JP3096181B2 - Coriolis flow meter - Google Patents

Coriolis flow meter

Info

Publication number
JP3096181B2
JP3096181B2 JP04351246A JP35124692A JP3096181B2 JP 3096181 B2 JP3096181 B2 JP 3096181B2 JP 04351246 A JP04351246 A JP 04351246A JP 35124692 A JP35124692 A JP 35124692A JP 3096181 B2 JP3096181 B2 JP 3096181B2
Authority
JP
Japan
Prior art keywords
measurement
tube
pipe
support
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04351246A
Other languages
Japanese (ja)
Other versions
JPH06174515A (en
Inventor
胖 小川
信吾 五味
正一 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP04351246A priority Critical patent/JP3096181B2/en
Publication of JPH06174515A publication Critical patent/JPH06174515A/en
Application granted granted Critical
Publication of JP3096181B2 publication Critical patent/JP3096181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、コリオリ流量計に関し、より詳
細には、測定流体の温度圧力等の環境の影響を受けない
高感度な直管式のコリオリ流量計の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Coriolis flow meter, and more particularly to a structure of a highly sensitive straight tube type Coriolis flow meter which is not affected by the environment such as the temperature and pressure of a measurement fluid.

【0002】[0002]

【従来技術】測定管を両端で支持し、支持された測定管
の中央部を支持線に垂直な方向に交番駆動することによ
り、測定管の支持部と中央部との間において位相差が生
ずる。この位相差は、コリオリの力に基づくもので、駆
動周波数と質量流量とに比例した値であり、前記位相差
を検知して質量流量を計測する直管式のコリオリ流量計
は周知である。
2. Description of the Related Art A phase difference is generated between a support portion and a central portion of a measuring tube by supporting the measuring tube at both ends and alternately driving a central portion of the supported measuring tube in a direction perpendicular to a support line. . This phase difference is based on the Coriolis force, and is a value proportional to the drive frequency and the mass flow rate. A straight pipe type Coriolis flow meter that detects the phase difference and measures the mass flow rate is well known.

【0003】直管方式のコリオリ流量計では、形状は最
も単純な直管であり、流れ方向と垂直な方向では小形に
することができるが、測定管の軸に垂直な方向では該測
定管の剛性が高く、高感度に検出するためには流れ方向
に長くする必要があり、形状としては必ずしも有利とな
るものではなく、更に共振周波数が低下するので、外部
振動影響を受け易い。直管方式のコリオリ流量計の従来
例として、特開昭63−158419号公報に記載され
たコリオリ流量計は、円筒状の支持管内に両端を支持し
た少くとも1つの測定管を有し、測定管の支持部に環状
のダイヤフラムを設け、環状ダイヤフラムを介して測定
管を支持管に懸架したものである。これによると、両端
固定された場合の測定管は温度に依存して機械的な応力
が生じ、これにより固有振動数が変化し、更には、測定
管の振動エネルギーが支持管および接続導管に伝達す
る。これを改善するため、環状ダイヤフラムの弾性変形
を利用して、これにより上記の問題点を除去するもので
ある。
In a straight pipe type Coriolis flowmeter, the shape is the simplest straight pipe, and it can be small in a direction perpendicular to the flow direction, but it can be small in a direction perpendicular to the axis of the measurement pipe. The rigidity is high, and it is necessary to lengthen it in the flow direction in order to detect it with high sensitivity. The shape is not always advantageous, and the resonance frequency is further reduced, so that it is easily affected by external vibration. As a conventional example of a straight tube type Coriolis flowmeter, a Coriolis flowmeter described in Japanese Patent Application Laid-Open No. 63-158419 has at least one measurement tube having both ends supported in a cylindrical support tube, and performs measurement. An annular diaphragm is provided in a support portion of the tube, and the measurement tube is suspended from the support tube via the annular diaphragm. According to this, when the measurement tube is fixed at both ends, a mechanical stress is generated depending on the temperature, which changes the natural frequency, and furthermore, the vibration energy of the measurement tube is transmitted to the support tube and the connection tube. I do. In order to improve this, the elastic deformation of the annular diaphragm is used, thereby eliminating the above-mentioned problems.

【0004】しかし、上記の質量流れ測定器は、環状ダ
イヤフラムを節部として測定管の中央部で該測定管の軸
と直角な方向に振動するので、前記環状ダイヤフラムの
節部支持部分に応力が集中し、この部分の疲労強度が弱
くなるという問題がある。また、上記従来例のコリオリ
流量計においては、コリオリの力による位相差が小さ
く、感度が悪い。感度を上げるためには、測定管の内径
を小さくして流速をあげるか、又は測定管を薄内パイプ
として曲げ剛性を下げるかを選択しなければならない。
流速を増大させると、圧力損失が大きくなり、更には流
体流れによる振動も大きくなり、SN比が低下する。薄
肉パイプにすると、測定流体の圧力によりパイプ径が変
化し、固有振動数が変るだけでなく、曲げ剛性も変化
し、精度を低下させるという問題点があった。
However, in the mass flow measuring device described above, the annular diaphragm vibrates in the direction perpendicular to the axis of the measuring tube at the center of the measuring tube with the annular diaphragm as a node, so that the stress is applied to the node supporting portion of the annular diaphragm. There is a problem that concentration is caused and the fatigue strength of this portion is weakened. Further, in the above-described conventional Coriolis flowmeter, the phase difference due to the Coriolis force is small, and the sensitivity is poor. In order to increase the sensitivity, it is necessary to select whether to increase the flow velocity by reducing the inner diameter of the measuring tube or to reduce the bending rigidity by using the measuring tube as a thin inner pipe.
When the flow velocity is increased, the pressure loss increases, and the vibration caused by the fluid flow also increases, and the SN ratio decreases. When a thin pipe is used, the diameter of the pipe changes due to the pressure of the measurement fluid, and not only the natural frequency changes, but also the bending rigidity changes, and there is a problem in that the accuracy is reduced.

【0005】[0005]

【目的】本発明は、上述の問題点に鑑みてなされたもの
で、温度,圧力等の環境影響を受けることなく、高感度
な直管式のコリオリ流量計を提供することを目的とする
ものである。
The present invention has been made in view of the above problems, and has as its object to provide a highly sensitive straight tube type Coriolis flowmeter without being affected by the environment such as temperature and pressure. It is.

【0006】[0006]

【構成】本発明は、上記目的を達成するために、(1)
測定流体が流れる配管に接続される支持筒と、該支持筒
の内径より小さい外径で測定流体が流れる測定管と、前
記支持筒内に軸方向のみに移動可能に前記測定管の両端
を同軸に支持し、前記支持管体と測定管内に連通する透
孔を少くとも何れか一端側に開口する板ばねと、該板ば
ねを節部とし、前記測定管の中央部を軸と直角方向に駆
動する加振手段と、該加振手段と前記板ばねとの間に配
設され、前記測定管に作用するコリオリの力に基づく測
定管の位相差を検出する検出器とからなること、更に
は、(2)前記(1)において、前記測定管内に、該測
定管の断面を測定流体の流れ方向に平行で、加振方向に
直角に複数に区画する分流板を配設したことを特徴とす
るものであり、以下、本発明の実施例に基いて説明す
る。
To achieve the above object, the present invention provides (1)
A support tube connected to a pipe through which a measurement fluid flows, a measurement tube through which a measurement fluid flows with an outer diameter smaller than the inner diameter of the support tube, and both ends of the measurement tube coaxially movable in the support tube only in the axial direction. And a plate spring having at least one end opening a through-hole communicating with the support tube and the inside of the measurement tube, and the plate spring as a node, and a central portion of the measurement tube in a direction perpendicular to an axis. A vibrating means to be driven, and a detector disposed between the vibrating means and the leaf spring, for detecting a phase difference of the measuring tube based on Coriolis force acting on the measuring tube, further comprising: (2) In the above (1), a flow dividing plate is provided in the measurement tube, the flow dividing plate dividing a cross section of the measurement tube into a plurality of sections parallel to a flow direction of a measurement fluid and perpendicular to a vibration direction. Hereinafter, description will be made based on embodiments of the present invention.

【0007】図1(a),(b),(c),(d)は、本
発明におけるコリオリ流量計を説明するための構造の一
例を示す図で、(a)図は縦断面図、(b)図は(a)
図の矢視B−B線断面図、(c)図は(a)図の矢視C
−C線断面図、(d)図は(a)図の矢視D−D線断面
図であり、図中、1は支持管、2,3はフランジ、4は
測定管、5は支持リング、6,16は板ばね、7は継
鉄、8,9はテーパリング、10は加振器、11,12
は検出器、13は均圧室である。
FIGS. 1 (a), 1 (b), 1 (c) and 1 (d) are views showing an example of a structure for explaining a Coriolis flowmeter according to the present invention. FIG. (B) The figure is (a)
FIG. 3C is a sectional view taken along line BB of FIG.
FIG. 3D is a sectional view taken along the line DD in FIG. 3A, wherein 1 is a support pipe, 2 and 3 are flanges, 4 is a measurement pipe, and 5 is a support ring. , 6, 16 are leaf springs, 7 is yoke, 8, 9 is tapered, 10 is a vibrator, 11, 12
Is a detector and 13 is a pressure equalizing chamber.

【0008】図において、支持管1は測定流体が流れる
配管(図示せず)に装着され、軸方向に剛性が高くし、
装着されたときの配管ストレスによって変形することが
ないように肉厚の寸法が選ばれている。支持管1内に
は、薄肉パイプからなる測定管4が配設され、板ばね
6,16により前記支持管1と同軸に支持されている。
板ばね6,16は、外周面6bを段部1aに、内周面を
支持リング5に固着されている。支持リング5は、測定
管4の両端外周面に溶着された測定管4の補強用のリン
グである。
In FIG. 1, a support tube 1 is attached to a pipe (not shown) through which a measurement fluid flows, and has a high rigidity in an axial direction.
The wall thickness is selected so that it is not deformed by the piping stress when it is mounted. A measuring pipe 4 made of a thin-walled pipe is provided in the supporting pipe 1, and is supported coaxially with the supporting pipe 1 by leaf springs 6 and 16.
The leaf springs 6 and 16 have the outer peripheral surface 6b fixed to the step portion 1a and the inner peripheral surface fixed to the support ring 5. The support ring 5 is a ring for reinforcing the measurement tube 4 welded to the outer peripheral surfaces of both ends of the measurement tube 4.

【0009】板ばね6,16は、測定管4を軸方向に移
動可能で軸と直角な半径方向に移動できなくする作用を
もっており、測定管4が熱膨張して軸方向に伸びる伸び
を吸収する。また、板ばね6,16の少くとも何れか一
方には、前記支持管1と測定管4とで形成される円筒状
の均圧室13に連通する透孔6aが開口している。図1
では、(b),(d)図のように、何れの板ばね6,1
6にも開口している例を示す。(b)図の板ばね6で
は、周方向に複数の透孔6aが開口しており、他端側の
板ばね16には小径の透孔16aが開口している。
The plate springs 6 and 16 have the function of moving the measuring tube 4 in the axial direction and preventing the measuring tube 4 from moving in the radial direction perpendicular to the axis. I do. At least one of the leaf springs 6 and 16 has a through hole 6a communicating with a cylindrical pressure equalizing chamber 13 formed by the support tube 1 and the measurement tube 4. FIG.
Then, as shown in FIG.
6 also shows an example in which an opening is provided. (B) In the leaf spring 6 shown in the figure, a plurality of through holes 6a are opened in the circumferential direction, and a small diameter through hole 16a is opened in the leaf spring 16 on the other end side.

【0010】図1において、板ばね6には複数の透孔6
aが、板ばね16には小径の透孔16aが開口している
が、本発明においては、板ばね6及び16の両方に透孔
を配設する必要はなく、何れか一方、例えば、後流側の
板ばね16側のみに透孔16aを開口し、前端の板ばね
6の透孔6aをなくして測定流体を閉止してもよい。要
は、支持管1と測定管4間の均圧室13の圧力と測定管
4内との圧力が等しく、測定管4内の圧力差がなくな
り、しかも測定管4が軸方向に移動できればよい。な
お、板ばね6,16には、配管から測定管4に流れる測
定流体の動圧が作用すると、測定管4が作用した圧力方
向に移動するので、流体の圧力が板ばね6,16に作用
しないように、テーパリング8,9が微小な隙を隔て、
各々板ばね6,16の前後に取り付けられている。
In FIG. 1, a leaf spring 6 has a plurality of through holes 6.
a has a small-diameter through-hole 16a opened in the leaf spring 16, but in the present invention, it is not necessary to dispose a through-hole in both the leaf springs 6 and 16, and one of them, for example, The measurement fluid may be closed by opening the through hole 16a only on the flow side leaf spring 16 side and eliminating the through hole 6a of the front end leaf spring 6. The point is that the pressure in the pressure equalizing chamber 13 between the support pipe 1 and the measurement pipe 4 and the pressure in the measurement pipe 4 are equal, the pressure difference in the measurement pipe 4 is eliminated, and the measurement pipe 4 can be moved in the axial direction. . When the dynamic pressure of the measurement fluid flowing from the pipe to the measurement pipe 4 acts on the leaf springs 6 and 16, the fluid moves in the pressure direction in which the measurement pipe 4 acts, so that the fluid pressure acts on the leaf springs 6 and 16. So that the taperings 8 and 9 are separated by a minute gap,
They are attached before and after the leaf springs 6,16, respectively.

【0011】測定管4の中央部外周面の一部又は周上に
は、高透磁率の継鉄7が溶接等で固着されており、該継
鉄7と対向した支持管1の壁面上に加振器10が配設さ
れている。加振器10は、外部電源(図示せず)が接続
され、継鉄7を一定の周波数及び振幅で駆動するコイル
等で構成されている。外部電源周波数としては、支持管
1の固有振動であることが好ましい。図1において、加
振器10と対向する継鉄10の一部のみを図示している
が、測定管4が駆動により変形するのを防ぐために、こ
の部分で周方向に巻き付けてもよい。また、電磁的な駆
動ではなく、圧電ひずみ等を利用してもよい。
A yoke 7 having a high magnetic permeability is fixed by welding or the like to a part or the periphery of the outer peripheral surface of the central part of the measuring tube 4. An exciter 10 is provided. The vibrator 10 is connected to an external power supply (not shown), and includes a coil or the like that drives the yoke 7 at a constant frequency and amplitude. The external power supply frequency is preferably the natural vibration of the support tube 1. In FIG. 1, only a part of the yoke 10 facing the vibrator 10 is shown. However, in order to prevent the measuring tube 4 from being deformed by driving, the measuring tube 4 may be wound in the circumferential direction at this part. Instead of electromagnetic driving, piezoelectric strain or the like may be used.

【0012】更に、加振器10と板ばね6との間には検
出器11が、加振器10と板ばね16との間には検出器
12が支持管1に各々取り付けられており、加振器10
の駆動により測定管4内に流れる測定流体に作用するコ
リオリの力が重畳する測定管4の振動を検出する。検出
器11,12は、同じ検出特性のもので、光学式又は電
磁式の何れの方式のものでもよい。
Further, a detector 11 is mounted between the exciter 10 and the leaf spring 6 and a detector 12 is mounted between the vibrator 10 and the leaf spring 16 on the support tube 1, respectively. Exciter 10
The vibration of the measuring tube 4 on which the Coriolis force acting on the measuring fluid flowing in the measuring tube 4 by the driving of the measuring tube 4 is detected. The detectors 11 and 12 have the same detection characteristics, and may be of an optical type or an electromagnetic type.

【0013】次に、以上の如く構成されたコリオリ流量
計の動作について説明する。まず、測定流体が矢印Q方
向から流れて、テーパリング8により絞られて測定管4
に流入する測定流体は、支持される板ばね6に動圧を作
用させることなく、測定管4内と板ばね6の透孔6aか
ら均圧室13内に流入する。このとき、測定流体は板ば
ねの透孔の小面積の方、ここでは、板ばね16の透孔1
6aの面積と測定管4の断面積との比に応じて透孔16
aと測定管4とに分流し、測定管4の内外の圧力は等し
くなり、測定管4には流体圧による応力が作用しないの
で、測定管4の肉圧は薄いものでよい。
Next, the operation of the Coriolis flowmeter configured as described above will be described. First, the measurement fluid flows in the direction of arrow Q, and is narrowed by the taper ring 8 so as to be measured.
Flows into the pressure equalizing chamber 13 through the inside of the measurement pipe 4 and the through hole 6a of the leaf spring 6 without applying dynamic pressure to the supported leaf spring 6. At this time, the measurement fluid is in the smaller area of the through hole of the leaf spring, here, the through hole 1 of the leaf spring 16.
6a according to the ratio between the area of 6a and the sectional area of the measuring tube 4.
Therefore, the pressure inside and outside the measuring tube 4 becomes equal, and no stress due to fluid pressure acts on the measuring tube 4, so that the wall pressure of the measuring tube 4 may be thin.

【0014】測定管4内は、継鉄7を介して加振器10
から加振されると、測定流体には加振器10に関して上
流測と下流測とでは互いに反対向きのコリオリの力が作
用する。すなわち、検出器11と12とからは、同相成
分の加振振動に対してコリオリの力が畳重した信号が出
力され、この中から同相の加振振動成分を取り除き、質
量流量に比例した逆位相のコリオリの力による位相差信
号のみを取り出し、コリオリの力に比例した質量流量を
計測する。
In the measuring tube 4, a vibrator 10 is connected via a yoke 7.
When the sample fluid is vibrated from above, Coriolis forces opposite to each other act on the measurement fluid in the upstream measurement and the downstream measurement with respect to the vibrator 10. That is, the detectors 11 and 12 output signals in which the Coriolis force is superimposed on the vibration of the in-phase component, the in-phase vibration component is removed from the signals, and the inverse proportional to the mass flow rate is removed. Only the phase difference signal due to the phase Coriolis force is extracted, and the mass flow rate proportional to the Coriolis force is measured.

【0015】しかし、透孔16aが開口していると、透
孔16aを流れる流体の流量が測定管4で測定された流
量の誤差分となる。この誤差を取り除くために、透孔1
6aの面積を小さくして、測定管4の内外の圧力差をな
くすことができる程度にしておくと、この誤差を無視す
ることができる。また、透孔6aを閉止し、透孔16a
を大きくすることにより、前記誤差をなくして測定管4
に対する圧力影響を取り除くことができる。特に、測定
流体が気体の場合は、この構成は有効である。
However, when the through-hole 16a is open, the flow rate of the fluid flowing through the through-hole 16a becomes an error of the flow rate measured by the measuring pipe 4. In order to remove this error,
If the area of 6a is made small so that the pressure difference between the inside and outside of the measuring tube 4 can be eliminated, this error can be ignored. Further, the through hole 6a is closed, and the through hole 16a is closed.
By eliminating the error, the measurement tube 4
Pressure effect on the pressure can be eliminated. This configuration is particularly effective when the measurement fluid is a gas.

【0016】図2(a),(b)は、本発明におけるコ
リオリ流量計の他の実施例の測定管の一例を示す図で、
(a)図は側断面図、(b)図は(a)図のB−B線矢
視断面図であり、図中、14は分流板で、図1と同じ作
用をする部分には、図1と同一の参照番号を付してい
る。
FIGS. 2A and 2B are views showing an example of a measuring tube of another embodiment of the Coriolis flowmeter according to the present invention.
1A is a side sectional view, and FIG. 2B is a sectional view taken along the line BB in FIG. 1A. In FIG. The same reference numerals as in FIG. 1 are used.

【0017】複数の分流板14は、測定管4を流れ方
向、すなわち軸方向に平行で、軸に直角な面で区分した
もので、特に気体用又は固気2相流のコリオリ流量計に
適用する。コリオリの力は周知の通り、測定管4内を流
れる測定流体の質量流量と加振角速度とのベクトル積に
比例した量であらわされるが、圧縮性の気体流れに対し
ては、加振力が伝達しないので、正確なコリオリの力、
すなわち質量流量が得られない。しかし、分流板14で
流れを区画することにより、分流された気体に均等に振
動が伝達するので、従来の不都合が解決され、しかも分
流板14は振動方向に対して直角であるから、加振方向
の剛性は増大することがなく、効率よく気体の質量流量
の測定が可能となる。
The plurality of flow dividing plates 14 divide the measuring tube 4 in a plane parallel to the flow direction, that is, the axial direction, and at right angles to the axis, and are particularly applied to a Coriolis flow meter for gas or a solid-gas two-phase flow. I do. As is well known, the Coriolis force is represented by an amount proportional to the vector product of the mass flow rate of the measurement fluid flowing in the measurement tube 4 and the excitation angular velocity. Does not transmit, accurate Coriolis force,
That is, a mass flow rate cannot be obtained. However, by dividing the flow by the flow dividing plate 14, the vibration is evenly transmitted to the diverted gas, so that the conventional disadvantage is solved. In addition, since the flow dividing plate 14 is perpendicular to the vibration direction, The rigidity in the direction does not increase, and the mass flow rate of the gas can be measured efficiently.

【0018】[0018]

【効果】以上の説明から明らかなように、本発明による
と、以下の効果がある。 (1)測定管の両端を板ばねで支持管に同軸に支持した
ので、測定管に作用する測定流体等の温度変化による熱
膨張の熱ひずみを除去し、また、板ばねの少くとも一方
に透孔を開口し、支持管と測定管とで形成される円筒室
の圧力を測定管内の圧力と等しくしたので、測定管に圧
力ひずみを生ずることがない。すなわち、温度,圧力の
影響を受けることがないので、測定管の肉厚を薄くする
ことができ、直管式でも高感度で外部環境影響の小さい
コリオリ流量計とすることができる。 (2)測定管内を流れに平行に区画したので、気体等の
圧縮性のある流体に対しても均一な振動を与えることが
できる。このため、高精度の気体の質量流量が得られ、
従来の温度計,圧力計及び演算器等を用いた間接形の気
体質量流量計に比べて安価な気体用コリオリ流量計とす
ることができる。
As apparent from the above description, the present invention has the following effects. (1) Since both ends of the measuring tube are coaxially supported by the supporting tube by the leaf spring, the thermal distortion of thermal expansion due to a temperature change of the measuring fluid or the like acting on the measuring tube is removed, and at least one of the leaf springs is used. Since the through-hole is opened and the pressure in the cylindrical chamber formed by the support tube and the measurement tube is made equal to the pressure in the measurement tube, no pressure distortion occurs in the measurement tube. That is, since the measurement tube is not affected by the temperature and the pressure, the thickness of the measurement tube can be reduced, and a Coriolis flowmeter having high sensitivity and a small influence on the external environment can be obtained even in a straight tube type. (2) Since the inside of the measurement tube is partitioned in parallel with the flow, uniform vibration can be given even to a compressible fluid such as gas. Therefore, a high-precision gas mass flow rate can be obtained,
A gas Coriolis flowmeter that is less expensive than an indirect gas mass flowmeter that uses a conventional thermometer, pressure gauge, and a computing device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明におけるコリオリ流量計を説明するた
めの構造の一例を示す図である。
FIG. 1 is a diagram showing an example of a structure for explaining a Coriolis flowmeter according to the present invention.

【図2】 本発明におけるコリオリ流量計の他の実施例
の測定管の一例を示す図である。
FIG. 2 is a diagram showing an example of a measurement tube of another embodiment of the Coriolis flow meter according to the present invention.

【符号の説明】[Explanation of symbols]

1…支持管、2,3…フランジ、4…測定管、5…支持
リング、6,16…板ばね、7…継鉄、8…テーパリン
グ、10…加振器、11,12…検出器、13…均圧
室、14…分流板。
DESCRIPTION OF SYMBOLS 1 ... Support pipe, 2, 3 ... Flange, 4 ... Measuring pipe, 5 ... Support ring, 6, 16 ... Leaf spring, 7 ... Yoke, 8 ... Taper ring, 10 ... Exciter, 11, 12 ... Detector , 13: Equalizing chamber, 14: Dividing plate.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−158420(JP,A) 特開 平1−189520(JP,A) 特開 平4−223224(JP,A) 特開 平4−270922(JP,A) 特開 昭62−170819(JP,A) 特公 昭64−10770(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G01F 1/84 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-63-158420 (JP, A) JP-A-1-189520 (JP, A) JP-A-4-223224 (JP, A) JP-A-4- 270922 (JP, A) JP-A-62-170819 (JP, A) JP-B 64-10770 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) G01F 1/84

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定流体が流れる配管に接続される支持
筒と、該支持筒の内径より小さい外径で測定流体が流れ
る測定管と、前記支持筒内に軸方向のみに移動可能に前
記測定管の両端を同軸に支持し、前記支持管体と測定管
内に連通する透孔を少くとも何れか一端側に開口する板
ばねと、該板ばねを節部とし、前記測定管の中央部を軸
と直角方向に駆動する加振手段と、該加振手段と前記板
ばねとの間に配設され、前記測定管に作用するコリオリ
の力に基づく測定管の位相差を検出する検出器とからな
ることを特徴とするコリオリ流量計。
1. A support pipe connected to a pipe through which a measurement fluid flows, a measurement pipe through which a measurement fluid flows with an outer diameter smaller than the inner diameter of the support pipe, and the measurement pipe capable of moving only in the axial direction in the support pipe. A plate spring that coaxially supports both ends of the tube, a through-hole communicating with the support tube and the inside of the measurement tube at least on one end side, a plate spring serving as a node, and a central portion of the measurement tube. A vibrating means driven in a direction perpendicular to the axis, a detector arranged between the vibrating means and the leaf spring, for detecting a phase difference of the measuring pipe based on Coriolis force acting on the measuring pipe; A Coriolis flowmeter comprising:
【請求項2】 前記測定管内に、該測定管の断面を測定
流体の流れ方向に平行で、加振方向に直角に複数に区画
する分流板を配設したことを特徴とする請求項1に記載
のコリオリ流量計。
2. A flow dividing plate, wherein a flow dividing plate is provided in the measuring pipe so as to divide the cross section of the measuring pipe into a plurality of sections which are parallel to a flow direction of a measurement fluid and are perpendicular to an exciting direction. Coriolis flowmeter as described.
JP04351246A 1992-12-07 1992-12-07 Coriolis flow meter Expired - Fee Related JP3096181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04351246A JP3096181B2 (en) 1992-12-07 1992-12-07 Coriolis flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04351246A JP3096181B2 (en) 1992-12-07 1992-12-07 Coriolis flow meter

Publications (2)

Publication Number Publication Date
JPH06174515A JPH06174515A (en) 1994-06-24
JP3096181B2 true JP3096181B2 (en) 2000-10-10

Family

ID=18416038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04351246A Expired - Fee Related JP3096181B2 (en) 1992-12-07 1992-12-07 Coriolis flow meter

Country Status (1)

Country Link
JP (1) JP3096181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032457A1 (en) * 2005-09-13 2007-03-22 Oval Corporation Straight tube type coriolis flowmeter for tertiary mode vibration with elastic connection member and pedestal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19601349A1 (en) * 1996-01-17 1997-07-24 Danfoss As Flowmeter for small amounts with measuring tube vibrated by exciter
JP2898266B1 (en) 1998-01-23 1999-05-31 株式会社オーバル Double straight pipe Coriolis flowmeter
JP3539175B2 (en) * 1998-01-23 2004-07-07 松下電器産業株式会社 Electronic component mounting method
CN110945326B (en) * 2017-08-23 2022-03-29 高准公司 Multi-channel flow tube with support

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032457A1 (en) * 2005-09-13 2007-03-22 Oval Corporation Straight tube type coriolis flowmeter for tertiary mode vibration with elastic connection member and pedestal
US7694585B2 (en) 2005-09-13 2010-04-13 Oval Corporation Straight tube type Coriolis flowmeter for tertiary mode vibration with elastic connection member and pedestal
CN101273248B (en) * 2005-09-13 2010-05-19 株式会社奥巴尔 Straight tube type coriolis flowmeter for tertiary mode vibration with elastic connection member and pedestal

Also Published As

Publication number Publication date
JPH06174515A (en) 1994-06-24

Similar Documents

Publication Publication Date Title
JP2758798B2 (en) Coriolis flow meter
JP3249133B2 (en) Mass flow meter
EP0867694A1 (en) Coriolis mass flow rate meter
JP2004538449A (en) Vibration transducer
JPH0353131A (en) Mass flowmeter operating under coriolis principle
JPS6141923A (en) Flowmeter
US6684716B2 (en) Coriolis flowmeter
US7228749B2 (en) Coriolis mass flow pick-up
JP3096181B2 (en) Coriolis flow meter
JPH04291119A (en) Colioris mass flowmeter
JP2786829B2 (en) Coriolis flow meter
JP2977114B2 (en) Coriolis flow meter
JP3251368B2 (en) Mass flow meter
JP2885768B1 (en) Coriolis mass flowmeter
JP2966356B2 (en) Mass flow meter converter
CN201110774Y (en) Principal oscillation apparatus for Kort mass flow meter
JP2786812B2 (en) Coriolis flow meter
JP2929731B2 (en) Karman vortex flowmeter and method of manufacturing the same
JP3834144B2 (en) Counter balance tube type Coriolis flow meter
JPH0979882A (en) Vibration type measuring device
JP3224442B2 (en) Coriolis flow meter
JPS6215811B2 (en)
JP2938644B2 (en) Coriolis flow meter
JPH067324Y2 (en) Mass flow meter
JP2984134B2 (en) Coriolis flow meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees