenomena occur.

【0022】(イ)液体だけが存在している個所で起こっ
た放電は、周囲が気体で囲まれているため、気体のない
時に比べて緩和されて小さい圧力で行われる。そのた
め、加工速度は減少するが、被加工材料表面に堆積した
材料の飛散量は著しく小さくなる。 (ロ)極間の気体は移動するため、次に発生する放電点
は、別の箇所に発生し、結局、放電が局所に集中せず分
散するため、いわゆるアーク放電の発生がなくなる。す
なわち、平滑な加工面となる。 (ハ)この場合に、もしも、油性の放電加工液を用いて気
体を混入する場合、油の高温分解によって生じる活性の
高い炭素を生じる。そのため、混入する気体として酸
素、空気を使用すれば一酸化炭素(CO)を生じ、水素ガ
スを使用すれば炭水化物(CnHm)を生じる。したがっ
て、気体としては、Ar、He等の化学的に安定なガスを
使用するのが好ましい。勿論、窒素ガスや炭酸ガスも安
定に有効に使用できる。
(A) The discharge that has occurred in the place where only the liquid is present is performed at a lower pressure because the surroundings are surrounded by gas, and the discharge is alleviated as compared with when there is no gas. Therefore, although the processing speed is reduced, the amount of scattering of the material deposited on the surface of the material to be processed is significantly reduced. (B) Since the gas between the electrodes moves, the next discharge point is generated at another place. Eventually, the discharge is not concentrated locally but is dispersed, so that the so-called arc discharge is not generated. That is, the surface is smooth. (C) In this case, if a gas is mixed using an oil-based electric discharge machining liquid, highly active carbon generated by high-temperature decomposition of the oil is generated. Therefore, if oxygen and air are used as the mixed gas, carbon monoxide (CO) is generated, and if hydrogen gas is used, carbohydrate (CnHm) is generated. Therefore, it is preferable to use a chemically stable gas such as Ar or He as the gas. Of course, nitrogen gas and carbon dioxide gas can also be used stably and effectively.

【0023】(2)放電電力の立上りの抑制 放電電力の立上りを抑制する方法としては特に制限され
ないが、例えば、インダクタンスを放電回路に直列に挿
入する方法、及びトランジスタを複数個スイッチング素
子として使用する方法などが挙げられる。
(2) Suppression of Rise of Discharge Power The method of suppressing the rise of discharge power is not particularly limited. For example, a method in which an inductance is inserted in a discharge circuit in series, and a plurality of transistors are used as switching elements. And the like.

【0024】インダクタンスを放電回路に直列に挿入す
る方法を図2に示す。図3に示すように、インダクタン
スを挿入しない場合の電流波形はのように矩形状とな
るが、インダクタンスを挿入すればのように放電の発
生した時点の放電電流は抑えられて小さくなる。
FIG. 2 shows a method of inserting an inductance in series in a discharge circuit. As shown in FIG. 3, the current waveform when no inductance is inserted has a rectangular shape as shown in FIG. 3, but the discharge current at the time when the discharge occurs, as in the case where the inductance is inserted, is suppressed and reduced.

【0025】放電電流の発生時点で電流が大きいと、図
4に示すように放電痕の電流密度が高くなり(すなわ
ち、放電痕の直径は、放電初期は小さく、放電時間の経
過と共に大きくなるから、立上りの早い電流では電流密
度が高くなる)、そのため、放電による爆発圧力が高く
なるので、表面の堆積層を吹き飛ばすことになる。した
がって、インダクタンス挿入による放電電流の発生時点
の放電電流が抑えられると、放電による爆発圧力が減少
するので、表面の堆積層を吹き飛ばすようなことが少な
くなる。
If the current is large at the time of generation of the discharge current, the current density of the discharge mark increases as shown in FIG. 4 (that is, since the diameter of the discharge mark is small at the beginning of discharge and increases with the lapse of discharge time). In the case of a current having a fast rise time, the current density becomes high.) Therefore, the explosion pressure due to the discharge becomes high, so that the deposited layer on the surface is blown off. Therefore, when the discharge current at the time of generation of the discharge current due to the insertion of the inductance is suppressed, the explosion pressure due to the discharge is reduced, so that the surface deposited layer is less likely to be blown off.

