JP3097932B2 - Electrostatic chromatography equipment - Google Patents

Electrostatic chromatography equipment

Info

Publication number
JP3097932B2
JP3097932B2 JP03315160A JP31516091A JP3097932B2 JP 3097932 B2 JP3097932 B2 JP 3097932B2 JP 03315160 A JP03315160 A JP 03315160A JP 31516091 A JP31516091 A JP 31516091A JP 3097932 B2 JP3097932 B2 JP 3097932B2
Authority
JP
Japan
Prior art keywords
electrostatic
particles
molecules
chromatography apparatus
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03315160A
Other languages
Japanese (ja)
Other versions
JPH05126796A (en
Inventor
閃一 増田
正夫 鷲津
誠一 鈴木
修 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance KK
Original Assignee
Advance KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance KK filed Critical Advance KK
Priority to JP03315160A priority Critical patent/JP3097932B2/en
Publication of JPH05126796A publication Critical patent/JPH05126796A/en
Application granted granted Critical
Publication of JP3097932B2 publication Critical patent/JP3097932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はタンパクなどの分子の分
析・分離・分取、および細胞など粒子の分析・分級を行
なう手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a means for analyzing, separating, and collecting molecules such as proteins, and for analyzing and classifying particles such as cells.

【0002】[0002]

【従来の技術】従来のクロマトグラフィー装置には、セ
ファデックスなどのゲルを用いて吸着の差を利用して分
析を行なうゲルクロマトグラフィー、抗体などを用いて
結合定数の差を利用して分析を行なうアフィニティーク
ロマトグラフィーなどがある。
2. Description of the Related Art Conventional chromatography apparatuses use gels such as Sephadex to perform analysis using the difference in adsorption, and gels such as antibody use the difference in binding constants to analyze. And affinity chromatography.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、それら
のいずれを用いても、また、組み合わせて用いても、多
種多様な分子を完全に分析することはできない。本発明
の目的は、水溶液中の分子や粒子の電気的性質の差異を
用いてそれらの分析・分離・分級を行なう手段を提供す
ることにある。
However, even if any of them is used or used in combination, it is impossible to completely analyze a wide variety of molecules. An object of the present invention is to provide means for analyzing, separating, and classifying molecules and particles in an aqueous solution by using differences in electrical properties thereof.

【0004】[0004]

【課題を解決するための手段】静電気力によれば、分子
などの微小な粒子の運動を行ない得ることは広く知られ
ている。その手法には、交流高周波電界により分子を電
界の強いところへと引き寄せる誘電泳動がある。この効
果を用いれば、粒子を電極へと引き寄せることができる
が、その引き寄せられ易さは粒子の種類に依存する。そ
こで、流路内に電極系を設け、ここに電圧を印加してお
いて流路入口より粒子を導入すると、電極へと引き寄せ
られにくい粒子はただちに出口へと向かうのに対し、電
極へと引き寄せられ易い粒子は長時間流路内に滞留する
ため遅れて出口から出てくることになる。従って、流路
出口には、まず電極へと引き寄せられにくい粒子が出て
き、時間が経過するにつれて電極へと引き寄せられ易い
粒子が出てくることとなる。すなわち、入口より供給さ
れた多種の粒子の混合懸濁溶液を、粒子の電極へと引き
寄せられ易さ(電気的移動度)をパラメータとして分析
・分取することが可能になる。本発明における高周波電
圧の周波数は、1KHZ〜100MHZが例示されるが、こ
れに限るものではない。
It is widely known that electrostatic forces can cause the movement of minute particles such as molecules. The method involves the use of alternating high-frequency electric fields to charge molecules.
There is dielectrophoresis that draws you to a strong place in the world. This effect
When the fruit is used, the particles can be attracted to the electrode, but the ease of the attraction depends on the type of the particles. Therefore, an electrode system is provided in the flow channel, and when a voltage is applied here and particles are introduced from the inlet of the flow channel, particles that are difficult to be attracted to the electrode immediately go to the outlet, while particles that are hard to be attracted to the electrode are attracted to the electrode. Particles that are likely to be retained stay in the channel for a long time and come out of the outlet with a delay. Therefore, particles that are not easily attracted to the electrode first appear at the outlet of the flow channel, and particles that are easily attracted to the electrode appear over time. In other words, it becomes possible to analyze and sort a mixed suspension of various kinds of particles supplied from the inlet, using the ease with which the particles are attracted to the electrode (electrical mobility) as a parameter. High-frequency power in the present invention
The pressure frequency is, for example, 1 KHz to 100 MHz.
It is not limited to this.

