JP3097780B2 - Multi-layer spectral reflector - Google Patents

Multi-layer spectral reflector

Info

Publication number
JP3097780B2
JP3097780B2 JP04050797A JP5079792A JP3097780B2 JP 3097780 B2 JP3097780 B2 JP 3097780B2 JP 04050797 A JP04050797 A JP 04050797A JP 5079792 A JP5079792 A JP 5079792A JP 3097780 B2 JP3097780 B2 JP 3097780B2
Authority
JP
Japan
Prior art keywords
element layer
multilayer film
light element
reflectance
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04050797A
Other languages
Japanese (ja)
Other versions
JPH05249297A (en
Inventor
久貴 竹中
朋晃 川村
芳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP04050797A priority Critical patent/JP3097780B2/en
Publication of JPH05249297A publication Critical patent/JPH05249297A/en
Application granted granted Critical
Publication of JP3097780B2 publication Critical patent/JP3097780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体材料など各種の
材料の化学状態、化学組成、不純物濃度、中でも軽元素
を高感度で分析する装置に必要な軟X線を選択する分光
素子や、微細加工、X線顕微鏡、X線望遠鏡などに必要
なX線反射鏡に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic element for selecting a soft X-ray required for an apparatus for analyzing a chemical state, a chemical composition, and an impurity concentration of various materials such as a semiconductor material with high sensitivity among light elements, The present invention relates to an X-ray reflector required for fine processing, an X-ray microscope, an X-ray telescope, and the like.

【0002】[0002]

【従来の技術】等間隔に原子面が並んだり、重元素層と
軽元素層がそれぞれ一定の厚みで交互に並んでいるよう
な物質や材料にX線が入射すると各原子や各層でX線が
散乱する。ある特定の角度方向ではこれら散乱したX線
が干渉し強めあう結果、その角度方向に強いX線が出射
する現象、いわゆるブラッグ回折が観察される。
2. Description of the Related Art When an X-ray is incident on a substance or a material in which atomic planes are arranged at equal intervals or where a heavy element layer and a light element layer are alternately arranged with a constant thickness, X-rays are generated at each atom and each layer. Are scattered. As a result of these scattered X-rays interfering and enhancing each other in a specific angular direction, a phenomenon in which strong X-rays are emitted in that angular direction, so-called Bragg diffraction, is observed.

【0003】現在、単色、準単色の軟X線やX線を選択
するために、このようなブラッグ回折効果を有する分光
素子が用いられているが、中でも重元素層と軽元素層が
交互に一定の厚みで形成された多層膜が使用されるよう
になってきた。多層膜はシリコンや石英などの基板の上
に、一般には軽元素層と重元素層をそれぞれ一定の厚み
で規則正しく積層させて形成されており、このような多
層膜は特に軟X線波長領域で回折格子や結晶に比べてX
線の反射率が高いという利点を有している。例えば波長
が約13nm程度では重元素層にMoやRuを使用し、
軽元素層にSiを使用した、Mo/Si,Ru/Si
は、50〜60%という高い反射率が得られることから
上記分光素子への適用が検討されつつあった。
At present, in order to select monochromatic or quasi-monochromatic soft X-rays or X-rays, a spectral element having such a Bragg diffraction effect is used. Among them, a heavy element layer and a light element layer are alternately formed. Multilayer films formed with a certain thickness have been used. The multilayer film is generally formed by regularly laminating a light element layer and a heavy element layer with a constant thickness on a substrate such as silicon or quartz, and such a multilayer film is particularly formed in a soft X-ray wavelength region. X compared to diffraction gratings and crystals
It has the advantage of high line reflectivity. For example, when the wavelength is about 13 nm, use Mo or Ru for the heavy element layer,
Mo / Si, Ru / Si using Si for light element layer
Since a high reflectance of 50 to 60% was obtained, application to the above-mentioned spectral element was being studied.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、例えば
Mo/Si多層膜やRu/Si多層膜においては、Mo
の融点が約2600℃、Ruの融点が約2300℃ある
のに対し、Siの融点が1410℃と低いために、数1
00℃のレベルでMo/Si多層膜やRu/Si多層膜
の構造が乱れ始める。例えばMo/Si多層膜をAr雰
囲気中で1時間熱処理した場合のX線反射率は、200
℃1時間の熱処理ではほとんど変化しないが、400℃
程度の温度を越えると多層膜の積層構造が原子の拡散な
どによって乱れ、この影響でX線反射率は急激に低下す
る。この事実を反映して、高強度のX線や軟X線がこの
多層膜に照射されると照射部の温度が上昇するため、こ
の部分の積層構造が乱れ、この影響で反射率が低下す
る。反射率が低下すると、分析応用の場合には変化した
だけ精度や確度が悪くなり、また、X線リソグラフィー
などに適用された場合は、レジストを適正時間露光する
ことが困難になる。更には、多層膜そのものの寿命が短
いなどの様々の問題を有していた。
However, for example, in a Mo / Si multilayer film or a Ru / Si multilayer film, Mo
Has a melting point of about 2600 ° C. and Ru has a melting point of about 2300 ° C., whereas the melting point of Si is as low as 1410 ° C.
At the level of 00 ° C., the structure of the Mo / Si multilayer film or Ru / Si multilayer film starts to be disordered. For example, when the Mo / Si multilayer film is heat-treated for 1 hour in an Ar atmosphere, the X-ray reflectance is 200
1 hour heat treatment hardly changes, but 400 ° C
When the temperature exceeds about a certain level, the laminated structure of the multilayer film is disturbed by diffusion of atoms and the like, and the X-ray reflectivity sharply decreases due to this effect. Reflecting this fact, when high-intensity X-rays or soft X-rays are irradiated on this multilayer film, the temperature of the irradiated portion rises, so that the laminated structure of this portion is disturbed and the reflectivity decreases due to this effect. . When the reflectivity decreases, the accuracy and accuracy deteriorate as much as it changes in the case of analytical application, and when applied to X-ray lithography or the like, it becomes difficult to expose the resist for an appropriate time. Further, there are various problems such as a short lifetime of the multilayer film itself.

【0005】本発明は、上述の問題を解決するために提
案されたもので、その目的は、軽元素層にSiを用いた
多層膜よりも耐熱性の向上された多層膜分光反射鏡を提
供することにある。
The present invention has been proposed to solve the above-mentioned problem, and an object of the present invention is to provide a multilayer spectroscopic reflector having improved heat resistance compared to a multilayer film using Si as a light element layer. Is to do.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討した結果、軽元素層にSi化
合物を使用することにより上記の問題が解消されること
を見出した。すなわち本発明は、ブラッグ回折効果を有
する多層膜分光素子であって、重元素層としてMoを選
択し、軽元素層にHf、Mo、Ti及びTaからなる群
から選択される高融点金属のシリサイドのうち、窒化珪
素を用いたものよりも600℃、1時間加熱後の1.5
4ÅのX線の反射率変化率が優れる高融点金属含有量の
ものを使用したことを特徴とする多層膜分光反射鏡を要
旨とするものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to achieve the above object, and as a result, have found that the use of a Si compound in the light element layer solves the above problem. That is, the present invention relates to a multilayer spectroscopic element having a Bragg diffraction effect, wherein Mo is selected as a heavy element layer.
And a group consisting of Hf, Mo, Ti and Ta in the light element layer.
Among the refractory metal silicides selected from
1.5 hours after heating at 600 ° C for 1 hour
4 ° X-ray reflectivity change rate
The present invention provides a multilayer spectral reflection mirror characterized by using the above.

【0007】[0007]

【作用】Siの融点は1410℃程度であるが、Siの
化合物とすることで融点が高くなるものがある。例え
ば、SiO2は1550℃、溶融(fused)SiO2は約
1700℃、TiSi2は1540℃、Ti5Si3は2
120℃、MoSi2は1980℃、B6Siは1950
℃、Si34は1900℃、VSi2は1750℃、V3
Siは約1730℃、V5Si3は2150℃、HfSi
は2600℃の融点を有する。
The melting point of Si is about 1410 ° C., but the use of a compound of Si may increase the melting point. For example, SiO 2 is 1550 ° C., fused SiO 2 is about 1700 ° C., TiSi 2 is 1540 ° C., Ti 5 Si 3 is 2
120 ° C., 1980 ° C. for MoSi 2 , 1950 for B 6 Si
° C, 1900 ° C for Si 3 N 4 , 1750 ° C for VSi 2 , V 3
Si is about 1730 ° C, V 5 Si 3 is 2150 ° C, HfSi
Has a melting point of 2600 ° C.

【0008】従って、重元素層にSiよりも融点の高い
材料を用い、かつ、軽元素層にSiを用いた従来の多層
膜に対して、軽元素層にSi化合物を用いた多層膜で
は、多層膜の耐熱性が向上されることになる。即ち、従
来の多層膜と本発明の多層膜とを比較した場合、本発明
の多層膜では経時変化が少なくなくなる。このような本
発明の多層膜を、(1)X線・軟X線を利用した各種分
析に適用させた場合、多層膜の耐熱性が軽元素層にSi
を用いた多層膜よりも向上するため、反射率の変化が少
なくなり、精度や確度が向上する。(2)X線リソグラ
フィーに適用させた場合、従来の多層膜よりも(1)と
同様の理由で反射率の変化が少なくなり、適正露光時間
を正確に決められるようになる。(3)更に多層膜自身
の寿命が延びるなどの効果を有することとなる。
Therefore, in contrast to a conventional multilayer film using a material having a higher melting point than Si for the heavy element layer and using Si for the light element layer, a multilayer film using a Si compound for the light element layer has The heat resistance of the multilayer film is improved. That is, when the conventional multilayer film is compared with the multilayer film of the present invention, the multilayer film of the present invention has less change with time. When such a multilayer film of the present invention is applied to (1) various analyzes using X-rays and soft X-rays, the heat resistance of the multilayer film is lower than that of the light element layer by Si.
Therefore, the change in reflectance is reduced, and the accuracy and accuracy are improved. (2) When applied to X-ray lithography, the change in reflectance is smaller than that of the conventional multilayer film for the same reason as in (1), and the appropriate exposure time can be determined accurately. (3) Further, there is an effect that the life of the multilayer film itself is extended.

【0009】[0009]

【実施例】次に本発明の代表的な実施例について説明す
る。
Next, typical embodiments of the present invention will be described.

【0010】参考例 スパッタリング法により重元素層としてMoを用い、軽
元素層にSiO2、溶融SiO2、B6Si及びSi34
を用いた多層膜を作製した。また対照として軽元素層に
Siを使用した多層膜を作製した。それぞれの周期長は
約70Å、重元素層と軽元素層の層厚の比率は1:2、
重元素層と軽元素層のペアの数を30とした。これらの
多層膜をAr雰囲気中、種々の温度で1時間熱処理し
た。そのときのX線(1.54Å)反射率の変化を測定
した。図1に反射率の変化と熱処理温度との関係を示
す。同図において、反射率の変化が少ない程耐熱性に優
れていることを示すものである。高温での熱処理でもM
o/Si化合物多層膜はMo/Si多層膜に比べ反射率
の低下は少なく、耐熱性に優れていることが確認され
た。
Reference Example Mo was used as a heavy element layer by sputtering, and SiO 2 , fused SiO 2 , B 6 Si and Si 3 N 4 were used for a light element layer.
Was used to produce a multilayer film. As a control, a multilayer film using Si as a light element layer was prepared. Each period length is about 70 °, the ratio of the layer thickness of the heavy element layer to the light element layer is 1: 2,
The number of pairs of the heavy element layer and the light element layer was set to 30. These multilayer films were heat-treated for 1 hour at various temperatures in an Ar atmosphere. The change in the X-ray (1.54 °) reflectance at that time was measured. FIG. 1 shows the relationship between the change in reflectance and the heat treatment temperature. In the figure, it is shown that the smaller the change in reflectance, the better the heat resistance. M even in heat treatment at high temperature
It was confirmed that the o / Si compound multilayer film had less decrease in reflectance than the Mo / Si multilayer film and was excellent in heat resistance.

【0011】実施例 参考例 と同様に、重元素層としてMoを用い、軽元素層
にHfxSi100-xを使用して多層膜を作製した。それぞ
れの周期長は約70Å、重元素層と軽元素層の層厚の比
率は1:2、重元素層と軽元素層のペアの数は30と
し、xの値を0から100までの間で変化させた。これ
らの多層膜をAr雰囲気中、600℃で1時間熱処理し
た。そのときのX線(1.54Å)反射率の変化を測定
した。図2に熱処理後の反射率/熱処理前の反射率と組
成との関係を示す。反射率の熱処理前後の比が1に近い
程耐熱性に優れていることを示す。Hf濃度の増加とと
もに反射率の低下が少なくなり、図2に示したように、
Si 3 4 を用いた場合(約0.5)より耐熱性に優れる
濃度範囲が存在することが確認された。
[0011] Similar to Example 1 Reference Example, using Mo as the heavy element layer to prepare a multilayer film using Hf x Si 100-x to the light element layer. Each period length is about 70 °, the ratio of the thickness of the heavy element layer to the light element layer is 1: 2, the number of pairs of the heavy element layer and the light element layer is 30, and the value of x is from 0 to 100. Was changed. These multilayer films were heat-treated at 600 ° C. for 1 hour in an Ar atmosphere. The change in the X-ray (1.54 °) reflectance at that time was measured. FIG. 2 shows the relationship between the composition after heat treatment / reflectance before heat treatment and composition. The closer the ratio of the reflectance before and after the heat treatment to 1, the more excellent the heat resistance. As the Hf concentration increases, the decrease in the reflectance decreases, and as shown in FIG.
Superior heat resistance when using Si 3 N 4 (about 0.5)
It was confirmed that there was a concentration range .

【0012】実施例 参考例 と同様に、重元素層としてMoを用い、軽元素層
にMoxSi100-xを使用して多層膜を作製した。それぞ
れの周期長は約70Å、重元素層と軽元素層の層厚の比
率は2:3、重元素層と軽元素層のペアの数は30と
し、xの値を0から90までの間で変化させた。これら
の多層膜をAr雰囲気中、600℃で1時間熱処理し
た。そのときのX線(1.54Å)反射率の変化を測定
した。図3に熱処理後の反射率/熱処理前の反射率と組
成との関係を示す。反射率の熱処理前後の比が1に近い
程耐熱性に優れていることを示す。Mo濃度の増加とと
もに反射率の低下が少なくなり、図3に示したように、
Si 3 4 を用いた場合(約0.5)より耐熱性に優れる
濃度範囲が存在することが確認された。
Example 2 In the same manner as in the reference example , a multilayer film was formed by using Mo for the heavy element layer and Mo x Si 100-x for the light element layer. Each period length is about 70 °, the ratio of the thickness of the heavy element layer to the light element layer is 2: 3, the number of pairs of the heavy element layer and the light element layer is 30, and the value of x is from 0 to 90. Was changed. These multilayer films were heat-treated at 600 ° C. for 1 hour in an Ar atmosphere. The change in the X-ray (1.54 °) reflectance at that time was measured. FIG. 3 shows the relationship between the composition after heat treatment / reflectance before heat treatment and composition. The closer the ratio of the reflectance before and after the heat treatment to 1, the more excellent the heat resistance. As the Mo concentration increases, the decrease in the reflectance decreases, and as shown in FIG.
Superior heat resistance when using Si 3 N 4 (about 0.5)
It was confirmed that there was a concentration range .

【0013】実施例 参考例 と同様に、重元素層としてMoを用い、軽元素層
にTixSi100-xを使用して多層膜を作製した。それぞ
れの周期長は約70Å、重元素層と軽元素層の層厚の比
率は2:3、重元素層と軽元素層のペアの数は30と
し、xの値を0から80までの間で変化させた。これら
の多層膜をAr雰囲気中、600℃で1時間熱処理し
た。そのときのX線(1.54Å)反射率の変化を測定
した。図4に熱処理後の反射率/熱処理前の反射率と組
成との関係を示す。反射率の熱処理前後の比が1に近い
程耐熱性に優れていることを示す。Ti濃度の増加とと
もに反射率の低下が少なくなり、図4に示したように、
Si 3 4 を用いた場合(約0.5)より耐熱性に優れる
濃度範囲が存在することが確認された。
Example 3 In the same manner as in the reference example , a multilayer film was formed by using Mo for the heavy element layer and using Ti x Si 100-x for the light element layer. Each period length is about 70 °, the ratio of the thickness of the heavy element layer to the light element layer is 2: 3, the number of pairs of the heavy element layer and the light element layer is 30, and the value of x is from 0 to 80. Was changed. These multilayer films were heat-treated at 600 ° C. for 1 hour in an Ar atmosphere. The change in the X-ray (1.54 °) reflectance at that time was measured. FIG. 4 shows the relationship between the composition after heat treatment / reflectance before heat treatment and composition. The closer the ratio of the reflectance before and after the heat treatment to 1, the more excellent the heat resistance. As the Ti concentration increases, the decrease in the reflectance decreases, and as shown in FIG.
Superior heat resistance when using Si 3 N 4 (about 0.5)
It was confirmed that there was a concentration range .

【0014】実施例 参考例 と同様に、重元素層としてMoを用い、軽元素層
にTaxSi100-xを使用して多層膜を作製した。それぞ
れの周期長は約70Å、重元素層と軽元素層の層厚の比
率は2:3、重元素層と軽元素層のペアの数は30と
し、xの値を0から100までの間で変化させた。これ
らの多層膜をAr雰囲気中、600℃で1時間熱処理し
た。そのときのX線(1.54Å)反射率の変化を測定
した。図5に熱処理後の反射率/熱処理前の反射率と組
成との関係を示す。反射率の熱処理前後の比が1に近い
程耐熱性に優れていることを示す。Ta濃度の増加とと
もに反射率の低下が少なくなり、図5に示したように、
Si 3 4 を用いた場合(約0.5)より耐熱性に優れる
濃度範囲が存在することが確認された。
Example 4 In the same manner as in the reference example , a multilayer film was formed by using Mo for the heavy element layer and using Ta x Si 100-x for the light element layer. Each period length is about 70 °, the ratio of the thickness of the heavy element layer to the light element layer is 2: 3, the number of pairs of the heavy element layer and the light element layer is 30, and the value of x is from 0 to 100. Was changed. These multilayer films were heat-treated at 600 ° C. for 1 hour in an Ar atmosphere. The change in the X-ray (1.54 °) reflectance at that time was measured. FIG. 5 shows the relationship between the composition after heat treatment / reflectance before heat treatment and composition. The closer the ratio of the reflectance before and after the heat treatment to 1, the more excellent the heat resistance. As the Ta concentration increases, the decrease in the reflectance decreases, and as shown in FIG.
Superior heat resistance when using Si 3 N 4 (about 0.5)
It was confirmed that there was a concentration range .

【0015】[0015]

【発明の効果】以上述べたように、本発明の多層膜は、
軽元素層にSiを使用した多層膜に比較して耐熱性が向
上している。このため、このような多層膜を(1)X線
・軟X線を利用した各種分析に適用させた場合、多層膜
の耐熱性が軽元素層にSiを用いた多層膜よりも向上す
るため、耐熱性の向上から反射率の変化が少なくなり、
精度や確度が向上する。(2)X線リソグラフィーに適
用させた場合、軽元素層にSiを用いた多層膜よりも
(1)と同様の理由で反射率の変化が少なくなり、適正
露光時間を正確に決められるようになる。(3)更に多
層膜自身の寿命が延びるなどの効果を有することとな
る。上記の実施例では2元化合物の場合について述べた
が、これらに他の元素を加えて融点が更に向上する場合
は3元以上の化合物を軽元素層に適用しても効果がある
こと、また、重元素層に実施例以外の元素や化合物でS
iより融点の高い材料を使用した場合にも効果があるこ
とは言うまでもない。
As described above, the multilayer film of the present invention has
Heat resistance is improved as compared with a multilayer film using Si as the light element layer. Therefore, when such a multilayer film is applied to (1) various analyses using X-rays and soft X-rays, the heat resistance of the multilayer film is improved as compared with the multilayer film using Si as the light element layer. , The change in reflectance is reduced due to the improved heat resistance,
Accuracy and accuracy are improved. (2) When applied to X-ray lithography, the change in reflectance is smaller than that of the multilayer film using Si as the light element layer for the same reason as in (1), so that the appropriate exposure time can be determined accurately. Become. (3) Further, there is an effect that the life of the multilayer film itself is extended. In the above embodiment, the case of a binary compound was described. However, when the melting point is further improved by adding another element to these, it is effective to apply a ternary or more compound to the light element layer. , An element or compound other than the examples in the heavy element layer
Needless to say, the effect is also obtained when a material having a melting point higher than i is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の多層膜と参考例に示した多層膜のX線反
射率の熱処理温度との関係を示した図である。
FIG. 1 is a diagram showing the relationship between the X-ray reflectivity of a conventional multilayer film and the heat treatment temperature of the multilayer film shown in Reference Example .

【図2】軽元素層にHf−Si化合物を用いた場合の熱
処理前後の反射率の変化とHf濃度との関係を示した図
である。
FIG. 2 is a diagram showing a relationship between a change in reflectance before and after heat treatment and an Hf concentration when an Hf—Si compound is used for a light element layer.

【図3】軽元素層にMo−Si化合物を用いた場合の熱
処理前後の反射率の変化とMo濃度との関係を示した図
である。
FIG. 3 is a diagram showing a relationship between a change in reflectance before and after a heat treatment and a Mo concentration when a Mo—Si compound is used for a light element layer.

【図4】軽元素層にTi−Si化合物を用いた場合の熱
処理前後の反射率の変化とTi濃度との関係を示した図
である。
FIG. 4 is a diagram showing a relationship between a change in reflectance before and after heat treatment and a Ti concentration when a Ti—Si compound is used for a light element layer.

【図5】軽元素層にTa−Si化合物を用いた場合の熱
処理前後の反射率の変化とTa濃度との関係を示した図
である。
FIG. 5 is a diagram showing a relationship between a change in reflectance before and after heat treatment and a Ta concentration when a Ta-Si compound is used for a light element layer.

フロントページの続き (56)参考文献 特開 平3−240000(JP,A) 特開 昭63−161403(JP,A) 特開 昭63−88502(JP,A) 特開 平1−321399(JP,A) 特開 平1−309000(JP,A) 特開 昭63−266397(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21K 1/06 Continuation of the front page (56) References JP-A-3-240000 (JP, A) JP-A-63-161403 (JP, A) JP-A-63-88502 (JP, A) JP-A-1-321399 (JP, A) , A) JP-A-1-3099000 (JP, A) JP-A-63-266697 (JP, A) (58) Fields studied (Int. Cl. 7 , DB name) G21K 1/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ブラッグ回折効果を有する多層膜分光素
であって、重元素層としてMoを選択し、軽元素層に
Hf、Mo、Ti及びTaからなる群から選択される高
融点金属のシリサイドのうち、窒化珪素を用いたものよ
りも600℃、1時間加熱後の1.54ÅのX線の反射
率変化率が優れる高融点金属含有量のものを使用したこ
とを特徴とする多層膜分光反射鏡。
1. A multilayer spectroscopic element having a Bragg diffraction effect, wherein Mo is selected as a heavy element layer, and Mo is selected as a light element layer.
High selected from the group consisting of Hf, Mo, Ti and Ta
Among the silicides of the melting point metal, those using silicon nitride
1.54 ° X-ray reflection after heating at 600 ° C for 1 hour
A multilayer spectroscopic reflector comprising a high melting point metal having an excellent rate of change .
JP04050797A 1992-03-09 1992-03-09 Multi-layer spectral reflector Expired - Lifetime JP3097780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04050797A JP3097780B2 (en) 1992-03-09 1992-03-09 Multi-layer spectral reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04050797A JP3097780B2 (en) 1992-03-09 1992-03-09 Multi-layer spectral reflector

Publications (2)

Publication Number Publication Date
JPH05249297A JPH05249297A (en) 1993-09-28
JP3097780B2 true JP3097780B2 (en) 2000-10-10

Family

ID=12868787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04050797A Expired - Lifetime JP3097780B2 (en) 1992-03-09 1992-03-09 Multi-layer spectral reflector

Country Status (1)

Country Link
JP (1) JP3097780B2 (en)

Also Published As

Publication number Publication date
JPH05249297A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
US20090130569A1 (en) Adjustable Mask Blank Structure for an Euv Phase-Shift Mask
US8891163B2 (en) Reflective optical element and EUV lithography appliance
CN112997116A (en) Reflective photomask blank and reflective photomask
US5528654A (en) Multilayer film for X-rays
JP3097780B2 (en) Multi-layer spectral reflector
JP3097778B2 (en) Multi-layer spectral reflector
JP2545905B2 (en) Reflective mask and exposure method using the same
JP2004334177A (en) Optical device with enhanced mechanical stability that operates in extreme ultraviolet and lithography mask incorporating the device
JP2831349B2 (en) Multilayer reflector for X-ray or vacuum ultraviolet
JPH09230098A (en) Multilayer film x-ray reflecting mirror
JP2995371B2 (en) X-ray reflector material
JPH044721B2 (en)
JP3169191B2 (en) Multi-layer spectral reflector
JP3033323B2 (en) Method for manufacturing X-ray multilayer mirror
Kaiser et al. Si-based multilayers with high thermal stability
JPH0862393A (en) Multilayer film x-ray reflecting mirror
JP3294976B2 (en) Phase shift mask and phase shift mask blank
JP3097776B2 (en) Multi-layer spectral reflector
CA1134069A (en) Acid phthalate crystal
Matsushita A method of obtaining a highly parallel and monochromatic X-ray beam by successive diffraction
JP2535038B2 (en) Multi-layer film mirror for X-ray / VUV
JPH09142996A (en) Reflection type mask substrate
JP3265030B2 (en) X-ray spectral reflector
JP4343895B2 (en) Multilayer mirror for soft X-ray
JPH0441490B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12