【0026】インダクタンスを直列に挿入する代わり
に、図5に示す如くトランジスタを複数個スイッチング
素子として使用する方法も可能である。スイッチングト
ランジスタを、放電時間の経過と共に順次導通して、図
6の(a)のような三角波、或いは(b)のような鋸歯波と
するスロープコントロールを行ってもよい。このような
スロープコントロールによっても、インダクタンスを放
電回路に直列に挿入する方法と同様の効果が得られ、放
電による爆発圧力が減少して、表面の堆積層を吹き飛ば
すようなことが少なくなる。
Instead of inserting an inductance in series, a method of using a plurality of transistors as switching elements as shown in FIG. 5 is also possible. The slope control may be performed such that the switching transistors are sequentially turned on as the discharge time elapses and a triangular wave as shown in FIG. 6A or a sawtooth wave as shown in FIG. Even with such a slope control, an effect similar to the method of inserting an inductance in series in a discharge circuit is obtained, and the explosion pressure due to discharge is reduced, so that the deposited layer on the surface is less likely to be blown off.

【0027】以上のような条件で、パルス放電を放電加
工の手法により液中で加えるが、他の放電加工条件は特
に制限されない。例えば、以下の要領で行う。
Under the above conditions, the pulse discharge is applied in the liquid by the electric discharge machining technique, but other electric discharge machining conditions are not particularly limited. For example, the procedure is as follows.

【0028】パルス放電加工に際しては、消耗しにくい
電極(銅)を使用するのが好ましい。なお、二次加工とし
ての放電析出法の場合の電極としては、堆積物に近い組
成の電極を使用するのが良く、導電性の粉体(例、W
C、TiC、TiB2、TiN、VC、或いはW、Ti、V
等の金属等の1種又は2種以上及び結合剤としてのC
o、Ni等の1種又は2種以上)を圧縮成形又は低温焼結
してなる電極の一次加工に対して、二次加工では、例え
ば、金属材料表面にWCを主体として堆積させた場合、
WC−Coを焼結した材料(例、バイトのチップ材料)を
電極に用いる。
At the time of pulse electric discharge machining, it is preferable to use an electrode (copper) which is not easily consumed. In addition, it is preferable to use an electrode having a composition close to the deposit as an electrode in the case of the discharge deposition method as the secondary processing, and to use a conductive powder (e.g., W
C, TiC, TiB 2 , TiN, VC or W, Ti, V
Or two or more kinds of metals such as
o, one or more of Ni, etc.) for the primary processing of electrodes formed by compression molding or low-temperature sintering, in secondary processing, for example, when WC is mainly deposited on the surface of a metal material,
A material obtained by sintering WC-Co (eg, a chip material for a bite) is used for the electrode.

【0029】放電は、1秒間に数百回から数万回程度で
発生させる。加工面は小さい微視的な放電痕の累積した
表面である。放電痕電流密度は、微小な面積であるが、
数万A/cm2と高く、高温高圧を数10μs〜1000μ
s程度の短時間で生ずる。放電点の表面温度は、その材
料の沸点程度となり、その点の圧力は数1000kgf/c
m2となり、溶解した部分は再溶融し、母材に拡散する。
放電時間が短時間のため、放電点が直ちに冷却され、母
材の平均温度は上昇することがない。
The discharge is generated several hundred to several tens of thousands of times per second. The machined surface is a surface on which small microscopic discharge traces are accumulated. The discharge mark current density is a very small area,
High tens of thousands A / cm 2 , high temperature and high pressure of several tens μs to 1000 μ
It occurs in a short time of about s. The surface temperature at the discharge point is about the boiling point of the material, and the pressure at that point is several thousand kgf / c.
m 2 and the melted portion is re-melted and diffuses into the base material.
Since the discharge time is short, the discharge point is immediately cooled, and the average temperature of the base material does not rise.

【0030】パルス放電加工の好ましい条件は、電源電
圧:60〜100V、パルス放電電流値(Ip):1〜1
00A、パルス幅(τp):5〜2000μs、休止時間
(τr):5〜2000μsである。一般的に、パルス放電
電流値Ipが小さい時、例えば、Ip=3Aなどではτp
=16μs、Ipが大きい時、例えばIp=50Aなどで
はτp=2000τsのように、Ipの小さい時はτpも短
かく、Ipの大きい時はτpを長くとる。
The preferred conditions of the pulse discharge machining are as follows: power supply voltage: 60 to 100 V, pulse discharge current value (Ip): 1 to 1
00A, pulse width (τp): 5-2000 μs, pause time
(τr): 5 to 2000 μs. Generally, when the pulse discharge current value Ip is small, for example, when Ip = 3 A, τp
= 16 .mu.s, and when Ip is large, for example, .tau.p = 2000.tau. At Ip = 50 A, etc., when Ip is small, .tau.p is short, and when Ip is large, .tau.p is long.