【0005】[0005]

【実施例】図1および図2は、本発明の実施例である。
この実施例では、基板(1)と流路を加工してあるカバー
(2)の間に形成される流路(5)に電極♯1(6)および電
極♯2(7)を設け、入口(3)より導入したタンパク溶液
の分析を行なう手法を示している。図では流れの方向と
電極が直角である場合を示しているが、無論、本発明は
このような場合に限られるものではなく、流れの方向と
電極が平行であっても、あるいは任意の角度をなしてい
ても良い。まず、外部に設けられたポンプを用いて、入
口(3)より出口(4)に向けてタンパクの含まれていない
溶媒、例えば水をキャリヤーとして一定速度で流す。次
に、電極間隙における電界強度が分子を動かすのに十分
な1×105[V/m]以上となるような1[MHZ]の電
圧を電極♯1(6)と電極♯2(7)の間に印加しておき、
入口(3)より多種類のタンパク分子の混合液をキャリヤ
ー中に入れる。すると、タンパクの種類により電極へと
引き寄せられる誘電泳動力が異なるので、引き寄せられ
にくい分子は流れとともにただちに出口に達するのに対
し、引き寄せられ易い分子は長時間流路内の電極部分に
滞在することになる。すなわち、出口では、まず電気的
に引き寄せられにくい分子が得られ、次に引き寄せられ
にくい分子が得られる。従って、出口でのタンパク濃度
を時間の関数として観測するとタンパクの分析が可能に
なり、また、出口である時間範囲内に出てきた溶液を回
収すればタンパクの分取が可能になる。なお、細胞のよ
うに大きい粒子に対しては、ブラウン運動の効果が小さ
いので、一旦電極に付着したものは二度と離れず、出口
より得ることができないことになる。このような場合に
は、電極に印加する高周波電圧を断続的に印加すること
が有効な手段となる。
1 and 2 show an embodiment of the present invention.
In this embodiment, a cover in which the substrate (1) and the flow path are processed is used.
This shows a method of providing an electrode # 1 (6) and an electrode # 2 (7) in a flow path (5) formed between (2) and analyzing a protein solution introduced from an inlet (3). Although the figure shows the case where the direction of the flow is perpendicular to the electrode, it goes without saying that the present invention is not limited to such a case. May be used. First, using a pump provided outside, a solvent containing no protein, for example, water is flowed from the inlet (3) to the outlet (4) as a carrier at a constant speed. Next, a voltage of 1 [MHZ] is applied so that the electric field strength in the electrode gap becomes 1 × 10 5 [V / m] or more, which is sufficient to move the molecules, between the electrodes # 1 (6) and # 2 (7). Applied during
A mixture of various types of protein molecules is introduced into the carrier from the inlet (3). Then, since the dielectrophoretic force attracted to the electrode differs depending on the type of protein, molecules that are not easily attracted immediately reach the outlet with the flow, whereas molecules that are easily attracted stay at the electrode part in the flow channel for a long time. become. That is, at the exit, molecules that are not easily attracted are obtained first, and then molecules that are not easily attracted are obtained. Thus, observing the protein concentration at the outlet as a function of time allows analysis of the protein, and recovering the solution that has come out within the time range at the outlet allows for protein fractionation. Since the effect of the Brownian motion is small for a large particle such as a cell, what once adheres to the electrode does not separate again and cannot be obtained from the outlet. In such a case, intermittent application of the high-frequency voltage applied to the electrodes is an effective means.

【0006】[0006]

【発明の効果】本法によれば、タンパクなどの分子ある
いは細胞などの粒子の電気的性質による分析・分離が可
能になる。
According to the present method, it is possible to analyze and separate molecules such as proteins or particles such as cells based on the electrical properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の上面を示す図である。FIG. 1 is a diagram showing a top view of an embodiment of the present invention.

【図2】図1で示した実施例の断面を示す図である。FIG. 2 shows a cross section of the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1 基板 2 流路を加工したカバー 3 流路入口 4 流路出口 5 流路 6 電極♯1 7 電極♯2 DESCRIPTION OF SYMBOLS 1 Substrate 2 Cover which processed channel 3 Channel inlet 4 Channel outlet 5 Channel 6 Electrode # 17 Electrode # 2

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特表 平5−504620(JP,A) 国際公開91/9394(WO,A1) 青木幸一郎、永井裕編集「最新電気泳 動法」廣川書店、昭和61年10月25日第3 刷発行、第183〜184頁 (58)調査した分野(Int.Cl.7,DB名) G01N 27/447 B01D 57/02 C07B 63/00 C12M 1/00 G01N 30/02 JICSTファイル(JOIS) WPI(DIALOG)────────────────────────────────────────────────── ─── Continuation of the front page (56) Bibliography Tokuhyo Hei 5-504620 (JP, A) International Publication 91/9394 (WO, A1) Edited by Koichiro Aoki and Hiroshi Nagai, "Latest Electric Swim Method" Hirokawa Shoten, Showa Issued on October 25, 61, 3rd printing, pp. 183-184 (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/447 B01D 57/02 C07B 63/00 C12M 1/00 G01N 30 / 02 JICST file (JOIS) WPI (DIALOG)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上の流路内あるいは流路外に設けら
れた電極に高周波電圧を印加して溶液中に高周波不平等
電界を発生させ、入口より一定速度で流れているキャリ
ヤーにサンプルとなる粒子又は分子を一定量添加し、
又は分子に働く誘電泳動力の差により出口に達するま
での所要時間に差ができることを利用して粒子又は分子
の分析や分取を行なう手段を有することを特徴とする静
電クロマトグラフィー装置。
1. A high-frequency non- uniform electric field is generated in a solution by applying a high-frequency voltage to electrodes provided inside or outside a flow path on a substrate, and a carrier flowing at a constant speed from an inlet .
Yer sample to become particles or molecular predetermined amount was added to carry out the preparative analytical and minute particles or molecules by using the fact that it is a difference in time required to reach the exit by a difference in dielectrophoretic forces acting on the particles or molecules electrostatic chromatography apparatus characterized by having means.
【請求項2】 高周波電圧を定常的に印加することを特
徴とする請求項1に記載の静電クロマトグラフィー装
置。
2. The electrostatic chromatography apparatus according to claim 1, wherein a high-frequency voltage is constantly applied.
【請求項3】 高周波電圧を断続的に印加することを特
徴とする請求項1に記載の静電クロマトグラフィー装
置。
3. The electrostatic chromatography apparatus according to claim 1, wherein the high-frequency voltage is applied intermittently .
【請求項4】 用いる電極の電極間間隙が500μm以下
であることを特徴とする請求項1に記載の静電クロマト
グラフィー装置。
4. The electrostatic chromatography apparatus according to claim 1 , wherein the gap between the electrodes used is 500 μm or less.
JP03315160A 1991-11-05 1991-11-05 Electrostatic chromatography equipment Expired - Fee Related JP3097932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03315160A JP3097932B2 (en) 1991-11-05 1991-11-05 Electrostatic chromatography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03315160A JP3097932B2 (en) 1991-11-05 1991-11-05 Electrostatic chromatography equipment

Publications (2)

Publication Number Publication Date
JPH05126796A JPH05126796A (en) 1993-05-21
JP3097932B2 true JP3097932B2 (en) 2000-10-10

Family

ID=18062147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03315160A Expired - Fee Related JP3097932B2 (en) 1991-11-05 1991-11-05 Electrostatic chromatography equipment

Country Status (1)

Country Link
JP (1) JP3097932B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066004A (en) * 2001-08-30 2003-03-05 Matsushita Electric Ind Co Ltd Method and device for separating corpuscular, and sensor
WO2011149032A1 (en) 2010-05-26 2011-12-01 東ソー株式会社 Biological-sample affixing device
JP2012047596A (en) * 2010-08-26 2012-03-08 Ngk Insulators Ltd Particulate substance detector
JP2012047597A (en) * 2010-08-26 2012-03-08 Ngk Insulators Ltd Particulate substance detector

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888370A (en) 1996-02-23 1999-03-30 Board Of Regents, The University Of Texas System Method and apparatus for fractionation using generalized dielectrophoresis and field flow fractionation
US5993630A (en) * 1996-01-31 1999-11-30 Board Of Regents The University Of Texas System Method and apparatus for fractionation using conventional dielectrophoresis and field flow fractionation
US5858192A (en) * 1996-10-18 1999-01-12 Board Of Regents, The University Of Texas System Method and apparatus for manipulation using spiral electrodes
MY139225A (en) 1998-02-26 2009-08-28 Anglo Operations Ltd Method and apparatus for separating particles
US7198702B1 (en) * 1999-09-30 2007-04-03 Wako Pure Chemical Industries, Ltd. Method for separating substances using dielectrophoretic forces
CA2413194A1 (en) 2000-06-14 2001-12-20 Board Of Regents, The University Of Texas System Systems and methods for cell subpopulation analysis
CA2413634A1 (en) 2000-06-14 2001-12-20 Peter R. C. Gascoyne Method and apparatus for combined magnetophoretic and dielectrophoretic manipulation of analyte mixtures
WO2002023180A1 (en) * 2000-09-18 2002-03-21 Hitachi, Ltd. Extractor and chemical analyzer
JP2009065967A (en) * 2007-08-20 2009-04-02 Gunma Univ Cell separation device and cell separation method
JP5527936B2 (en) * 2008-03-11 2014-06-25 キヤノン株式会社 Method and apparatus for separating particles in suspension
TR200806315A2 (en) * 2008-08-22 2010-03-22 Külah Haluk Concentric electrode and spiral microfluidic channel dielectrophoretic microcell chromatography device manufactured with MEMS technology
JP5611582B2 (en) * 2009-12-25 2014-10-22 株式会社東芝 Electrical neutral substance separation method and electrical neutral substance separation device
JP5844907B2 (en) * 2011-09-13 2016-01-20 エンパイア テクノロジー ディベロップメント エルエルシー Miniaturized gas chromatograph
EP3300805B1 (en) * 2016-09-30 2022-05-11 The University of Tokyo Microdevice for capturing particles, and method for capturing, concentrating, or separating particles using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
青木幸一郎、永井裕編集「最新電気泳動法」廣川書店、昭和61年10月25日第3刷発行、第183〜184頁

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066004A (en) * 2001-08-30 2003-03-05 Matsushita Electric Ind Co Ltd Method and device for separating corpuscular, and sensor
WO2011149032A1 (en) 2010-05-26 2011-12-01 東ソー株式会社 Biological-sample affixing device
JP2012047596A (en) * 2010-08-26 2012-03-08 Ngk Insulators Ltd Particulate substance detector
JP2012047597A (en) * 2010-08-26 2012-03-08 Ngk Insulators Ltd Particulate substance detector
US8820139B2 (en) 2010-08-26 2014-09-02 Ngk Insulators, Ltd. Particulate matter detection device

Also Published As

Publication number Publication date
JPH05126796A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
JP3097932B2 (en) Electrostatic chromatography equipment
JP3182151B2 (en) Equipment for separating mixtures
JP4093740B2 (en) Fine particle sorting microchip and fine particle sorting device
Cheng et al. An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting
Washizu et al. Molecular dielectrophoresis of biopolymers
EP1224023B1 (en) Continuous particle and molecule separation with an annular flow channel
US7534336B2 (en) Continuous flow particle concentrator
US7666289B2 (en) Methods and devices for high-throughput dielectrophoretic concentration
US5814200A (en) Apparatus for separating by dielectrophoresis
EP0417114B1 (en) Separating constituents of a mixture of particles
DE60029528D1 (en) Separation of substances by dielectrophoresis
JP2001502226A (en) Analysis / separation method
Kawabata et al. Dielectrophoretic detection of molecular bindings
Holmes et al. Cell positioning and sorting using dielectrophoresis
Hayes Dielectrophoresis of proteins: Experimental data and evolving theory
US20100116657A1 (en) Method and apparatus for concentrating molecules
Lapizco-Encinas Microscale electrokinetic assessments of proteins employing insulating structures
Kentsch et al. Microdevices for separation, accumulation, and analysis of biological micro-and nanoparticles
JPWO2002023180A1 (en) Extraction equipment and chemical analysis equipment
EP0231239B1 (en) Method for electrophoretic separation
JP5047034B2 (en) Particle separation method and separation apparatus
Wong et al. An AC electroosmotic processor for biomolecules
CA2393784C (en) Method for analysing a sample from a process with on-line capillary electrophoresis apparatus and capillary electrophoresis apparatus
JP2001504937A (en) Method and apparatus for isoelectrically separating particles
JP3718097B2 (en) Capillary dielectrophoresis

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees