JP3097154B2 - Phase detector for rotating electric machines - Google Patents

Phase detector for rotating electric machines

Info

Publication number
JP3097154B2
JP3097154B2 JP03076727A JP7672791A JP3097154B2 JP 3097154 B2 JP3097154 B2 JP 3097154B2 JP 03076727 A JP03076727 A JP 03076727A JP 7672791 A JP7672791 A JP 7672791A JP 3097154 B2 JP3097154 B2 JP 3097154B2
Authority
JP
Japan
Prior art keywords
phase
signal
rotating electric
electric machine
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03076727A
Other languages
Japanese (ja)
Other versions
JPH04287834A (en
Inventor
秋山和成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP03076727A priority Critical patent/JP3097154B2/en
Publication of JPH04287834A publication Critical patent/JPH04287834A/en
Application granted granted Critical
Publication of JP3097154B2 publication Critical patent/JP3097154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はターボチャージャに取付
けられた回転電機の位相を検出する回転電機の位相検出
装置に関する。 【0002】 【従来の技術】近年、エンジンの排気エネルギーを回収
してエンジンの吸気圧を高めるターボチャージャが広く
使用されており、このターボチャージャの回転軸に電動
−発電機となる回転電機を取付け、エンジンの運転状態
に応じて電動駆動により過給圧を増大させたり、または
発電作動させその電力によってバッテリの充電などを行
っている。 【0003】このような回転電機ではその回転数が毎分
十数万回にも達する超高速回転のため、電動駆動時には
固定子に対応する回転子の位相を細かくチェックしない
と十分な制御が行えないことになる。 【0004】このため、ターボチャージャのコンプレッ
サブレードの背面にセラミック板で保護した磁性体薄膜
を固定し、その回転による磁気変化を検出する磁気セン
サを備えた回転電機付ターボチャージャの提案が特開昭
63−302132号公報に示されている。 【0005】そして、上述のような磁気センサは通常、
磁性体の回転による磁気変化を回転電機本体に取付けら
れたコイルの電磁誘導作用によって検知し、該検知によ
る電圧変化の信号をコントローラなどに導き、その入力
段のコンパレータの回路を介してパルス化を行い、該パ
ルス信号によって位相を検出している。 【0006】 【発明が解決しようとする課題】この種のパルス信号を
用いる検出装置では、例えば、前述のコイルからの信号
極性を誤って逆極性にしてコンパレータ回路に導入する
と、生ずるパルスの位相が、タービン回転数の高低によ
ってズレが発生するという欠点がある。 【0007】図4および図5は信号極性の正負に応じて
生ずる位相ズレの説明図であり、磁気変化を検知するコ
イルは磁界の変化を検出して+,−の図4(A)に示す
パルス波形を発し、これによりコンパレータ回路からは
+側の波形に対応する正規の出力が得られるが、パルス
波形を逆極性にすると、コンパレータ回路は半サイクル
遅れた+側の波形に対応し、図4(B)に示すコンパレ
ータ出力を発生する。 【0008】このようなコンパレータ回路の作動による
出力波形を、回転電機の高速回転時と低速回転時とによ
り比較してみると、図5に示すよう磁気センサ(ポジシ
ョンセンサ)からのパルス波形か正極性の場合には、高
速および低速回転時でのコンパレータ出力のパルス幅は
それぞれ異なるものの、その立上りは同一となって位相
ズレの発生がなく、一方、コイルからのパルス波形を逆
極性にすると、低速の場合には立上りが大きくズレて遅
くなり、図示のように位相ズレを生じて十分な回転電機
の制御が行えないという不具合がある。 【0009】このような位相ズレ発生の防止には、回転
電機の磁気センサとコンパレータ回路を有するコントロ
ーラとの結線時に、信号極性の確認の手数を必要とす
る。したがって、本発明の目的はこのような極性確認の
手数を省いても、位相ズレの発生が防止できるような回
転電機の位相検出装置を提供することにある。 【課題を解決するための手段】 【0010】上述の目的を達成するために本発明によれ
ば、ターボチャージャの回転軸に配置した回転電機の回
転子の回転に基づく位相を電磁的な検知手段により検知
する回転電機の位相検出装置において、前記検知手段か
らの信号を全波整流する整流手段と、該整流手段からの
出力に対応するパルス信号を発生せしめて成形しその立
上りを検出する位相検出手段とを設けた回転電機の位相
検出装置が提供される。 【0011】 【実施例】つぎに本発明の実施例について図面を用いて
詳細に説明する。 【0012】図1は本発明にかかる回転電機の位相検出
装置の一実施例の構成を示すブロック図、図2はその作
動を示す波形図である。 【0013】こちらの図面において、1は回転電機(T
CG)であり、図示していないエンジンの排気エネルギ
ーにより高速回転に駆動されるタービンと、該タービン
軸に設けられたコンプレッサとを有するターボチャージ
ャの回転軸に配置されており、その電動駆動によって過
給作動を助勢したり、または発電作動によって排気エネ
ルギーを電力として回収するものである。 【0014】2はコントローラの位相検出部で、回転電
機1の電磁的な検知手段となるポジションセンサからの
信号を入力して全波整流を行う全波整流回路21、該全
波整流回路21からの整流信号を入力してパルスを出力
するコンパレータ22、該パルスを成形するパルス発生
成形回路23、成形されたパルスの立上りを検出する位
相補正回路24などを有しており、位相補正回路からの
検出信号はコントローラの電力制御部に導かれるように
構成されている。 【0015】つぎにこのように構成された本実施例の作
動を図2を用いて説明すると、回転電機1のポジション
センサからの正負の信号は、まず全波整流回路21によ
り整流されて、図示のように+方向の双峰型の波形に変
換される。ついで、該波形の信号に対応するパルスがコ
ンパレータ22によって出力され、パルス発生成形回路
23ではこの出力信号に対応する幅の広い信号に成形し
て位相補正回路24に送出する。 【0016】成形された信号を入力した位相補正回路で
は、この信号の立上りを検出し、該立上りに対応するタ
イミングの位相信号をコントローラの電力制御部に入力
することにより、回転電機1の回転子の位相が正確に判
定できることになる。 【0017】図3はこのような実施例が適用されるター
ボチャージャの一例を示す断面図であり、ターボチャー
ジャ10はそのタービン軸11に回転電機1を備えてお
り、該ターボチャージャ10のコンプレッサブレード1
2の背面に点状の磁性体13が埋め込まれ、そのスクロ
ール14の部分にポジションセンサとなるコイル15が
取付けられている。 【0018】このように構成された回転電機付ターボチ
ャージャでは、回転電機1の回転、すなわちコンプレッ
サブレード12の回転に応じて発生するコイル15から
の検出信号を、本実施例の位相検出部に導入することに
より、上述したように該検出信号の極性の正負の如何に
拘らず、回転子の位相が正しく検出できることになる。 【0019】以上、本実施例ではターボチャージャに取
付けた回転電機の位相検出用として説明したが、本発明
は一般の回転する電動機構の回転子の位相検出に応用で
きるものであり、このような応用、または本発明の主旨
の範囲内における種々の変形は、本発明の範囲から排除
するものではない。 【0020】 【発明の効果】上述のように本発明によれば、回転電機
のポジションセンサからの信号を全波整流回路により整
流した後、コンパレータやパルス発生成形回路を介し、
位相補正回路により立上りを検出して位相を求めるの
で、ポジションセンサからの信号が逆極性となっても全
波整流されると正極性の場合と同様な信号が得られるこ
とになり、したがって、回転電機とコントローラとの接
続に際しては信号ラインの極性確認の手数が省け、配線
作業の簡略化が行えるという効果が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase detector for a rotating electric machine for detecting the phase of a rotating electric machine mounted on a turbocharger. 2. Description of the Related Art In recent years, turbochargers for recovering the exhaust energy of an engine to increase the intake pressure of the engine have been widely used, and a rotating electric machine serving as an electric-generator is mounted on a rotating shaft of the turbocharger. According to the operating state of the engine, the supercharging pressure is increased by electric driving, or the electric power is activated to charge the battery with the electric power. [0003] In such a rotating electric machine, since its rotation speed is as high as several hundred thousand rotations per minute, sufficient control can be performed unless the phase of the rotor corresponding to the stator is carefully checked during electric driving. Will not be. For this reason, a turbocharger with a rotating electric machine has been proposed in which a magnetic thin film protected by a ceramic plate is fixed to the back of a compressor blade of a turbocharger, and a magnetic sensor for detecting a magnetic change due to the rotation is provided. 63-302132. [0005] And, the magnetic sensor as described above is usually
The magnetic change due to the rotation of the magnetic body is detected by the electromagnetic induction action of the coil attached to the rotating electric machine body, the signal of the voltage change due to the detection is guided to a controller or the like, and the signal is pulsed through a comparator circuit at the input stage. The phase is detected by the pulse signal. In a detection apparatus using this kind of pulse signal, for example, if the polarity of the signal from the above-mentioned coil is erroneously reversed and introduced into the comparator circuit, the phase of the generated pulse is changed. However, there is a drawback that a shift occurs due to the level of the turbine speed. FIGS. 4 and 5 are diagrams for explaining a phase shift occurring in accordance with the polarity of the signal polarity. The coil for detecting a magnetic change detects a change in a magnetic field and shows + and-in FIG. 4 (A). A regular output corresponding to the positive waveform is obtained from the comparator circuit, but if the pulse waveform is reversed, the comparator circuit will respond to the positive waveform delayed by half a cycle. 4 (B) is generated. When the output waveform of the operation of the comparator circuit is compared between when the rotating electric machine is rotating at a high speed and when it is rotating at a low speed, the pulse waveform from the magnetic sensor (position sensor) as shown in FIG. In the case of the characteristic, although the pulse width of the comparator output at the time of high-speed and low-speed rotation is different from each other, the rise is the same and there is no phase shift.On the other hand, if the pulse waveform from the coil is reversed, In the case of a low speed, there is a problem that the rise is greatly shifted and the speed is delayed, and a phase shift occurs as shown in the figure, so that sufficient control of the rotating electric machine cannot be performed. In order to prevent such a phase shift, it is necessary to confirm the signal polarity when connecting the magnetic sensor of the rotating electric machine to the controller having the comparator circuit. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a phase detection device for a rotating electrical machine that can prevent the occurrence of a phase shift even if such a step of checking the polarity is omitted. According to the present invention, there is provided an electromagnetic detecting means for detecting a phase based on the rotation of a rotor of a rotating electric machine arranged on a rotating shaft of a turbocharger. A rectifying means for full-wave rectifying a signal from the detecting means, and a phase detecting means for generating a pulse signal corresponding to the output from the rectifying means, shaping the signal, and detecting the rise of the pulse signal. And a phase detection device for a rotating electric machine provided with the means. Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an embodiment of a phase detecting device for a rotating electric machine according to the present invention, and FIG. 2 is a waveform diagram showing the operation thereof. In the drawings, reference numeral 1 denotes a rotating electric machine (T