【0031】なお、本発明によるパルス放電加工は、そ
れ自身で被表面処理材料の表面を被覆してもよいが、予
め、一次加工として、非導電性又は導電性材料を被処理
材料の表面に被覆した後、二次加工として行うのが望ま
しい。
In the pulse discharge machining according to the present invention, the surface of the material to be treated may be coated by itself. However, as a primary machining, a non-conductive or conductive material is applied to the surface of the material to be treated in advance. After coating, it is desirable to carry out as a secondary processing.

【0032】パルス放電加工を二次加工として行う場
合、一次加工法としては適当な方法が可能であり、例え
ば、溶射、電着、放電析出法、スラリー塗布などが挙げ
られる。なお、放電析出法とは、本発明者らが先に提案
した表面処理法であり(「1991年度精密工学会春季
大会学術講演会講演論文集」(1991年3月26日)
p.463)、析出すべき導電性材料を圧粉体として成形
し、放電加工の電極として用いて加工することにより、
相手側金属に圧粉体材料を析出させる方法である。もっ
とも、これらの堆積物は、母材中に拡散しないため、付
着強度が弱い。これらの方法のいずれも可能であるが、
後工程として行うパルス放電加工との関係からすれば、
放電析出法が好ましい。
When the pulse discharge machining is performed as a secondary machining, an appropriate primary machining method can be used, and examples thereof include thermal spraying, electrodeposition, discharge deposition, and slurry coating. The discharge deposition method is a surface treatment method previously proposed by the present inventors ("Presentation Papers of Spring Meeting of the 1991 Precision Engineering Society Spring Meeting" (March 26, 1991)).
p.463), by forming the conductive material to be deposited as a green compact and using it as an electrode for electrical discharge machining,
This is a method in which a green compact material is deposited on a mating metal. However, since these deposits do not diffuse into the base material, the adhesion strength is low. Either of these methods is possible,
Judging from the relationship with pulse electric discharge machining performed as a post process,
The discharge deposition method is preferred.

【0033】また、被覆材料としては、様々な金属材料
又は非金属材料が可能であり、例えば、金属又は合金、
非金属元素、セラミックス、炭化物、窒化物、硼化物な
どである。具体的には、硬質材料として、WC、Ti
C、TaC、ZrC、SiCなどの炭化物、TiB2、ZrB
2などの硼化物、TiN、ZrNなどの窒化物など(ファイ
ンセラミックス)を単体で若しくは焼結助剤を加えた状
態で被覆できる。また、W、Moなどの金属材料やAl、
Ti、Ni、Cr、Coなどの耐食性材料も利用できる。更
に、ダイヤモンド、Al23、Si34の如く、導電性は
なくとも、鉄粉、コバルト粉、ニツケル粉、クロム粉、
銅粉などの導電性材料と混合して被覆しても良い。要す
るに、付与させる表面特性の関係で材料を選択すれば良
い。
As the coating material, various metal materials or non-metal materials can be used.
Non-metallic elements, ceramics, carbides, nitrides, borides and the like. Specifically, as hard materials, WC, Ti
Carbides such as C, TaC, ZrC, SiC, TiB 2 , ZrB
2 or a nitride such as TiN or ZrN (fine ceramics) can be coated alone or with a sintering aid added. Also, metal materials such as W and Mo, Al,
Corrosion resistant materials such as Ti, Ni, Cr, and Co can also be used. Further, iron powder, cobalt powder, nickel powder, chromium powder, etc., even if they are not conductive like diamond, Al 2 O 3 and Si 3 N 4
It may be coated by mixing with a conductive material such as copper powder. In short, the material may be selected in relation to the surface characteristics to be provided.

【0034】本発明の表面処理方法によれば、低廉な炭
素鋼などの鉄鋼材料等の金属材料の表面に、耐熱性、耐
食性、耐摩耗性、硬度など所望の特性を有する緻密な層
を形成することができる。ファインセラミックスのよう
に鋼材の中に拡散しにくい材料であっても、再溶融によ
って母材に対する拡散と密着性を強固にすることができ
る。また、Al、Ti、Ni、Cr、Coのように鉄鋼材料
に固溶し易い材料でも、パルス放電処理すれば、なお一
層強固な表面処理が可能となる。すなわち、放電析出の
速度を速くするために大電流を用いて高速放電析出を行
う場合、Al、Ti、Ni、Cr、Coのように鉄鋼材料に
固溶し易い材料であっても、母材への拡散が不十分であ
り、また析出状態も凹凸が激しくなるが、パルス放電処
理によれば再溶融による拡散が促進される。また、電着
や電気めっき法により大電流密度でめっき速度を上げる
と、荒く密着力の小さいめっき層しか得られないが、パ
ルス放電加工を行うと、密着力の大きい表面層を形成す
ることができる。ダイヤモンド、Al23、Si34など
の非導電性の硬質材料に鉄粉、コバルト粉、ニツケル
粉、クロム粉、銅粉等の導電性金属を混入してコーティ
ングしたものに、パルス放電処理を行うと、導電性金属
が再溶融して非導電性硬質材料が強固に母材表面に固着
される。
According to the surface treatment method of the present invention, a dense layer having desired properties such as heat resistance, corrosion resistance, abrasion resistance, and hardness is formed on the surface of an inexpensive metal material such as a steel material such as carbon steel. can do. Even if the material does not easily diffuse into the steel material such as fine ceramics, the diffusion and adhesion to the base material can be strengthened by remelting. Further, even if a material such as Al, Ti, Ni, Cr, and Co that is easily dissolved in a steel material is subjected to the pulse discharge treatment, a more robust surface treatment can be performed. That is, when high-speed discharge deposition is performed using a large current in order to increase the rate of discharge deposition, even if a material such as Al, Ti, Ni, Cr, and Co is easily dissolved in a steel material, Although the diffusion into the metal is insufficient and the precipitation state becomes severe, the pulse discharge treatment promotes the diffusion by remelting. In addition, when the plating speed is increased at a large current density by electrodeposition or electroplating, only a rough plating layer having a small adhesive force can be obtained, but when pulse discharge machining is performed, a surface layer having a large adhesive force can be formed. it can. Pulse discharge to non-conductive hard material such as diamond, Al 2 O 3 , Si 3 N 4 mixed with conductive metal such as iron powder, cobalt powder, nickel powder, chromium powder, copper powder, etc. When the treatment is performed, the conductive metal is re-melted, and the non-conductive hard material is firmly fixed to the surface of the base material.

【0035】また、傾斜性を持つ材料を製作することも
できる。傾斜性材料とは、例えば、母材を金属材料と
し、母材側から次第にファインセラミックスの含有割合
が多くなり、材料表面をファインセラミックスの含有割
合を著しく高めたような材料である。このような傾斜性
材料は、単に金属材料とファインセラミックスとを接合
若しくはコーティングした材料に比べ、温度上昇があっ
ても膨張係数の著しい差異による接合面の剪断応力の発
生や曲げ応力の発生が少ないため、高温度で使用中の破
断等が生じにくい。これは、温度上昇による熱膨張が発
生しても、応力としては緩和されるためである。
Also, a material having a gradient can be manufactured. The graded material is, for example, a material in which the base material is a metal material, the content ratio of fine ceramics gradually increases from the base material side, and the content ratio of the fine ceramics is significantly increased on the material surface. Such a graded material is less likely to generate shear stress and bending stress at the joint surface due to a remarkable difference in expansion coefficient even if there is a temperature rise, compared to a material obtained by simply joining or coating a metal material and fine ceramics. Therefore, breakage during use at high temperature is unlikely to occur. This is because even if thermal expansion occurs due to a rise in temperature, stress is reduced.

【0036】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0037】[0037]

【実施例1】Embodiment 1

【0038】本例は、気体を混入するパルス放電加工を
二次加工法として行った例である。一次加工法並びに二
次加工法は以下の条件で行った。なお、母材は炭素鋼
(S55C)であり、図1の装置を使用した。
This embodiment is an example in which pulse electric discharge machining in which a gas is mixed is performed as a secondary machining method. The primary processing method and the secondary processing method were performed under the following conditions. The base material is carbon steel
(S55C), and the apparatus of FIG. 1 was used.

【0039】一次加工(放電析出)条件: 電極:圧粉体電極(WC:Co=8:2)、パルス放電電
流値(Ip):25A(電極マイナス)、パルス幅(τp):1
6μs、休止時間(τr):512μs、加工時間:15
分。
Primary processing (discharge deposition) conditions : Electrode: green compact electrode (WC: Co = 8: 2), pulse discharge current value (Ip): 25 A (minus electrode), pulse width (τp): 1
6 μs, rest time (τr): 512 μs, processing time: 15
Minutes.

【0040】二次加工(パルス放電加工)条件: 電極:銅電極(16mmφ)、パルス放電電流値(Ip):1
5A(電極マイナス)、パルス幅(τp):1024μs、休
止時間(τr):1024μs、加工時間:15分、気体の
種類:アルゴンガス、気体噴射圧力:0.1kg/cm2
Secondary machining (pulse discharge machining) conditions : Electrode: copper electrode (16 mmφ), pulse discharge current value (Ip): 1
5A (electrode minus), pulse width (τp): 1024 μs, rest time (τr): 1024 μs, processing time: 15 minutes, type of gas: argon gas, gas injection pressure: 0.1 kg / cm 2 .

【0041】その結果、二次加工を一度行うだけで、加
工後の表面硬化層の断面厚さが約50μmとなり、マイ
クロビッカース硬度も1800程度と充分な硬度を示し
た。一次加工で60〜80μm程度の厚みであったもの
が50μm程度の均一な表面硬化層となっていること
は、二次加工による飛散がアルゴンガスの混入によって
減少されていると考えられる。同一箇所の加工断面の電
子顕微鏡写真を図7〜9に示す。図7は倍率50倍の場
合、図8は倍率200倍の場合、図9は倍率300倍の
場合を示す。表面硬化層が厚くても平滑で均一であるこ
とがわかる。
As a result, the cross-sectional thickness of the surface-hardened layer after processing was about 50 μm and the micro-Vickers hardness was about 1800, which was sufficient even after the second processing was performed only once. The fact that the thickness was about 60 to 80 μm in the primary processing, but a uniform surface hardened layer of about 50 μm is considered that the scattering due to the secondary processing was reduced by mixing of argon gas. FIGS. 7 to 9 show electron micrographs of the processed cross section at the same location. 7 shows a case where the magnification is 50 times, FIG. 8 shows a case where the magnification is 200 times, and FIG. 9 shows a case where the magnification is 300 times. It can be seen that even if the surface hardened layer is thick, it is smooth and uniform.

【0042】[0042]

【実施例2】Embodiment 2

【0043】本例は、放電電力の立上りを抑えるパルス
放電加工を二次加工法として行った例である。一次加工
法並びに二次加工法は以下の条件で行った。なお、母材
は炭素鋼(S55C)であり、図2に示す回路を使用し
た。
This embodiment is an example in which pulse discharge machining for suppressing the rise of discharge power is performed as a secondary machining method. The primary processing method and the secondary processing method were performed under the following conditions. The base material was carbon steel (S55C), and the circuit shown in FIG. 2 was used.

【0044】一次加工(放電析出)条件: 電極:圧粉体電極(WC:Co=8:2)、パルス放電電
流値(Ip):25A(電極マイナス)、パルス幅(τp):1
6μs、休止時間(τr):512μs、加工時間:15
分。
Primary processing (discharge deposition) conditions : Electrode: green compact electrode (WC: Co = 8: 2), pulse discharge current value (Ip): 25 A (minus electrode), pulse width (τp): 1
6 μs, rest time (τr): 512 μs, processing time: 15
Minutes.

【0045】二次加工(パルス放電加工)条件: 電極:銅電極(16mmφ)、パルス放電電流値(Ip):1
0A(電極プラス)、パルス幅(τp):1024μs、休止
時間(τr):1024μs、加工時間:4.5分、放電回
路の構成:図2(コイル直径36mm、22ターン、イン
ダクタンスL≒12μH)。
Secondary machining (pulse discharge machining) conditions : Electrode: copper electrode (16 mmφ), pulse discharge current value (Ip): 1
0A (electrode plus), pulse width (τp): 1024 μs, rest time (τr): 1024 μs, processing time: 4.5 minutes, discharge circuit configuration: FIG. 2 (coil diameter 36 mm, 22 turns, inductance L ≒ 12 μH) .

【0046】加工断面の顕微鏡写真を図10に示す。1
回の加工(二次加工)で厚さ30μm程度の緻密な加工層
(WC−Co)が得られていることがわかる。図11は倍
率を1100倍にて観察した表面層を示す写真であり、
加工層中に硬質粒子が一様に分散していることがわか
る。図12は加工層のマイクロビッカース硬度(荷重1
0g)の分布状態を示す図で、表面から約25μmがmHv
1710とWC−Co焼結体として充分な硬度を示して
いる。図13は加工表面のX線回折結果を示し、WCが
強く析出していることがわかる。挿入インダクタンスの
大きさは4〜200μH程度で良好な結果が得られる。
FIG. 10 shows a micrograph of the processed cross section. 1
A dense processing layer with a thickness of about 30 μm by multiple processing (secondary processing)
It can be seen that (WC-Co) was obtained. FIG. 11 is a photograph showing the surface layer observed at a magnification of 1100.
It can be seen that the hard particles are uniformly dispersed in the processed layer. FIG. 12 shows the micro Vickers hardness (load 1) of the processed layer.
0g), where about 25 μm is mHv from the surface.
1710 and sufficient hardness as a WC-Co sintered body. FIG. 13 shows the result of X-ray diffraction on the processed surface, and it can be seen that WC is strongly precipitated. Good results are obtained when the magnitude of the insertion inductance is about 4 to 200 μH.

【0047】なお、多数のスイッチング素子を使用して
電流波形制御を行う場合も、上記実施例2(インダクタ
ンス挿入)とほぼ同じ結果が得られることを確認した。
しかも、スイッチング素子による方法は、電流の立上り
傾斜の度合を任意に容易に変えられるので(インダクタ
ンス挿入の場合は異なるインダクタンスを結線し直す必
要がある)、工業的に有利である。
It was confirmed that almost the same results as in Example 2 (inductance insertion) were obtained when current waveform control was performed using a large number of switching elements.
Moreover, the method using the switching element is industrially advantageous because the degree of the rising slope of the current can be easily changed arbitrarily (in the case of inserting an inductance, it is necessary to reconnect different inductances).

【0048】[0048]

【発明の効果】以上詳述したように、本発明によれば、
放電圧力を緩和する条件でパルス放電加工を行うので、
被覆層の飛散力が減少でき、したがって、50μm以下
の如く薄い表面被覆層であっても、平滑にして均一な被
覆層を形成することが可能となる。特に適当な一次加工
後に二次加工として行う場合に適している。
As described in detail above, according to the present invention,
Since pulse electric discharge machining is performed under conditions that alleviate the discharge pressure,
The scattering force of the coating layer can be reduced, and therefore, even with a thin surface coating layer having a thickness of 50 μm or less, a smooth and uniform coating layer can be formed. It is particularly suitable when performing secondary processing after appropriate primary processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】気体混入によるパルス放電加工装置の一例を示
す図である。
FIG. 1 is a diagram showing an example of a pulse electric discharge machining apparatus by mixing gas.

【図2】インダクタンス挿入によるパルス放電加工装置
の一例を示す図である。
FIG. 2 is a diagram showing an example of a pulse electric discharge machining device using inductance insertion.

【図3】図2の回路で得られる電流波形を示す図であ
る。
FIG. 3 is a diagram showing a current waveform obtained by the circuit of FIG. 2;

【図4】1発の放電痕の面積の増大と放電痕電流密度の
変化を示す図である。
FIG. 4 is a diagram showing an increase in the area of one discharge mark and a change in a discharge mark current density.

【図5】スイッチング素子挿入によるパルス放電加工制
御回路の一例を示す図である。
FIG. 5 is a diagram showing an example of a pulse discharge machining control circuit by inserting a switching element.

【図6】(a)、(b)は図5の回路で得られる電流波形を
示す図である。
6A and 6B are diagrams showing current waveforms obtained by the circuit of FIG.

【図7】実施例1で得られた加工層の加工断面(金属組
織)の電子顕微鏡写真(倍率50)である。
FIG. 7 is an electron micrograph (magnification: 50) of a processed cross section (metal structure) of a processed layer obtained in Example 1.

【図8】実施例1で得られた加工層の加工断面(金属組
織)の電子顕微鏡写真(倍率200)である。
8 is an electron micrograph (magnification: 200) of a processed cross section (metal structure) of the processed layer obtained in Example 1. FIG.

【図9】実施例1で得られた加工層の加工断面(金属組
織)の電子顕微鏡写真(倍率300)である。
FIG. 9 is an electron micrograph (magnification: 300) of a processed cross section (metal structure) of the processed layer obtained in Example 1.

【図10】実施例2で得られた加工層の加工断面(金属
組織)の写真である。
FIG. 10 is a photograph of a processed cross section (metal structure) of a processed layer obtained in Example 2.

【図11】実施例2で得られた加工層の加工断面(金属
組織)の写真(×1100)である。
11 is a photograph (× 1100) of a processed cross section (metal structure) of a processed layer obtained in Example 2. FIG.

【図12】実施例2で得られた加工層の加工断面の硬度
分布を示す図である。
FIG. 12 is a diagram showing a hardness distribution of a processed section of a processed layer obtained in Example 2.

【図13】実施例2で得られた加工層の加工表面のX線
回折図である。
13 is an X-ray diffraction diagram of a processed surface of a processed layer obtained in Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 一次加工後の堆積層 2 被表面処理材料 3 放電加工用電極 4 放電加工パルス電源 5 加工液 6 気体投入ボンベ 7 減圧バルブ 8 気体拡散用ノズル 9 サーボ機構 DESCRIPTION OF SYMBOLS 1 Deposition layer after primary processing 2 Surface treatment material 3 Electrode machining electrode 4 Electric discharge pulse power supply 5 Machining fluid 6 Gas injection cylinder 7 Pressure reducing valve 8 Gas diffusion nozzle 9 Servo mechanism

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被表面処理材料を絶縁性の加工液に浸漬
し、前記被表面処理材料に加工用電極を対向させ、放電
によって有毒ガスを生成しない気体を加工液と共に前記
被表面処理材料と前記加工用電極との間に供給しなが
ら、導電性又は非導電性材料を前記被表面処理材料の表
面にパルス放電加工により堆積させることを特徴とする
放電加工による表面処理方法。
1. A material to be surface-treated is immersed in an insulating working fluid.
And, wherein are opposed to machining electrode to be surface treated material, wherein the gas which does not generate toxic gas by electric discharge with working fluid
While supplying between the surface treatment material and the processing electrode,
The conductive or non-conductive material is referred to as the surface treated material.
A surface treatment method by electric discharge machining, wherein the surface is deposited by pulse electric discharge machining .
【請求項2】 放電によって有毒ガスを生成しない気体
として、油質の加工液ではアルゴン,ヘリウム,炭酸ガ
ス又は窒素ガスを、水を主成分とする加工液では空気を
使用する請求項1記載の表面処理方法。
2. A gas that does not generate a toxic gas by electric discharge, such as argon, helium, and carbon dioxide in an oily machining fluid.
Gas or nitrogen gas.
The surface treatment method according to claim 1, which is used .
【請求項3】 被表面処理材料を絶縁性の加工液に浸漬
し、前記被表面処理材料に加工用電極を対向させ、加工
開始時に供給電流を抑えて放電電流の立上りを緩やかに
し、導電性又は非導電性材料を前記被表面処理材料の表
面にパルス放電加工により堆積させることを特徴とする
放電加工による表面処理方法。
3. A material to be surface-treated is immersed in an insulating working fluid.
Then, a processing electrode is opposed to the surface-treated material,
Suppress the supply current at the start to make the discharge current rise slowly
A conductive or non-conductive material,
A surface treatment method by electric discharge machining, wherein the surface is deposited by pulse electric discharge machining .
【請求項4】 絶縁性の加工液を収容する容器と、前記
加工液に浸漬される被表面処理材料に対向する加工用電
極と、前記被表面処理材料と前記加工用電極との間にパ
ルス放電を発生させる放電加工パルス電源と、放電によ
って有毒ガスを生成しない気体を前記被表面処理材料と
前記加工用電極との間に供給する手段とを備えているこ
とを特徴とする放電加工による表面処理装置。
4. A container containing an insulating working fluid,
A machining electrode facing the surface treatment material immersed in the machining fluid
Between the electrode and the surface treatment material and the processing electrode.
Pulse discharge power source to generate
Gas that does not generate toxic gas
Means for supplying between the processing electrode.
And a surface treatment apparatus by electric discharge machining .
【請求項5】 絶縁性の加工液を収容する容器と、前記
加工液に浸漬される被表面処理材料に対向する加工用電
極と、前記被表面処理材料と前記加工用電極との間にパ
ルス放電を発生させる放電加工パルス電源と、放電電流
の立上りが緩やかになるように供給電流を調整する制御
回路とを備えていることを特徴とする放電加工による表
面処理装置。
5. A container containing an insulating working fluid,
A machining electrode facing the surface treatment material immersed in the machining fluid
Between the electrode and the surface treatment material and the processing electrode.
EDM pulse power supply for generating loose discharge and discharge current
That adjusts the supply current so that the rise of the power supply becomes gentle
Table by electric discharge machining characterized by having a circuit
Surface treatment equipment.
JP05089340A 1993-03-24 1993-03-24 Surface treatment method and apparatus by electric discharge machining Expired - Lifetime JP3098654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05089340A JP3098654B2 (en) 1993-03-24 1993-03-24 Surface treatment method and apparatus by electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05089340A JP3098654B2 (en) 1993-03-24 1993-03-24 Surface treatment method and apparatus by electric discharge machining

Publications (2)

Publication Number Publication Date
JPH06280044A JPH06280044A (en) 1994-10-04
JP3098654B2 true JP3098654B2 (en) 2000-10-16

Family

ID=13967972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05089340A Expired - Lifetime JP3098654B2 (en) 1993-03-24 1993-03-24 Surface treatment method and apparatus by electric discharge machining

Country Status (1)

Country Link
JP (1) JP3098654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111304A1 (en) * 2003-06-11 2004-12-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component
CA2528886C (en) 2003-06-11 2012-02-07 Ishikawajima-Harima Heavy Industries Co., Ltd. Production method of metal product, metal product, connection method of metal component and connection structure
TW200535322A (en) * 2004-01-14 2005-11-01 Ishikawajima Harima Heavy Ind Engine part, high-temperature part, surface treatment method, gas-turbine engine, galling preventive structure, and method for producing galling preventive structure
JP5172465B2 (en) * 2008-05-20 2013-03-27 三菱電機株式会社 Discharge surface treatment electrode manufacturing method and discharge surface treatment electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US8377339B2 (en) 2002-07-30 2013-02-19 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment

Also Published As

Publication number Publication date
JPH06280044A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
JP3093846B2 (en) Surface treatment method for metal materials
US8500986B1 (en) Methods for the implementation of nanocrystalline and amorphous metals and alloys as coatings
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
US9187831B2 (en) Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US20100297440A1 (en) Method for the Application of a High-Strength-Coating to Workpieces and/or Materials
US9284647B2 (en) Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
EP2007543A2 (en) Method of using a thermal plasma to produce a functionally graded composite surface layer on metals
JPH07197275A (en) Surface treating method of metallic material by submerged discharge
WO2010016121A1 (en) Electric discharge surface treatment method
JP3098654B2 (en) Surface treatment method and apparatus by electric discharge machining
Arun et al. Synthesis of electrical discharge metal matrix composite coating through compacted semi-sintered electrode and its tribological studies
JP3595263B2 (en) Discharge surface treatment method, apparatus for performing the method, and electrode
JP4523547B2 (en) Discharge surface treatment method and discharge surface treatment apparatus
US10151043B1 (en) Methods of producing coated locator pins and locator pins made therefrom
JPH11320272A (en) Discharged surface treatment method and object to be treated by the method
Çakir et al. A Study on Modification of Micro-Alloy Steel Surfaces with Different Hard Materials Via Electro-Spark Deposition Method
JP4504691B2 (en) Turbine parts and gas turbines
Penyashki et al. Characteristics, composition and structure of coatings of WC-TiB 2-B 4 C-Ni-Cr-B-Si-C electrodes formed on titanium alloys by contactless electrospark deposition
JPH08243843A (en) Powder mixed electric discharge machining fluid and electric discharge machining method using powder mixed machining fluid
RU2725941C1 (en) Method of vacuum carbidisation of metal surfaces
JP2769337B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JP2007118012A (en) Vertical upward welding method
Boas et al. Structural characterization of laser-processed WC/Co layers
McKechnie et al. Metallurgical and process comparison of vacuum plasma spray forming on internal and external surfaces—a technical note
Kunrath et al. Future trends in surface coatings for protection against wear

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13