JP3098061B2 - Particulate curing agent or particulate curing accelerator, epoxy resin composition containing the same, and curing method - Google Patents

Particulate curing agent or particulate curing accelerator, epoxy resin composition containing the same, and curing method

Info

Publication number
JP3098061B2
JP3098061B2 JP03145416A JP14541691A JP3098061B2 JP 3098061 B2 JP3098061 B2 JP 3098061B2 JP 03145416 A JP03145416 A JP 03145416A JP 14541691 A JP14541691 A JP 14541691A JP 3098061 B2 JP3098061 B2 JP 3098061B2
Authority
JP
Japan
Prior art keywords
epoxy resin
curing
resin composition
particulate
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03145416A
Other languages
Japanese (ja)
Other versions
JPH0616788A (en
Inventor
敏嗣 細川
剛 山中
拓 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP03145416A priority Critical patent/JP3098061B2/en
Publication of JPH0616788A publication Critical patent/JPH0616788A/en
Application granted granted Critical
Publication of JP3098061B2 publication Critical patent/JP3098061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は貯蔵安定性および機械的
強度が良好な微粒子状硬化剤または微粒子状硬化促進剤
を用い、使用前には硬化反応を起こさないエポキシ樹脂
組成物に関し、さらに加熱することによって硬化反応さ
せる硬化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition which uses a particulate hardener or a particulate hardener having good storage stability and mechanical strength and which does not undergo a curing reaction before use. And a curing method for causing a curing reaction.

【0002】[0002]

【従来の技術】エポキシ樹脂は接着剤や塗料、コーティ
ング剤、封止材、積層体などの多岐にわたる用途に用い
られている。また、これらのエポキシ樹脂には通常、各
種硬化剤や硬化促進剤が含有されている。
2. Description of the Related Art Epoxy resins are used in a wide variety of applications such as adhesives, paints, coatings, sealing materials, and laminates. Further, these epoxy resins usually contain various curing agents and curing accelerators.

【0003】汎用されているエポキシ樹脂組成物には、
アミンやルイス酸、酸無水物のような硬化剤や硬化促進
剤を使用する直前にエポキシ樹脂と混合する、所謂二液
型の組成物がある。このような二液型のものではエポキ
シ樹脂と硬化剤とを別々に保存しておき必要に応じて両
者を混合して用いるが、混合したのちの可使時間が比較
的短いので多量に混合しておくことができず、従って、
多量に使用する場合は少量ずつ何度も配合する必要があ
り、作業能率が極めて悪いものである。
[0003] Commonly used epoxy resin compositions include:
There is a so-called two-pack type composition in which a curing agent such as an amine, a Lewis acid or an acid anhydride or a curing accelerator is mixed with an epoxy resin immediately before use. In such a two-pack type, the epoxy resin and the curing agent are stored separately, and the two are mixed and used as necessary. However, since the pot life after mixing is relatively short, mix a large amount. Can not be kept, therefore
When used in a large amount, it is necessary to mix it many times little by little, and the working efficiency is extremely poor.

【0004】一方、このような問題点を解決するものと
して、エポキシ樹脂に予め配合しておいても硬化反応が
生じず、光照射や加熱によって硬化反応が起こるような
潜在性硬化剤を用いた一液型のものが種々提案されてい
る。しかしながら、これら潜在性硬化剤を用いてもエポ
キシ樹脂に配合した場合の貯蔵安定性に優れるものは、
硬化反応は比較的高温条件で行う必要があり、また、低
温条件で硬化するものは貯蔵安定性が悪いという問題を
有し、貯蔵安定性と硬化性との両性能のバランスが良好
なものは未だ開発されていないのが実情である。
On the other hand, as a solution to such a problem, a latent curing agent which does not cause a curing reaction even if it is previously blended in an epoxy resin and which causes a curing reaction by light irradiation or heating is used. Various one-pack types have been proposed. However, even if these latent curing agents are used, those having excellent storage stability when blended into an epoxy resin,
The curing reaction needs to be performed under relatively high temperature conditions, and those that cure under low temperature conditions have the problem of poor storage stability, and those that have a good balance between the performance of storage stability and curability The fact is that it has not been developed yet.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来の一
液型のエポキシ樹脂組成物が有する課題を解決し、一液
型に使用できる潜在性硬化剤または硬化促進剤を提供す
ることを目的とする。また、他の目的としては上記硬化
剤を含有してなり貯蔵安定性が良好で、使用時には速や
かに硬化反応が起こるエポキシ樹脂組成物を提供するこ
とにある。さらに、このエポキシ樹脂組成物の硬化方法
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the above-mentioned conventional one-part type epoxy resin composition and to provide a latent curing agent or a curing accelerator which can be used in one-part type. And Another object of the present invention is to provide an epoxy resin composition containing the above-mentioned curing agent, which has good storage stability and in which a curing reaction occurs quickly when used. It is another object of the present invention to provide a method for curing the epoxy resin composition.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らは鋭
意研究を重ねた結果、硬化剤または硬化促進剤を特定組
成からなる熱可塑性高分子の微粒子内に含有させて微粒
子状にし、これをエポキシ樹脂に配合して樹脂組成物と
することによって、上記目的が達成できることを見い出
し、本発明を完成するに至った。
The inventors of the present invention have conducted intensive studies and have found that a curing agent or a curing accelerator is contained in fine particles of a thermoplastic polymer having a specific composition to form fine particles. It has been found that the above object can be achieved by compounding the epoxy resin with an epoxy resin to form a resin composition, and the present invention has been completed.

【0007】即ち、本発明は分子内にカルボニル基もし
くはスルホニル基を有する芳香族系単量体を単独、もし
くは他の単量体と重縮合してなる熱可塑性高分子からな
る平均粒径200μm未満の微粒子マトリックス内に、
融点200℃以下の硬化剤を5〜50重量%分散含有す
ることを特徴とする微粒子状硬化剤の提供、分子内にカ
ルボニル基もしくはスルホニル基を有する芳香族系単量
体を単独、もしくは他の単量体と重縮合してなる熱可塑
性高分子からなる平均粒径200μm未満の微粒子マト
リックス内に、融点200℃以下の硬化促進剤を5〜5
0重量%分散含有することを特徴とする微粒子状硬化促
進剤の提供、エポキシ樹脂にこれらの微粒子状硬化剤お
よび/または微粒子状硬化促進剤を含有させてなるエポ
キシ樹脂組成物の提供、さらにこのエポキシ樹脂組成物
を60〜150℃に加熱して、熱可塑性高分子をエポキ
シ樹脂に溶解させ硬化反応させることを特徴とするエポ
キシ樹脂組成物の硬化方法を提供するものである。
That is, the present invention provides a thermoplastic polymer obtained by polycondensing an aromatic monomer having a carbonyl group or a sulfonyl group in a molecule alone or with another monomer and having an average particle diameter of less than 200 μm. Within the particulate matrix of
The present invention provides a particulate hardener characterized by containing 5 to 50% by weight of a hardener having a melting point of 200 ° C. or less, and an aromatic monomer having a carbonyl group or a sulfonyl group in a molecule, or A curing accelerator having a melting point of 200 ° C. or less is contained in a fine particle matrix having an average particle size of less than 200 μm, which is made of a thermoplastic polymer obtained by polycondensation with a monomer, and has a melting point of 5 to 5 °
A particulate hardening accelerator characterized by being dispersed and contained at 0% by weight; providing an epoxy resin composition comprising an epoxy resin containing the particulate hardening agent and / or the particulate hardening accelerator; An object of the present invention is to provide a method for curing an epoxy resin composition, which comprises heating an epoxy resin composition to 60 to 150 ° C., dissolving a thermoplastic polymer in the epoxy resin, and causing a curing reaction.

【0008】本発明の微粒子状硬化剤または微粒子状硬
化促進剤は、硬化剤または硬化促進剤を熱可塑性高分子
からなる微粒子内に含有してなるものであって、その平
均粒径は200μm未満、好ましくは30μm以下であ
る。平均粒径が200μm以上であると、エポキシ樹脂
組成物としてエポキシ樹脂に配合した場合に均質に含有
させることができず、従って、硬化反応が均一に起こら
ないばかりでなく、硬化時間も長くなり好ましくない。
なお、本発明でいう平均粒径とは、沈降式粒度分布測定
器を用いて粒度分布図から算出したものである。
The fine particle hardening agent or fine particle hardening accelerator of the present invention contains a hardening agent or hardening accelerator in fine particles made of a thermoplastic polymer, and has an average particle diameter of less than 200 μm. , Preferably 30 μm or less. When the average particle size is 200 μm or more, when the epoxy resin composition is mixed with the epoxy resin as an epoxy resin composition, it cannot be contained homogeneously, so that not only the curing reaction does not occur uniformly, but also the curing time becomes longer. Absent.
The average particle size in the present invention is calculated from a particle size distribution diagram using a sedimentation type particle size distribution analyzer.

【0009】本発明において上記微粒子状硬化剤または
微粒子状硬化促進剤を構成する熱可塑性高分子は、分子
内にカルボニル基もしくはスルホニル基を有する芳香族
系単量体を単独で重縮合して得るか、またはこれらの単
量体に他の重縮合性単量体を共重縮合することによって
得ることができる。得られる熱可塑性高分子は機械的強
度が高く、エポキシ樹脂への配合・混合時に加わる剪断
応力に耐えうるようにするために、120℃以上のガラ
ス転移温度を有するものが好ましい。また、本発明にお
いては重量平均分子量2000〜1000000程度の
ものが、微粒子の形成性やエポキシ樹脂組成物からの硬
化フィルム形成性の点から好ましい。このような熱可塑
性高分子としては、具体的にはポリスルホン、ポリエー
テルスルホン、ポリアリレート、ポリカーボネート、ポ
リエーテルエーテルケトン、ポリアリルスルホン、ポリ
エーテルイミドの如き芳香族系熱可塑性樹脂が挙げられ
る。
In the present invention, the thermoplastic polymer constituting the particulate hardener or the particulate hardener is obtained by polycondensing an aromatic monomer having a carbonyl group or a sulfonyl group in the molecule alone. Alternatively, it can be obtained by copolycondensing these monomers with another polycondensable monomer. The thermoplastic polymer obtained preferably has a high mechanical strength and has a glass transition temperature of 120 ° C. or higher in order to withstand the shearing stress applied during mixing and mixing with the epoxy resin. In the present invention, those having a weight-average molecular weight of about 2,000 to 1,000,000 are preferable from the viewpoints of fine particle formability and cured film formation from the epoxy resin composition. Specific examples of such thermoplastic polymers include aromatic thermoplastic resins such as polysulfone, polyethersulfone, polyarylate, polycarbonate, polyetheretherketone, polyallylsulfone, and polyetherimide.

【0010】一方、上記微粒子状硬化剤または微粒子状
硬化促進剤に含有させる硬化剤または硬化促進剤として
は、硬化性の点から融点が200℃以下、好ましくは1
50℃以下のものを用い、これらは常温で液状であって
も固形状であってもよい。これらの微粒子状硬化剤また
は微粒子状硬化促進剤は均質な硬化反応性や貯蔵安定性
の点から、上記硬化剤または硬化促進剤を5〜50重量
%、好ましくは10〜30重量%の範囲で含有されてい
る。配合量が5重量%に満たない場合は硬化時間が長く
なる傾向を示し、また、50重量%を超えて含有させた
場合は熱可塑性高分子の量が少なくなるので微粒子の機
械的強度が不足すると共に、エポキシ樹脂に配合した場
合の貯蔵安定性が低下して好ましくない。
On the other hand, the curing agent or the curing accelerator contained in the fine particle curing agent or the fine particle curing accelerator has a melting point of 200 ° C. or lower, preferably 1 ° C., from the viewpoint of curability.
Those having a temperature of 50 ° C. or lower are used, and they may be liquid or solid at room temperature. These fine particle hardeners or fine particle hardening accelerators are used in an amount of 5 to 50% by weight, preferably 10 to 30% by weight, from the viewpoint of homogeneous curing reactivity and storage stability. It is contained. When the amount is less than 5% by weight, the curing time tends to be long. When the amount exceeds 50% by weight, the amount of the thermoplastic polymer becomes small, so that the mechanical strength of the fine particles is insufficient. At the same time, the storage stability when mixed with an epoxy resin is undesirably reduced.

【0011】このような硬化剤としては、具体的にはト
リブチルアミンなどの脂肪族三級アミン、ベンジルジメ
チルアミン、2−(ジメチルアミノメチル)フェノー
ル、2,4,6−トリス(ジアミノメチル)フェノール
などの芳香族三級アミン類や脂環族三級アミン類、また
はこれらの変性アミン類、2−メチルイミダゾール、2
−エチルイミダゾール、2−エチル−4−メチルイミダ
ゾール、2−イソプロピルイミダゾール、2−ドデシル
イミダゾール、2−ウンデシルイミダゾール、2−ヘプ
タデシルイミダゾール、2−フェニルイミダゾール、1
−ベンジル−2−メチルイミダゾール、1−シアノエチ
ル−2−メチルイミダゾールなどのイミダゾール類、こ
れらのイミダゾール類と酢酸、乳酸、サリチル酸、安息
香酸、アジピン酸、フタル酸、クエン酸、酒石酸、マレ
イン酸、トリメリット酸などとのイミダゾールカルボン
酸塩、三フッ化ホウ素、五フッ化リンなどのルイス酸な
どを用いることができる。本発明においてはこれらの硬
化剤を少量配合しても充分に硬化反応が起きるように、
通常使用される公知の硬化促進剤を任意量配合すること
もできる。
Specific examples of such curing agents include aliphatic tertiary amines such as tributylamine, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, and 2,4,6-tris (diaminomethyl) phenol. Such as aromatic tertiary amines and alicyclic tertiary amines, or modified amines thereof, 2-methylimidazole,
-Ethylimidazole, 2-ethyl-4-methylimidazole, 2-isopropylimidazole, 2-dodecylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1
Imidazoles such as benzyl-2-methylimidazole and 1-cyanoethyl-2-methylimidazole; these imidazoles and acetic acid, lactic acid, salicylic acid, benzoic acid, adipic acid, phthalic acid, citric acid, tartaric acid, maleic acid, triic acid; An imidazole carboxylate with merit acid or the like, or a Lewis acid such as boron trifluoride or phosphorus pentafluoride can be used. In the present invention, even if a small amount of these curing agents are blended, a sufficient curing reaction occurs,
An optional amount of a commonly used known curing accelerator can be blended.

【0012】また、微粒子中に含有させて硬化反応を促
進する硬化促進剤としては、具体的にはエチルグアニジ
ン、トリメチルグアニジン、フェニルグアニジン、ジフ
ェニルグアニジンなどのアルキル置換グアニジン類、3
−(3,4−ジクロロフェニル)−1,1−ジメチル尿
素、3−フェニル−1,1−ジメチル尿素、3−(4−
クロロフェニル)−1,1−ジメチル尿素などの3−置
換フェニル−1,1−ジメチル尿素類、2−メチルイミ
ダゾリン、2−フェニルイミダゾリン、2−ウンデシル
イミダゾリン、2−ヘプタデシルイミダゾリンなどのイ
ミダゾリン類、2−アミノピリジンなどのモノアミノピ
リジン類、N,N−ジメチル−N−(2−ヒドロキシ−
3−アリロキシプロピル)アミン−N’−ラクトイミド
などのアミンイミド系類、トリフェニルホスフィンやこ
れらの塩などが挙げられる。
[0012] Examples of the curing accelerator which is contained in fine particles to accelerate the curing reaction include alkyl-substituted guanidines such as ethylguanidine, trimethylguanidine, phenylguanidine and diphenylguanidine;
-(3,4-dichlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea, 3- (4-
3-substituted phenyl-1,1-dimethylureas such as (chlorophenyl) -1,1-dimethylurea, imidazolines such as 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline and 2-heptadecylimidazoline; Monoaminopyridines such as 2-aminopyridine, N, N-dimethyl-N- (2-hydroxy-
Examples thereof include amine imides such as (3-allyloxypropyl) amine-N'-lactide, triphenylphosphine, and salts thereof.

【0013】上記硬化剤または硬化促進剤を微粒子状の
熱可塑性高分子内に含有してなる本発明の微粒子状硬化
剤または微粒子状硬化促進剤は、例えばスプレードライ
法やコアセルベーション法、液中乾燥法などの方法によ
って得ることができる。得られた微粒子中の硬化剤また
は硬化促進剤の含有状態は、均一な硬化反応性、機械的
強度の点から、熱可塑性高分子から形成されるマトリッ
クス内に硬化剤または硬化促進剤が分散している分散含
有状態である。なお、目的によっては微粒子内に硬化剤
および硬化促進剤を併用してもよいものである。
The fine-particle hardener or fine-particle hardening accelerator of the present invention comprising the above-mentioned hardening agent or hardening accelerator in a fine-particle thermoplastic polymer can be prepared, for example, by a spray drying method, a coacervation method, It can be obtained by a method such as a middle drying method. The content of the curing agent or the curing accelerator in the obtained fine particles is such that the curing agent or the curing accelerator is dispersed in a matrix formed of a thermoplastic polymer from the viewpoint of uniform curing reactivity and mechanical strength. In a dispersed content state. Depending on the purpose, a curing agent and a curing accelerator may be used together in the fine particles.

【0014】本発明のエポキシ樹脂組成物は上記微粒子
状硬化剤および/または微粒子状硬化促進剤を、硬化性
の点からエポキシ樹脂100重量部に対して1〜80重
量部、好ましくは3〜40重量部の割合で配合し、必要
に応じて潜在性硬化剤や各種充填剤、添加剤などを配合
することによって得ることができる。
The epoxy resin composition of the present invention contains 1 to 80 parts by weight, preferably 3 to 40 parts by weight of the above-mentioned fine particle curing agent and / or fine particle curing accelerator based on 100 parts by weight of epoxy resin from the viewpoint of curability. It can be obtained by blending in a ratio of parts by weight and, if necessary, blending a latent curing agent, various fillers, additives and the like.

【0015】用いるエポキシ樹脂としては液状であって
も固形状であってもよく、通常エポキシ当量100〜3
500程度のもので、1分子中に平均2個以上のエポキ
シ基を有するものを好ましく用いることができる。具体
的にはビスフェノールA型エポキシ樹脂、ビスフェノー
ルF型エポキシ樹脂、環状脂肪族エポキシ樹脂、ヒダン
トインエポキシ樹脂、ノボラック型エポキシ樹脂、グリ
シジルエステル型エポキシ樹脂などを単独、もしくは二
種以上併用して用いることができる。これらのうち微粒
子を構成する熱可塑性高分子との相溶性や、実用性、経
済性の点から、ビスフェノールA型エポキシ樹脂を用い
ることが好ましい。
The epoxy resin used may be liquid or solid, and usually has an epoxy equivalent of 100 to 3
Those having about 500 and having an average of two or more epoxy groups in one molecule can be preferably used. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, cycloaliphatic epoxy resin, hydantoin epoxy resin, novolak type epoxy resin, glycidyl ester type epoxy resin, etc. may be used alone or in combination of two or more. it can. Of these, it is preferable to use a bisphenol A type epoxy resin from the viewpoint of compatibility with the thermoplastic polymer constituting the fine particles, practicality, and economy.

【0016】また、任意に配合することができる潜在性
硬化剤としては、通常、エポキシ樹脂の硬化剤として加
熱硬化に用いる潜在性硬化剤が使用でき、具体的にはジ
シアンジアミド系、イミダゾール系、フェノール系、酸
無水物系、酸ヒドラジド系、フッ素化ホウ素化合物系、
アミンイミド系、アミン系などのエポキシ樹脂の硬化剤
が挙げられ、これらは単独で、もしくは2種類以上を併
用して用いることができる。上記硬化剤は前記エポキシ
樹脂100重量部に対して40重量部以下の範囲で添
加、混合して用いる。
As the latent curing agent which can be arbitrarily compounded, a latent curing agent used for heat curing as an epoxy resin curing agent can be usually used, and specific examples thereof include dicyandiamide-based, imidazole-based, and phenol-based curing agents. System, acid anhydride system, acid hydrazide system, fluorinated boron compound system,
Examples of the curing agent include epoxy resin curing agents such as amine imides and amine resins. These can be used alone or in combination of two or more. The curing agent is added and mixed in a range of 40 parts by weight or less based on 100 parts by weight of the epoxy resin.

【0017】さらに、必要に応じて本発明のエポキシ樹
脂組成物に含有させることができる充填剤としては、シ
リカ、クレー、石膏、炭酸カルシウム、硫酸バリウム、
石英粉、ガラス繊維、カオリン、マイカ、アルミナ、水
和アルミナ、水酸化アルミニウム、タルク、ドロマイ
ト、ジルコン、チタン化合物、モリブデン化合物、アン
チモン化合物などが挙げられ、シランカップリング剤や
顔料、老化防止剤、その他任意の添加剤成分も目的や用
途に応じて適宜配合することができる。また、接合する
部材にスポット溶接などで溶接するために、銅や亜鉛、
ニッケル、カドミウム、ステンレス、アルミニウム、銀
など、好ましくは亜鉛、ニッケル、ステンレス、アルミ
ニウムの金属粉末を配合して、本発明の組成物に導電性
を付与することもできる。導電性を付与する場合には上
記金属粉末をエポキシ樹脂組成物中に25重量%以上配
合することが好ましい。
Further, fillers which can be contained in the epoxy resin composition of the present invention, if necessary, include silica, clay, gypsum, calcium carbonate, barium sulfate, and the like.
Quartz powder, glass fiber, kaolin, mica, alumina, hydrated alumina, aluminum hydroxide, talc, dolomite, zircon, titanium compounds, molybdenum compounds, antimony compounds, etc., silane coupling agents and pigments, antioxidants, Other optional additive components can be appropriately blended according to the purpose and use. In addition, copper or zinc,
Metallic powders of nickel, cadmium, stainless steel, aluminum, silver, and the like, preferably zinc, nickel, stainless steel, and aluminum may be blended to impart conductivity to the composition of the present invention. When imparting conductivity, it is preferable to mix the above metal powder in an epoxy resin composition in an amount of 25% by weight or more.

【0018】上記各成分を含む本発明の組成物は、ロー
ル、ミキサー、ヘンシェルミキサー、ボールミル、ニー
ダー、ディスパーなどを用いて、常温下で均一に分散、
混合して本発明の組成物を得ることができる。
The composition of the present invention containing the above components is uniformly dispersed at room temperature using a roll, a mixer, a Henschel mixer, a ball mill, a kneader, a disper, or the like.
The composition of the present invention can be obtained by mixing.

【0019】上記エポキシ樹脂組成物は所定温度以上に
加熱して、微粒子状硬化剤または微粒子状硬化促進剤を
構成する熱可塑性高分子をエポキシ樹脂に溶解させ硬化
反応させる。加熱温度は熱可塑性高分子の種類や量、エ
ポキシ樹脂の種類や量などによって異なるが、通常、6
0〜150℃程度の温度に加熱する。このように加熱す
ることによって、微粒子を構成する熱可塑性高分子がエ
ポキシ樹脂と徐々に相溶しあって、内部に含有する硬化
剤または硬化促進剤がエポキシ樹脂と硬化反応を起こす
のである。熱可塑性高分子とエポキシ樹脂との相溶機構
は明確ではないが、熱可塑性高分子中に存在するカルボ
ニル基やスルホニル基が関与しているものと推測され
る。
The above-mentioned epoxy resin composition is heated to a predetermined temperature or higher to dissolve the thermoplastic polymer constituting the fine particle curing agent or the fine particle curing accelerator in the epoxy resin to cause a curing reaction. The heating temperature varies depending on the type and amount of the thermoplastic polymer and the type and amount of the epoxy resin.
Heat to a temperature of about 0-150 ° C. By such heating, the thermoplastic polymer constituting the fine particles gradually becomes compatible with the epoxy resin, and the curing agent or the curing accelerator contained therein causes a curing reaction with the epoxy resin. Although the compatibility mechanism between the thermoplastic polymer and the epoxy resin is not clear, it is presumed that carbonyl groups and sulfonyl groups present in the thermoplastic polymer are involved.

【0020】[0020]

【実施例】以下、本発明を実施例によって具体的に説明
する。なお、以下、文中で部および%とあるのは重量部
および重量%を意味する。
The present invention will be specifically described below with reference to examples. Hereinafter, parts and% in the text mean parts by weight and% by weight, respectively.

【0021】実施例1 熱可塑性高分子としてのポリスルホン(商品名:ユーデ
ルP−3500、アモコ社製、Tg189℃)と、硬化
剤としての1−ベンジル−2−メチルイミダゾール(融
点40〜50℃)を用い、液中乾燥法によって本発明の
微粒子状硬化剤を得た。この微粒子状硬化剤は平均粒径
が8μmの球状であり、元素分析の結果、硬化剤含量は
20%であった。なお、得られた微粒子状硬化剤の粒子
構造の走査型電子顕微鏡写真を図1に示す。
Example 1 Polysulfone as a thermoplastic polymer (trade name: Udel P-3500, manufactured by Amoco, Tg 189 ° C.) and 1-benzyl-2-methylimidazole as a curing agent (melting point 40 to 50 ° C.) Was used to obtain a particulate hardener of the present invention by a submerged drying method. This particulate hardener had a spherical shape with an average particle size of 8 μm, and as a result of elemental analysis, the content of the hardener was 20%. FIG. 1 shows a scanning electron micrograph of the particle structure of the obtained particulate hardener.

【0022】このようにして得た微粒子状硬化剤20部
を、ビスフェノールA型エポキシ樹脂(エポキシ当量約
190、重量平均分子量380、粘度125ポイズ(2
5℃))100部に添加し、混合釜にて常温で1時間混
練し、さらに3本ロールミルを通して本発明のエポキシ
樹脂組成物を得た。
Twenty parts of the particulate hardener thus obtained was mixed with a bisphenol A type epoxy resin (epoxy equivalent: about 190, weight average molecular weight: 380, viscosity: 125 poise (2
5 ° C.)), kneaded at room temperature for 1 hour in a mixing kettle, and further passed through a three-roll mill to obtain the epoxy resin composition of the present invention.

【0023】実施例2 微粒子状硬化剤中の硬化剤含量を40%とし、エポキシ
樹脂組成物中の配合部数を10部とした以外は、実施例
1と同様にして本発明のエポキシ樹脂組成物を得た。
Example 2 The epoxy resin composition of the present invention was prepared in the same manner as in Example 1 except that the content of the curing agent in the fine particle curing agent was 40% and the number of components in the epoxy resin composition was 10 parts. I got

【0024】比較例1 微粒子状硬化剤中の硬化剤含量を4%とし、エポキシ樹
脂組成物中の配合部数を100部とした以外は、実施例
1と同様にしてエポキシ樹脂組成物を得た。
Comparative Example 1 An epoxy resin composition was obtained in the same manner as in Example 1, except that the content of the curing agent in the fine particle curing agent was 4% and the number of parts in the epoxy resin composition was 100 parts. .

【0025】比較例2 微粒子状硬化剤中の硬化剤含量を60%とし、エポキシ
樹脂組成物中の配合部数を7部とした以外は、実施例1
と同様にしてエポキシ樹脂組成物を得た。
Comparative Example 2 Example 1 was repeated except that the content of the curing agent in the particulate curing agent was 60% and the number of parts in the epoxy resin composition was 7 parts.
In the same manner as in the above, an epoxy resin composition was obtained.

【0026】比較例3 微粒子状硬化剤の代わりに、1−ベンジル−2−メチル
イミダゾールを用い、エポキシ樹脂組成物中への配合部
数を4部とした以外は、実施例1と同様にしてエポキシ
樹脂組成物を得た。
Comparative Example 3 An epoxy resin was prepared in the same manner as in Example 1 except that 1-benzyl-2-methylimidazole was used in place of the fine particle curing agent, and the number of parts blended in the epoxy resin composition was changed to 4 parts. A resin composition was obtained.

【0027】実施例3 実施例1において用いる熱可塑性高分子をポリエーテル
スルホン(商品名:ビクトレックス100P、アイシー
アイ社製、Tg225℃)に代えた以外は、実施例1と
同様にして平均粒径10μmの微粒子状硬化剤(硬化剤
含量18%)を得、以下実施例1と同様にして本発明の
エポキシ樹脂組成物を得た。
Example 3 The average particle size was changed in the same manner as in Example 1 except that the thermoplastic polymer used in Example 1 was changed to polyether sulfone (trade name: Victrex 100P, manufactured by ICI, Tg 225 ° C.). A particulate hardener having a diameter of 10 μm (hardener content: 18%) was obtained, and an epoxy resin composition of the present invention was obtained in the same manner as in Example 1 below.

【0028】実施例4 熱可塑性高分子としての非晶性ポリアリレート(商品
名:Uポリマー(U−100)、ユニチカ社製、Tg2
03℃)と、硬化剤としての2−ウンデシルイミダゾー
ル(融点71℃)を用い、コアセルベーション法によっ
て本発明の微粒子状硬化剤を得た。この微粒子状硬化剤
は平均粒径が9μmの球状であり、元素分析の結果、硬
化剤含量は32%であった。
Example 4 Amorphous polyarylate as a thermoplastic polymer (trade name: U-Polymer (U-100), manufactured by Unitika Ltd., Tg2
03 ° C.) and 2-undecylimidazole (melting point 71 ° C.) as a curing agent to obtain a particulate curing agent of the present invention by a coacervation method. The particulate hardener was spherical with an average particle size of 9 μm, and as a result of elemental analysis, the hardener content was 32%.

【0029】このようにして得た微粒子状硬化剤13部
を、ビスフェノールA型エポキシ樹脂(エポキシ当量約
190、重量平均分子量380、粘度125ポイズ(2
5℃))100部に添加し、混合釜にて常温で1時間混
練し、さらに3本ロールミルを通して本発明のエポキシ
樹脂組成物を得た。
13 parts of the particulate hardener obtained in this way was mixed with a bisphenol A type epoxy resin (epoxy equivalent: about 190, weight average molecular weight: 380, viscosity: 125 poise (2
5 ° C.)), kneaded at room temperature for 1 hour in a mixing kettle, and further passed through a three-roll mill to obtain the epoxy resin composition of the present invention.

【0030】比較例4 微粒子状硬化剤の代わりに、2−ウンデシルイミダゾー
ルを用い、エポキシ樹脂組成物中への配合部数を4部と
した以外は、実施例4と同様にしてエポキシ樹脂組成物
を得た。
Comparative Example 4 An epoxy resin composition was prepared in the same manner as in Example 4 except that 2-undecylimidazole was used in place of the fine particle curing agent, and that the number of parts blended in the epoxy resin composition was changed to 4 parts. I got

【0031】実施例5 実施例4において用いる熱可塑性高分子をポリエーテル
イミド(商品名:ウルテム1000、ジーイープラスチ
ック社製、Tg217℃))に代えた以外は、実施例4
と同様にして平均粒径15μmの微粒子状硬化剤(硬化
剤含量25%)を得、以下実施例4と同様にして本発明
のエポキシ樹脂組成物を得た。
Example 5 Example 4 was repeated except that the thermoplastic polymer used in Example 4 was changed to polyetherimide (trade name: Ultem 1000, manufactured by GE Plastics, Tg 217 ° C.).
In the same manner as in Example 1, a particulate hardener having an average particle size of 15 μm (hardener content: 25%) was obtained. In the same manner as in Example 4, the epoxy resin composition of the present invention was obtained.

【0032】実施例6 実施例1において用いる硬化剤をベンジルジメチルアミ
ンに代えた以外は、実施例1と同様にして平均粒径7μ
mの微粒子状硬化剤(硬化剤含量20%)を得、この微
粒子状硬化剤15部を実施例1にて用いたエポキシ樹脂
100部に添加、混合して本発明のエポキシ樹脂組成物
を得た。
Example 6 An average particle diameter of 7 μm was obtained in the same manner as in Example 1 except that the curing agent used in Example 1 was changed to benzyldimethylamine.
m of a particulate hardener (hardener content: 20%) was obtained, and 15 parts of the particulate hardener was added to 100 parts of the epoxy resin used in Example 1 and mixed to obtain an epoxy resin composition of the present invention. Was.

【0033】比較例5 微粒子状硬化剤の代わりに、ベンジルジメチルアミンを
用い、エポキシ樹脂組成物中への配合部数を3部とした
以外は、実施例6と同様にしてエポキシ樹脂組成物を得
た。
Comparative Example 5 An epoxy resin composition was obtained in the same manner as in Example 6 except that benzyldimethylamine was used instead of the fine particle curing agent, and the number of parts to be mixed in the epoxy resin composition was changed to 3 parts. Was.

【0034】実施例7 実施例6において用いる熱可塑性高分子をポリアリルス
ルホン(商品名:ラーデルA−100、アモコ社製、T
g220℃)に代えた以外は、実施例6と同様にして平
均粒径10μmの微粒子状硬化剤(硬化剤含量15%)
を得、以下実施例6と同様にして本発明のエポキシ樹脂
組成物を得た。
Example 7 The thermoplastic polymer used in Example 6 was polyallyl sulfone (trade name: Radel A-100, manufactured by Amoco Co., Ltd., T
g220 ° C.) except that the fine particle-shaped hardener having an average particle size of 10 μm (hardener content 15%) was used in the same manner as in Example 6.
Was obtained, and an epoxy resin composition of the present invention was obtained in the same manner as in Example 6.

【0035】比較例6 実施例1において用いる熱可塑性高分子をポリメチルメ
タクリレート(商品名:スミペック−B、住友化学工業
社製、Tg105℃)に代えた以外は、実施例1と同様
にして平均粒径6μmの微粒子状硬化剤(硬化剤含量1
8%)を得、この微粒子状硬化剤23部を実施例1にて
用いたエポキシ樹脂100部に添加、混合して本発明の
エポキシ樹脂組成物を得た。
Comparative Example 6 An average was obtained in the same manner as in Example 1 except that the thermoplastic polymer used in Example 1 was changed to polymethyl methacrylate (trade name: SUMIPEC-B, manufactured by Sumitomo Chemical Co., Ltd., Tg: 105 ° C.). Fine particle hardener with a particle size of 6 μm (hardener content 1
8%), and 23 parts of the particulate hardener was added to and mixed with 100 parts of the epoxy resin used in Example 1 to obtain an epoxy resin composition of the present invention.

【0036】比較例7 実施例1において用いる熱可塑性高分子をポリスチレン
(商品名:デンカブチラールHRM−2、電気化学工業
社製、Tg100℃)に代えた以外は、実施例1と同様
にして平均粒径8μmの微粒子状硬化剤(硬化剤含量1
6%)を得、この微粒子状硬化剤25部を実施例1にて
用いたエポキシ樹脂100部に添加、混合して本発明の
エポキシ樹脂組成物を得た。
Comparative Example 7 An average was obtained in the same manner as in Example 1 except that the thermoplastic polymer used in Example 1 was changed to polystyrene (trade name: Denkabutyral HRM-2, manufactured by Denki Kagaku Kogyo Co., Ltd., Tg 100 ° C.). 8 μm particle size hardener (hardener content 1
6%), and 25 parts of the particulate hardener was added to and mixed with 100 parts of the epoxy resin used in Example 1 to obtain an epoxy resin composition of the present invention.

【0037】実施例8 実施例1におけるエポキシ樹脂組成物に、さらに潜在性
硬化剤としてジシアンジアミド4部を配合した以外は、
実施例1と同様にして本発明のエポキシ樹脂組成物を得
た。
Example 8 Except that 4 parts of dicyandiamide was further added as a latent curing agent to the epoxy resin composition of Example 1,
An epoxy resin composition of the present invention was obtained in the same manner as in Example 1.

【0038】実施例9 実施例3におけるエポキシ樹脂組成物40部に、潜在性
硬化剤としてジシアンジアミド4部、ビスフェノールA
型エポキシ樹脂(前記と同様)60部を配合した以外
は、実施例3と同様にして本発明のエポキシ樹脂組成物
を得た。なお、この実施例の場合の微粒子に含有する1
−ベンジル−2−メチルイミダゾールは硬化促進剤とし
て用いた。
Example 9 To 40 parts of the epoxy resin composition in Example 3, 4 parts of dicyandiamide as a latent curing agent and bisphenol A
An epoxy resin composition of the present invention was obtained in the same manner as in Example 3, except that 60 parts of a type epoxy resin (as described above) was blended. In addition, in the case of this example, 1
-Benzyl-2-methylimidazole was used as a curing accelerator.

【0039】比較例8 実施例8(または実施例9)において、微粒子状硬化剤
(または微粒子状硬化促進剤)の代わりに、1−ベンジ
ル−2−メチルイミダゾールを用い、エポキシ樹脂組成
物中への配合部数を1部とした以外は、実施例8(また
は実施例9)と同様にしてエポキシ樹脂組成物を得た。
Comparative Example 8 In Example 8 (or Example 9), 1-benzyl-2-methylimidazole was used in place of the fine particle curing agent (or the fine particle curing accelerator), and the mixture was introduced into the epoxy resin composition. An epoxy resin composition was obtained in the same manner as in Example 8 (or Example 9) except that the number of components was changed to 1 part.

【0040】実施例10 実施例3にて用いたポリエーテルスルホンと、硬化促進
剤としての3−(3,4−ジクロロフェニル)−1,1
−ジメチル尿素(融点158℃)を用い、液中乾燥法に
よって本発明の微粒子状硬化促進剤を得た。この微粒子
状硬化促進剤は平均粒径が10μmの球状であり、元素
分析の結果、硬化促進剤含量は33%であった。
Example 10 Polyether sulfone used in Example 3 and 3- (3,4-dichlorophenyl) -1,1 as a curing accelerator
-A particulate hardening accelerator of the present invention was obtained by an in-liquid drying method using dimethyl urea (melting point: 158 ° C). This particulate hardening accelerator was spherical with an average particle diameter of 10 μm, and as a result of elemental analysis, the content of the hardening accelerator was 33%.

【0041】このようにして得た微粒子状硬化促進剤1
5部と、ビスフェノールA型エポキシ樹脂(エポキシ当
量約190、重量平均分子量380、粘度125ポイズ
(25℃))100部、潜在性硬化剤としてのジシアン
ジアミド8部とを混合釜にて常温で1時間混練し、さら
に3本ロールミルを通して本発明のエポキシ樹脂組成物
を得た。
The particulate hardening accelerator 1 thus obtained
5 parts, 100 parts of a bisphenol A type epoxy resin (epoxy equivalent: about 190, weight average molecular weight: 380, viscosity: 125 poise (25 ° C.)), and 8 parts of dicyandiamide as a latent curing agent are mixed at room temperature for 1 hour at room temperature. After kneading, the mixture was further passed through a three-roll mill to obtain an epoxy resin composition of the present invention.

【0042】比較例9 微粒子状硬化促進剤の代わりに、3−(3,4−ジクロ
ロフェニル)−1,1−ジメチル尿素を用い、エポキシ
樹脂組成物中への配合部数を5部とした以外は、実施例
10と同様にしてエポキシ樹脂組成物を得た。
Comparative Example 9 Instead of the particulate hardening accelerator, 3- (3,4-dichlorophenyl) -1,1-dimethylurea was used and the number of parts to be mixed in the epoxy resin composition was changed to 5 parts. In the same manner as in Example 10, an epoxy resin composition was obtained.

【0043】上記各実施例および比較例にて得たエポキ
シ樹脂組成物の各特性を、下記に示す試験方法に従って
測定し、その結果を表1に示した。
The properties of the epoxy resin compositions obtained in the above Examples and Comparative Examples were measured in accordance with the following test methods, and the results are shown in Table 1.

【0044】<機械的安定性>各組成物を3本ロールミ
ル通過させ、通過前後の形状を光学顕微鏡にて観察し
た。判定は以下のとおりである。 ○・・・ロール通過前と後では変化が見られない。 ×・・・ロール通過後に微粒子状硬化剤が破砕してい
る。
<Mechanical Stability> Each composition was passed through a three-roll mill, and the shapes before and after passing were observed with an optical microscope. The judgment is as follows.・ ・ ・: No change is observed before and after passing through the roll. X: The particulate hardener was crushed after passing through the roll.

【0045】<溶解開始温度> 各組成物を10℃/分の昇温速度条件下におき、微粒子
を構成する熱可塑性高分子はエポキシ樹脂に溶解する挙
動を光学顕微鏡にて観察し、溶解が開始する温度を測定
した。なお、実施例1にて得たエポキシ樹脂組成物にお
ける溶解挙動を、代表的溶解挙動として図2〜図4に示
した。25℃(図2)では溶解しないが、90℃(図
3)で溶解が始まり、100℃(図4)では完全に溶解
して気泡が生じていた。
<Dissolution Initiation Temperature> Each composition was placed under a heating rate of 10 ° C./min, and the behavior of the thermoplastic polymer constituting the fine particles dissolving in the epoxy resin was observed with an optical microscope. The starting temperature was measured. The dissolution behavior in the epoxy resin composition obtained in Example 1 is shown in FIGS. Although it did not dissolve at 25 ° C. (FIG. 2), it started dissolving at 90 ° C. (FIG. 3) and completely dissolved at 100 ° C. (FIG. 4) to form bubbles.

【0046】<反応開始温度>示差熱分析計を用いて発
熱ピークの立ち上がり始める温度(硬化反応開始温度)
を測定した。
<Reaction initiation temperature> Temperature at which an exothermic peak starts to rise using a differential thermal analyzer (curing reaction initiation temperature).
Was measured.

【0047】<貯蔵安定性>20℃および40℃の条件
下で貯蔵し、粘度の経日変化を観察し、初期粘度の3倍
以上の粘度になるまでに要した日数を測定した。
<Storage Stability> The composition was stored under the conditions of 20 ° C. and 40 ° C., and the change in viscosity over time was observed, and the number of days required until the viscosity became three times or more the initial viscosity was measured.

【0048】<硬化性>120℃における硬化時間を熱
板式ゲルタイム測定法によって測定した。なお、実施例
10および比較例9については測定温度を150℃とし
た。
<Curability> The curing time at 120 ° C. was measured by a hot plate gel time measuring method. In Example 10 and Comparative Example 9, the measurement temperature was 150 ° C.

【0049】<接着性>鋼板(SPCC−SD:100
×25×1.6t mm)に接着面積25×12.5m
m、層厚0.12mmで塗布し、120℃×15分間の
条件にて硬化させて試験片を作製した。なお、実施例1
0および比較例9については硬化条件を150℃×15
分間とした。
<Adhesiveness> Steel plate (SPCC-SD: 100
× 25 × 1.6 t mm) with an adhesion area of 25 × 12.5m
m, and applied at a layer thickness of 0.12 mm, and cured under the conditions of 120 ° C. × 15 minutes to prepare a test piece. Example 1
For 0 and Comparative Example 9, the curing condition was 150 ° C. × 15.
Minutes.

【0050】得られた試験片についてテンシロン引張試
験機を用いて、剪断接着力を測定した(引張速度5mm
/分、測定温度23℃)。
The shear strength of the obtained test piece was measured using a Tensilon tensile tester (tensile speed: 5 mm).
/ Min, measurement temperature 23 ° C).

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】以上のように本発明の微粒子状硬化剤ま
たは微粒子状硬化促進剤は、エポキシ樹脂に容易に配合
することができ、かつ機械的強度も充分もあり、貯蔵安
定性や硬化性などの諸特性にも優れたバランスのよいエ
ポキシ樹脂組成物を提供するものである。
As described above, the particulate hardener or particulate accelerator of the present invention can be easily blended with an epoxy resin, has sufficient mechanical strength, and has storage stability and curability. It is intended to provide a well-balanced epoxy resin composition excellent in various properties such as the above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1にて得られた微粒子状硬化剤の粒子
構造を示す走査型電子顕微鏡写真(5000倍)であ
る。
FIG. 1 is a scanning electron micrograph (× 5000) showing the particle structure of a particulate hardener obtained in Example 1.

【図2】 実施例1にて得られたエポキシ樹脂組成物を
25℃に加熱することにより変化する粒子構造を示す走
査型電子顕微鏡写真(400倍)である。
FIG. 2 is a scanning electron micrograph (× 400) showing a particle structure that changes when the epoxy resin composition obtained in Example 1 is heated to 25 ° C.

【図3】 実施例1にて得られたエポキシ樹脂組成物を
90℃に加熱することにより変化する粒子構造を示す走
査型電子顕微鏡写真(400倍)である。
FIG. 3 is a scanning electron micrograph (× 400) showing a particle structure that changes when the epoxy resin composition obtained in Example 1 is heated to 90 ° C.

【図4】 実施例1にて得られたエポキシ樹脂組成物を
100℃に加熱することにより変化する粒子構造を示す
走査型電子顕微鏡写真(400倍)である。
FIG. 4 is a scanning electron micrograph (× 400) showing a particle structure that changes when the epoxy resin composition obtained in Example 1 is heated to 100 ° C.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08G 59/40 - 59/66 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C08G 59/40-59/66

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分子内にカルボニル基もしくはスルホニ
ル基を有する芳香族系単量体を単独、もしくは他の単量
体と重縮合してなる熱可塑性高分子からなる平均粒径2
00μm未満の微粒子マトリックス内に、融点200℃
以下の硬化剤を5〜50重量%分散含有することを特徴
とする微粒子状硬化剤。
1. An average particle size of a thermoplastic polymer obtained by polycondensing an aromatic monomer having a carbonyl group or a sulfonyl group in a molecule alone or with another monomer.
200 ° C. in a fine particle matrix of less than 00 μm
A particulate hardener comprising the following hardener dispersedly in an amount of 5 to 50% by weight.
【請求項2】 分子内にカルボニル基もしくはスルホニ
ル基を有する芳香族系単量体を単独、もしくは他の単量
体と重縮合してなる熱可塑性高分子からなる平均粒径2
00μm未満の微粒子マトリックス内に、融点200℃
以下の硬化促進剤を5〜50重量%分散含有することを
特徴とする微粒子状硬化促進剤。
2. An average particle size of a thermoplastic polymer obtained by polycondensing an aromatic monomer having a carbonyl group or a sulfonyl group in a molecule alone or with another monomer.
200 ° C. in a fine particle matrix of less than 00 μm
Particulate curing accelerator, characterized in that it contains the following curing accelerator 5-50 weight percent dispersion.
【請求項3】 エポキシ樹脂に請求項1記載の微粒子状
硬化剤を含有させてなるエポキシ樹脂組成物。
3. An epoxy resin composition comprising the epoxy resin and the particulate hardener according to claim 1.
【請求項4】 エポキシ樹脂に請求項2記載の微粒子状
硬化促進剤を含有させてなるエポキシ樹脂組成物。
An epoxy resin composition comprising the epoxy resin and the particulate curing accelerator according to claim 2.
【請求項5】 さらに加熱硬化型潜在性硬化剤を含有さ
せてなる請求項3または4記載のエポキシ樹脂組成物。
5. The epoxy resin composition according to claim 3, further comprising a heat-curable latent curing agent.
【請求項6】 請求項3〜5の何れかに記載のエポキシ
樹脂組成物を60〜150℃に加熱して、熱可塑性高分
子をエポキシ樹脂に溶解させ硬化反応させることを特徴
とするエポキシ樹脂組成物の硬化方法。
6. An epoxy resin, wherein the epoxy resin composition according to claim 3 is heated to 60 to 150 ° C. to dissolve the thermoplastic polymer in the epoxy resin and cause a curing reaction. The method of curing the composition.
JP03145416A 1991-05-20 1991-05-20 Particulate curing agent or particulate curing accelerator, epoxy resin composition containing the same, and curing method Expired - Lifetime JP3098061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03145416A JP3098061B2 (en) 1991-05-20 1991-05-20 Particulate curing agent or particulate curing accelerator, epoxy resin composition containing the same, and curing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03145416A JP3098061B2 (en) 1991-05-20 1991-05-20 Particulate curing agent or particulate curing accelerator, epoxy resin composition containing the same, and curing method

Publications (2)

Publication Number Publication Date
JPH0616788A JPH0616788A (en) 1994-01-25
JP3098061B2 true JP3098061B2 (en) 2000-10-10

Family

ID=15384752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03145416A Expired - Lifetime JP3098061B2 (en) 1991-05-20 1991-05-20 Particulate curing agent or particulate curing accelerator, epoxy resin composition containing the same, and curing method

Country Status (1)

Country Link
JP (1) JP3098061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039379A1 (en) 2010-09-22 2012-03-29 積水化学工業株式会社 Curable composition for inkjet, and method for producing electronic component

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW359642B (en) * 1997-04-21 1999-06-01 Toray Industries Resin composition for fiber-reinforced complex material, prepreg and fiber-reinforced complex material
JP2007014876A (en) 2005-07-07 2007-01-25 Nippon Kayaku Co Ltd Production method of particulate type curing catalyst
JP2023035684A (en) * 2021-09-01 2023-03-13 株式会社豊田中央研究所 Heat-curable composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039379A1 (en) 2010-09-22 2012-03-29 積水化学工業株式会社 Curable composition for inkjet, and method for producing electronic component

Also Published As

Publication number Publication date
JPH0616788A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
JP3193106B2 (en) Method for curing epoxy resin composition and cured product
JPH07138502A (en) Powdery coating composition
JP3098061B2 (en) Particulate curing agent or particulate curing accelerator, epoxy resin composition containing the same, and curing method
JP2912193B2 (en) Microcapsule curing agent or curing accelerator, epoxy resin composition containing the same, curing method and cured epoxy resin
JP3031897B2 (en) Epoxy resin cured product and curing method for obtaining the same
JPH0520918A (en) Conductive paste
JPH0617450B2 (en) One-component thermosetting epoxy resin composition for correcting rotor balance of motors
JPH04325590A (en) Epoxy resin adhesive composition
JPS6183218A (en) Epoxy resin composition
JPS62172014A (en) One pack epoxy resin composition
JP2000281968A (en) Powder coating for cast iron pipe
WO2020123139A1 (en) Fusion bonded epoxy amine rebar powder coatings
JPS6030334B2 (en) curable mixture
JPH01110526A (en) Epoxy resin composition for prepreg
JPS6227111B2 (en)
JPS6369872A (en) Composition for electrically conductive epoxy resin coating
JP2835359B2 (en) Curing method for one-part compound
JP2000068420A (en) Electronic component sealing material and manufacture thereof
JP2000351830A (en) Microcapsular curing agent and epoxy resin composition using same
JP2922151B2 (en) Semiconductor sealing device
JP3312485B2 (en) Powder epoxy resin composition
JPS6319527B2 (en)
JPH01278526A (en) Epoxy resin composition
JP2918850B2 (en) One-component flexible epoxy adhesive stable at room temperature
JPS6011527A (en) Epoxy resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

EXPY Cancellation because of completion of term