CG), which is disposed on a rotating shaft of a turbocharger having a turbine driven at high speed by the exhaust energy of an engine (not shown) and a compressor provided on the turbine shaft. It assists the supply operation or recovers the exhaust energy as electric power by the power generation operation. Reference numeral 2 denotes a phase detector of the controller, which is a full-wave rectifier circuit 21 for inputting a signal from a position sensor serving as electromagnetic detection means of the rotating electric machine 1 to perform full-wave rectification. A rectifying signal, and outputs a pulse; a pulse generating / shaping circuit 23 for shaping the pulse; a phase correcting circuit 24 for detecting a rising edge of the shaped pulse; and the like. The detection signal is configured to be guided to a power control unit of the controller. Next, the operation of the embodiment constructed as described above will be described with reference to FIG. 2. Positive and negative signals from the position sensor of the rotating electric machine 1 are first rectified by the full-wave rectifier circuit 21 and are shown in FIG. Is converted into a bimodal waveform in the + direction as shown in FIG. Next, a pulse corresponding to the waveform signal is output by the comparator 22, and the pulse generation / shaping circuit 23 shapes the signal into a wide signal corresponding to the output signal, and sends the signal to the phase correction circuit 24. The phase correction circuit, which has received the shaped signal, detects the rise of this signal and inputs a phase signal at a timing corresponding to the rise to the power control unit of the controller, so that the rotor of the rotary electric machine 1 Can be accurately determined. FIG. 3 is a sectional view showing an example of a turbocharger to which such an embodiment is applied. A turbocharger 10 has a rotary electric machine 1 on a turbine shaft 11 thereof, and a compressor blade of the turbocharger 10. 1
A point-shaped magnetic body 13 is embedded in the back surface of the scroll 2, and a coil 15 serving as a position sensor is attached to the scroll 14. In the turbocharger with the rotating electric machine configured as described above, the detection signal from the coil 15 generated in accordance with the rotation of the rotating electric machine 1, that is, the rotation of the compressor blade 12, is introduced into the phase detecting section of the present embodiment. By doing so, the phase of the rotor can be correctly detected regardless of whether the polarity of the detection signal is positive or negative, as described above. Although the present embodiment has been described for detecting the phase of a rotating electric machine attached to a turbocharger, the present invention can be applied to the phase detection of a rotor of a general rotating electric mechanism. Various modifications within the scope of the application or the gist of the present invention are not excluded from the scope of the present invention. As described above, according to the present invention, after the signal from the position sensor of the rotating electric machine is rectified by the full-wave rectifier circuit, the rectified signal is transmitted through the comparator and the pulse generation and shaping circuit.
Since the rising is detected by the phase correction circuit and the phase is obtained, even if the signal from the position sensor has the opposite polarity, if full-wave rectification is performed, the same signal as in the case of the positive polarity will be obtained. In connection between the electric machine and the controller, it is possible to save the trouble of confirming the polarity of the signal line and to simplify the wiring operation.

【図面の簡単な説明】 【図1】本発明にかかる回転電機の位相検出装置の一実
施例の構成を示すブロック図である。 【図2】本実施例の作動を示す波形図である。 【図3】本実施例が適用されるターボチャージャの断面
図である。 【図4】信号極性の正負に応じて生ずる位相ズレの説明
図である。 【図5】信号極性の正負に応じて生ずる位相ズレの説明
図である。 【符号の説明】 1…回転電機 2…位相検出部 21…全波整流回路 22…コンパレータ 23…パルス発生成形回路 24…位相補正回路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of an embodiment of a phase detection device for a rotating electric machine according to the present invention. FIG. 2 is a waveform chart showing the operation of the present embodiment. FIG. 3 is a cross-sectional view of a turbocharger to which the embodiment is applied. FIG. 4 is an explanatory diagram of a phase shift occurring according to the positive or negative of the signal polarity. FIG. 5 is an explanatory diagram of a phase shift generated according to the positive or negative of the signal polarity. [Description of Signs] 1 ... rotating electric machine 2 ... phase detector 21 ... full-wave rectifier circuit 22 ... comparator 23 ... pulse generation / shaping circuit 24 ... phase correction circuit

Claims (1)

(57)【特許請求の範囲】 ターボチャージャの回転軸に配置した回転電機の回転子
の回転に基づく位相を電磁的な検知手段により検知する
回転電機の位相検出装置において、前記検知手段からの
信号を全波整流する整流手段と、該整流手段からの出力
に対応するパルス信号を発生せしめて成形しその立上り
を検出する位相検出手段とを設けたことを特徴とする回
転電機の位相検出装置。
(57) [Claim] A phase detection device for a rotating electrical machine that detects a phase based on rotation of a rotor of a rotating electrical machine disposed on a rotating shaft of a turbocharger by an electromagnetic detecting means, wherein a signal from the detecting means is provided. Rectifying means for performing full-wave rectification, and phase detecting means for generating and shaping a pulse signal corresponding to the output from the rectifying means and detecting the rise thereof.
JP03076727A 1991-03-16 1991-03-16 Phase detector for rotating electric machines Expired - Fee Related JP3097154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03076727A JP3097154B2 (en) 1991-03-16 1991-03-16 Phase detector for rotating electric machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03076727A JP3097154B2 (en) 1991-03-16 1991-03-16 Phase detector for rotating electric machines

Publications (2)

Publication Number Publication Date
JPH04287834A JPH04287834A (en) 1992-10-13
JP3097154B2 true JP3097154B2 (en) 2000-10-10

Family

ID=13613605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03076727A Expired - Fee Related JP3097154B2 (en) 1991-03-16 1991-03-16 Phase detector for rotating electric machines

Country Status (1)

Country Link
JP (1) JP3097154B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5052299B2 (en) * 2007-11-20 2012-10-17 ヤンマー株式会社 engine
JP5178693B2 (en) * 2009-11-16 2013-04-10 三菱電機株式会社 Electric supercharger control device

Also Published As

Publication number Publication date
JPH04287834A (en) 1992-10-13

Similar Documents

Publication Publication Date Title
JPS5918583U (en) Starter - an electrical device that includes a mechanical-electrical converter that can operate as a generator
CN111830435A (en) Open-circuit fault diagnosis method for power tube of six-phase permanent magnet fault-tolerant motor system
EP0522819B1 (en) Drive system for turbocharger with rotary electric machine
JP3097154B2 (en) Phase detector for rotating electric machines
CN102969970A (en) Motor efficiency tracking driving system and driving method
US9212602B2 (en) Electric motor control apparatus and electric supercharging apparatus using electric motor control apparatus
CN101694980A (en) Control device and operating method of bicycle switched reluctance motor
JP5178693B2 (en) Electric supercharger control device
JP2903696B2 (en) Control device for turbocharger with rotating electric machine
JPH04311628A (en) Phase correcting device of dynamo-electric machine
JP3189529B2 (en) Warning device for rotary electric machine for turbocharger
JP2658194B2 (en) Drive device for turbocharger with rotating electric machine
JPH0518257A (en) Method for returning from turbine rotation abnormality case of turbocharger with rotary electric machine
JPH06113598A (en) Drive controller for synchronous motor mechanism
JPH0579340A (en) Position sensor of turbo charger with dynamo-electric machine
JPH04123333U (en) Control signal detection device for rotating electrical machines
JPS61210889A (en) Motor drive controller
JPH0650160A (en) Excessive rotation preventing device for turbocharger
JPH01218379A (en) Motor driving circuit
JP2504069B2 (en) Control device for turbocharger with rotating electric machine
JPH05256156A (en) Phase correcting device for electric rotary machine
JP3113528B2 (en) Waste heat utilization equipment
JPH01214286A (en) Idling state detector for induction motor
JPS63272907A (en) Control device for turbocharger provided with rotary electrical machine
JPH08177508A (en) Control device of turbocharger having motor-driven generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees