JP3096105B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method

Info

Publication number
JP3096105B2
JP3096105B2 JP03223303A JP22330391A JP3096105B2 JP 3096105 B2 JP3096105 B2 JP 3096105B2 JP 03223303 A JP03223303 A JP 03223303A JP 22330391 A JP22330391 A JP 22330391A JP 3096105 B2 JP3096105 B2 JP 3096105B2
Authority
JP
Japan
Prior art keywords
water
magnet
rare earth
less
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03223303A
Other languages
Japanese (ja)
Other versions
JPH0547531A (en
Inventor
文秋 菊井
稔 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP03223303A priority Critical patent/JP3096105B2/en
Publication of JPH0547531A publication Critical patent/JPH0547531A/en
Application granted granted Critical
Publication of JP3096105B2 publication Critical patent/JP3096105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、R−Co系磁石ある
いはR−Fe−B系磁石等の希土類磁石粉末を、有毒の
有機溶媒を使用しない湿式微粉砕にて製造する希土類磁
石の製造方法に係り、水を溶媒として用いて湿式微粉砕
するに際して、特定水温となし、水に特定量の錯形成剤
と還元剤を添加して微粉砕後の粉末中の不溶性不純物量
を0.1ppm以下にし、永久磁石の磁石特性の劣化及
び腐食を防止すると共に粉砕粉の組成ずれを防止した希
土類磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth magnet for producing a rare earth magnet powder such as an R--Co magnet or an R--Fe--B magnet by wet pulverization without using a toxic organic solvent. In connection with the above, when wet pulverization using water as a solvent, a specific water temperature, without adding a specific amount of complexing agent and reducing agent to water, the amount of insoluble impurities in the powder after pulverization is 0.1 ppm or less The present invention also relates to a method of manufacturing a rare earth magnet which prevents deterioration and corrosion of the magnet properties of a permanent magnet and prevents a composition deviation of a pulverized powder.

【0002】[0002]

【従来の技術】従来、R−Co系磁石の製造に用いる磁
石粉末は、Ca還元法あるいは粉砕法にて原料粉末を得
ていた。また、R−Fe−B系磁石等の希土類磁石の製
造に用いる磁石粉末は、電解により還元された希土類原
料を用いて、溶解して鋳型に鋳造し所要磁石組成の合金
塊を作成し、これを粉砕して所要粒度の合金粉末とする
溶解・粉砕法(特開昭60−63304号公報、特開昭
60−1190701号公報)がある。この溶解・粉砕
法は、鋳塊の粗粉砕工程で容易に酸化防止が可能な粉砕
ができるため、比較的低含有酸素量の合金粉末が得られ
る。
2. Description of the Related Art Conventionally, as a magnetic powder used for producing an R-Co magnet, a raw material powder has been obtained by a Ca reduction method or a pulverization method. In addition, magnet powder used for manufacturing rare earth magnets such as R-Fe-B magnets is melted and cast into a mold using a rare earth raw material reduced by electrolysis to form an alloy lump having a required magnet composition. And pulverization to obtain an alloy powder having a required particle size (JP-A-60-63304, JP-A-60-1190701). This melting and pulverization method can easily perform oxidation-preventive pulverization in the ingot coarse pulverization step, so that an alloy powder having a relatively low oxygen content can be obtained.

【0003】かかる希土類磁石用磁石粉末は、所要粒度
にするためいずれも機械粉砕により粗粉砕後、さらにト
ルエン、メタノール、ヘキサン等の有機溶媒を用いて、
アトライター等内にて湿式微粉砕することが一般的であ
る。
[0003] Such a rare earth magnet powder is roughly pulverized by mechanical pulverization in order to obtain a required particle size, and then further treated with an organic solvent such as toluene, methanol or hexane.
It is common to carry out wet pulverization in an attritor or the like.

【0004】[0004]

【発明が解決しようとする課題】この湿式微粉砕に用い
る前記有機溶媒は有毒で危険性が高く、また公害上の問
題があるため、最近、水を溶媒とした湿式微粉砕法が提
案されており、水を溶媒として用いることは安全性及び
コストの点で有機溶媒に対してすぐれている
The above-mentioned organic solvent used for the wet pulverization is toxic and dangerous, and has a problem of pollution. Therefore, a wet pulverization method using water as a solvent has recently been proposed. Use of water as a solvent is superior to organic solvents in terms of safety and cost

【0005】しかし、水には一般にO2量10ppm〜
20ppmを含有するため、微粉砕時に溶媒に水を用い
て、希土類磁石、特にNd−Fe−B系磁石の製造に適
用する場合、溶媒の水中のO2により、生成された微粉
砕粉が腐食され、また、溶媒の水中にNd(OH)3
FeOOH等の不溶性不純物が生成し、この微粉砕粉か
ら得られる永久磁石の磁石特性の劣化及び腐食を招来す
る問題があり、実用化が困難であった。
However, water generally has an O 2 content of 10 ppm or less.
To contain 20 ppm, using water as a solvent during milling, when applied rare earth magnet, especially production of Nd-Fe-B magnets, the O 2 in water solvent, the generated finely pulverized powder corrosion And Nd (OH) 3 ,
Insoluble impurities such as FeOOH are generated, and there is a problem that the magnet properties of the permanent magnet obtained from the finely pulverized powder are deteriorated and corroded, so that practical use has been difficult.

【0006】そこで発明者は、先に錯形成剤と還元剤を
添加した水、あるいはさらに不活性ガスでバブリング処
理した水を溶媒に用いて湿式微粉砕して、微粉砕後に濾
過分離した粉末中の不溶性不純物量を低減する製造方法
を提案したが、溶媒の水温により微粉砕中に元素の溶出
が起こり、得られる微粉砕粉の組成ずれが発生するた
め、事前に原料粉末の組成を調整しておく必要があっ
た。
Accordingly, the inventor of the present invention has conducted a wet pulverization using water to which a complexing agent and a reducing agent have been added or water which has been further subjected to bubbling treatment with an inert gas as a solvent. The production method of reducing the amount of insoluble impurities was proposed, but the element temperature eluted during the pulverization due to the water temperature of the solvent, resulting in a compositional deviation of the obtained pulverized powder. Had to be kept.

【0007】この発明は、R−Co系磁石あるいはR−
Fe−B系磁石等の希土類磁石粉末を、有毒の有機溶媒
を使用しない湿式微粉砕にて製造する希土類磁石の製造
方法の提供を目的とし、水を溶媒に用いて湿式微粉砕し
た際に永久磁石の磁石特性の劣化及び腐食させる不純物
量を低減できると共に粉砕粉の組成ずれを防止した希土
類磁石の製造方法の提供を目的としている。
The present invention relates to an R-Co magnet or an R-Co magnet.
The purpose of the present invention is to provide a method for producing a rare earth magnet in which a rare earth magnet powder such as an Fe-B based magnet is produced by wet pulverization without using a toxic organic solvent. It is an object of the present invention to provide a method of manufacturing a rare earth magnet in which the magnet properties of the magnet can be degraded and the amount of corroded impurities can be reduced, and the composition deviation of the pulverized powder is prevented.

【0008】[0008]

【課題を解決するための手段】この発明は、希土類磁石
の製造時、微粉砕工程において、溶媒として水を用いた
場合、水中に含まれるO2量の低減と共に溶液中の不溶
性不純物の生成沈殿を防止すると共に粉砕粉の組成ずれ
を防止するため、種々検討した結果、水中に含まれるO
2量の低減と共に溶液中に溶出するFe、R(特にN
d)の不溶性沈殿物の生成を防止する方法として、溶媒
としての水に錯形成剤と還元剤を添加し、あるいはさら
に前記水中に不活性ガスを吹き込みバブリングすること
により、溶媒中の水に含まれるO2量の低減と共に、前
記不溶性沈殿物を溶液中に溶存させ、微粉砕後の濾過に
より微粉砕粉回収の際に、不純物を濾過液として系外に
除去でき、また溶媒の水の水温を調整して10℃以下に
することにより、粉砕粉の組成ずれを防止できることを
知見し完成したものである。
According to the present invention, when water is used as a solvent in a pulverization step in the production of a rare earth magnet, the amount of O 2 contained in the water is reduced and the generation of insoluble impurities in the solution is reduced. After various investigations to prevent the composition of the pulverized powder and to prevent the composition deviation of the pulverized powder,
Fe eluting solution with 2 weight reduction, R (in particular N
As a method for preventing the formation of the insoluble precipitate of d), a complexing agent and a reducing agent are added to water as a solvent, or an inert gas is blown into the water and bubbling is carried out so as to be contained in the water in the solvent. In addition to reducing the amount of O 2 , the insoluble precipitate is dissolved in the solution, and when the finely pulverized powder is recovered by filtration after the fine pulverization, impurities can be removed from the system as a filtrate, and the water temperature of the solvent water can be reduced. By adjusting the temperature to 10 ° C. or less, it was found that the composition deviation of the pulverized powder could be prevented, and the invention was completed.

【0009】すなわち、この発明は、湿式微粉砕にてR
−Co系磁石あるいはR−Fe−B系磁石等の希土類磁
石粉末を得る希土類磁石の製造方法において、錯形成剤
を0.001〜1mol/l及び還元剤として10g/
l以下のNa2SO3を添加し、あるいはさらに前記水中
に不活性ガスを噴射して水中のO2量を1ppm以下に
低減した水温10℃以下の水を溶媒に用いて湿式微粉砕
し、微粉砕後の濾過分離した粉末中の不溶性不純物量を
0.1ppm以下にすると共に粉砕粉の組成ずれを防止
したことを特徴とする希土類磁石の製造方法である。
That is, the present invention relates to a method for producing R by wet pulverization.
In a method for producing a rare-earth magnet for obtaining a rare-earth magnet powder such as a -Co-based magnet or an R-Fe-B-based magnet, a complex-forming agent is used in an amount of 0.001 to 1 mol / l and a reducing agent of 10 g /
l or less of Na 2 SO 3 or wet pulverization using water having a water temperature of 10 ° C. or less in which the amount of O 2 in the water has been reduced to 1 ppm or less by injecting an inert gas into the water, A method for producing a rare earth magnet, characterized in that the amount of insoluble impurities in the powder separated by filtration after the fine pulverization is reduced to 0.1 ppm or less and the composition deviation of the pulverized powder is prevented.

【0010】[0010]

【作用】詳述するとこの発明は、希土類磁石の製造時の
湿式微粉砕工程前に、溶媒となる水に錯形成剤を0.0
01〜1mol/l、還元剤として10g/l以下のN
2SO3を添加して、あるいはさらにArガス又はN2
ガス等不活性ガスを吹き込んでバブリングして、溶媒の
水中のO2量を1ppm以下に低減し、かつ水温を10
℃以下にした後、前記処理水を溶媒として湿式微粉砕す
ると、溶液中の不溶性不純物量を0.1ppm以下にで
き、また組成元素の溶出が防止できることにより、微粉
砕後の濾過時に不純物を濾過液として系外に除去し、濾
過分離した粉末中の不溶性不純物量を0.1ppm以下
にすることができると共に粉砕粉の組成ずれを防止で
き、得られる希土類磁石の磁石特性の劣化及び腐食防止
に多大な効果を発揮する。
More specifically, the present invention provides a method of manufacturing a rare-earth magnet, which comprises adding a complexing agent to water as a solvent before the wet pulverization step at the time of manufacturing the rare-earth magnet.
01 to 1 mol / l, N of 10 g / l or less as a reducing agent
a 2 SO 3 is added, or Ar gas or N 2
Bubbling by blowing an inert gas such as a gas to reduce the amount of O 2 in the solvent water to 1 ppm or less and reduce the water temperature to 10 ppm.
℃ or less, wet fine grinding using the treated water as a solvent, the amount of insoluble impurities in the solution can be reduced to 0.1 ppm or less, and elution of constituent elements can be prevented, so that impurities are filtered during filtration after the fine grinding. Removed as a liquid outside the system, the amount of insoluble impurities in the powder separated by filtration can be reduced to 0.1 ppm or less, and the composition deviation of the pulverized powder can be prevented, thus preventing deterioration of the magnet properties and corrosion of the obtained rare earth magnet. It has a great effect.

【0011】この発明において、溶媒としての水には、
中性あるいはアルカリ性の水が好ましく、アルカリ性の
水としては、濃アンモニアを300ml/l以下、Na
OH、KOH、Ca(OH)2、KH2PO4、NaHP
4、NaHCO3、NaCH3COO 100ml/l
以下等のうち少なくとも1種を添加して得られる。ま
た、溶媒としてアルカリ性の水を使用することにより、
酸性、中性溶液よりもNd、Fe等の溶出を低減でき、
原料粉末の腐食による磁石特性劣化の防止及び耐食性の
改善向上を図ることができる。
In the present invention, water as a solvent includes:
Neutral or alkaline water is preferable. As the alkaline water, concentrated ammonia is 300 ml / l or less,
OH, KOH, Ca (OH) 2, KH 2 PO 4, NaHP
O 4 , NaHCO 3 , NaCH 3 COO 100 ml / l
It is obtained by adding at least one of the following. Also, by using alkaline water as a solvent,
Elution of Nd, Fe, etc. can be reduced more than acidic and neutral solutions,
It is possible to prevent deterioration of the magnet properties due to corrosion of the raw material powder and to improve and improve the corrosion resistance.

【0012】この発明の特徴である溶媒の水温を10℃
以下とする理由は、水温が10℃を超えると微粉砕時の
原料粉末中のR、Fe等が溶出しやすく、組成ずれを生
じて得られる磁石の磁石特性が劣化するためである。さ
らに好ましい水温は5℃以下である。
The water temperature of the solvent which is a feature of the present invention is 10 ° C.
The reason for the following is that, when the water temperature exceeds 10 ° C., R, Fe, etc. in the raw material powder at the time of fine pulverization are easily eluted, and the magnet characteristics of the obtained magnet are deteriorated due to a composition deviation. A more preferred water temperature is 5 ° C. or lower.

【0013】さらに、水道水等の使用が可能であり、水
道水としては電導率200μs/cm・25℃以下、不
純物はCl40ppm以下、Si15ppm以下、Ca
40ppm以下、Mg10ppm以下が好ましく、さら
にイオン交換、蒸留等の処理により電導率を1μs/c
m・25℃以下に低減した方がよい。
Further, tap water or the like can be used. Conductivity of tap water is 200 μs / cm · 25 ° C. or less, impurities are 40 ppm or less of Cl, 15 ppm or less of Si,
40 ppm or less, Mg 10 ppm or less is preferable, and the conductivity is set to 1 μs / c by treatment such as ion exchange and distillation.
It is better to reduce the temperature to m · 25 ° C. or less.

【0014】この発明において、水に添加する錯形成剤
としては、原料粉末の構成元素と錯形成するカルボン酸
系配位子又はアミン系配位子の何れでもよいが、カルボ
ン酸系配位子としてはコハク酸、マレイン酸等が好まし
く、またアミン系配位子としてはEDTA、DTPA等
が好ましい。錯形成剤の添加量は水1lに対して0.0
01〜1molが好ましく、錯形成剤量が0.001m
ol/l未満では錯形成が十分でなく、1mol/lを
超えると効果上は問題ないが経済上好ましくない。
In the present invention, the complexing agent to be added to water may be either a carboxylic acid ligand or an amine ligand which forms a complex with the constituent elements of the raw material powder. Are preferably succinic acid, maleic acid and the like, and the amine-based ligand is preferably EDTA and DTPA. The addition amount of the complexing agent is 0.0
The amount is preferably from 1 to 1 mol, and the amount of the complexing agent is 0.001 m.
When it is less than ol / l, complex formation is not sufficient, and when it exceeds 1 mol / l, there is no problem in effect, but it is economically unfavorable.

【0015】この発明は、錯形成剤の添加と共に還元剤
としてNa2SO3を10g/l以下添加することを特徴
とするが、10g/lを超える添加では効果の向上は認
められず、経済的に好ましくない。
The present invention is characterized in that Na 2 SO 3 is added as a reducing agent in an amount of 10 g / l or less together with the addition of a complexing agent. Is not preferred.

【0016】さらに、この発明において、湿式微粉砕す
る前に錯形成剤及び還元剤を含有する溶媒の水中にA
r、N2ガス等の不活性ガスを噴射、バブリングするこ
とにより溶媒の水中に含まれるO2量を低減し、得られ
る微粉砕粉の腐食を低減することができる。
Further, in the present invention, before the wet pulverization, A is added to water of a solvent containing a complexing agent and a reducing agent.
By injecting and bubbling an inert gas such as r or N 2 gas, the amount of O 2 contained in the solvent water can be reduced, and the corrosion of the obtained finely pulverized powder can be reduced.

【0017】この発明において、Arガス、N2ガス等
の不活性ガスによるバブリング条件としてはガス圧力
1.0〜3.0kg/cm2、吹き込み時間10分〜6
0分、ガス流量3〜20l/minが好ましい。ガス圧
力が1.0kg/cm2未満では十分なガス導入ができ
ず、3.0kg/cm2を超えると水の飛散があり好ま
しくない。また、吹き込み時間が10分未満ではO2
去が十分でなく、60分を超えると経済的でない。ま
た、ガス流量として3l/min未満では十分なO2
去ができず、20l/minを超えると経済的に好まし
くない。
In the present invention, the bubbling conditions using an inert gas such as an Ar gas or a N 2 gas include a gas pressure of 1.0 to 3.0 kg / cm 2 and a blowing time of 10 minutes to 6 hours.
The gas flow rate is preferably 3 to 20 l / min for 0 minute. When the gas pressure is less than 1.0 kg / cm 2 , sufficient gas cannot be introduced. When the gas pressure exceeds 3.0 kg / cm 2 , water is scattered, which is not preferable. If the blowing time is less than 10 minutes, the removal of O 2 is not sufficient, and if it exceeds 60 minutes, it is not economical. Further, if the gas flow rate is less than 3 l / min, it is not possible to sufficiently remove O 2 , and if it exceeds 20 l / min, it is not economically preferable.

【0018】[0018]

【実施例】【Example】

実施例1 溶解・粉砕法により得られた30.7wt%Nd−6
8.2wt%Fe−1.1wt%B組成の磁石用原料粉
末を、内容積100lのアトライター内に12mm直径
の鋼製ボールと共に入れ、さらに錯形成剤として酒石酸
0.03ml/l、EDTA0.05ml/l、還元剤
のNa2SO3を8g/lを含有した水(電導率1μs/
cm・25℃、pH11.5)の所要量を表1に示した
水温に調整して溶媒として用い、これを回転数80rp
m、3時間回転させる微粉砕を行い、粉砕完了後に濾過
して表1に示す組成、平均粒径の微粉砕粉末を得た。得
られた微粉砕粉末中のR,Fe等の不溶性不純物量は、
ICP測定法により測定して表1に示す。なお、溶媒の
水は、錯形成剤、還元剤の添加前のO2含有量は11.
0ppmであった。
Example 1 30.7 wt% Nd-6 obtained by dissolution / pulverization method
A raw material powder for magnet having a composition of 8.2 wt% Fe-1.1 wt% B was put into a 100-liter attritor together with a steel ball having a diameter of 12 mm, and tartaric acid was used as a complex-forming agent at 0.03 ml / l and EDTA 0.1. Water containing 8 g / l of a reducing agent Na 2 SO 3 (conductivity 1 μs /
cm. 25 ° C., pH 11.5) was adjusted to the water temperature shown in Table 1 and used as a solvent.
Then, after the pulverization was completed, the mixture was filtered to obtain a finely pulverized powder having a composition and an average particle diameter shown in Table 1. The amount of insoluble impurities such as R and Fe in the obtained finely pulverized powder is as follows:
Table 1 shows the results measured by the ICP measurement method. The solvent water has an O 2 content of 11.1 before the addition of the complexing agent and the reducing agent.
It was 0 ppm.

【0019】また、この微粉砕粉末を金型に装入し、約
10kOeの磁界中で配向し、磁界に直角方向に約1.
5ton/cm2 の圧力で成型し、15mm×20m
m×8mmの成型体を作成した。この成型体を1100
℃×2時間のAr雰囲気中条件で焼結し、引き続いて6
00℃×2時間の時効処理を行った。得られた試験片磁
石の磁石特性を表2に示す。
Further, this finely pulverized powder is charged into a mold, oriented in a magnetic field of about 10 kOe, and placed in a direction perpendicular to the magnetic field for about 1.
Molded at a pressure of 5 ton / cm 2 , 15mm x 20m
A molded body of mx 8 mm was prepared. 1100
Sintering in an Ar atmosphere at 2 ° C. × 2 hours.
An aging treatment was performed at 00 ° C. for 2 hours. Table 2 shows the magnet properties of the obtained test piece magnets.

【0020】比較例1 微粉砕工程で溶媒の水に錯形成剤及び還元剤を添加しな
い以外は、実施例1と同一の原料粉末を同一の製造工程
で微粉砕粉末化し、得られた微粉砕粉末の組成、平均粒
径、粉末中のR,Fe等の不溶性不純物量を表1に示
す。なお、水温は7℃(No.9)と20℃(No.1
0)であった。さらに実施例1と同様方法で、成形、焼
結、磁石化して得た磁石の磁石特性を表2に示す。
Comparative Example 1 The same raw material powder as in Example 1 was pulverized in the same production step except that the complexing agent and the reducing agent were not added to the solvent water in the pulverization step. Table 1 shows the composition of the powder, the average particle size, and the amount of insoluble impurities such as R and Fe in the powder. The water temperature was 7 ° C (No. 9) and 20 ° C (No. 1).
0). Further, Table 2 shows the magnet characteristics of the magnet obtained by molding, sintering, and magnetizing in the same manner as in Example 1.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】実施例2 錯形成剤として酒石酸0.03ml/l、EDTA0.
05ml/l、還元剤のNa2SO3を8g/lを含有さ
せ、さらに水中にArガスをガス圧力2.0kg/cm
2、ガス流量10l/min、吹き込み時間30分の条
件でバブリングして、O2含有量を0.6ppmに低減
した水(電導率1μs/cm・25℃、pH11.0)
の所要量を表3に示した水温に調整して溶媒として用
い、実施例1と同条件の製造工程で微粉砕粉末化し、得
られた微粉砕粉末中のR,Fe等の不溶性不純物量は、
ICP測定法により測定した結果を表3に示す。さらに
実施例1と同様方法で、成形、焼結、磁石化して得た磁
石の磁石特性を表4に示す。
Example 2 As a complexing agent, tartaric acid 0.03 ml / l, EDTA 0.1.
05 ml / l, 8 g / l of Na 2 SO 3 as a reducing agent, and Ar gas in water at a gas pressure of 2.0 kg / cm.
2. Water with an O 2 content reduced to 0.6 ppm by bubbling under the conditions of a gas flow rate of 10 l / min and a blowing time of 30 minutes (conductivity: 1 μs / cm at 25 ° C., pH: 11.0)
Is adjusted to the water temperature shown in Table 3 and used as a solvent, and is pulverized into powder by the same production process as in Example 1. The amount of insoluble impurities such as R and Fe in the obtained pulverized powder is as follows. ,
Table 3 shows the results measured by the ICP measurement method. Table 4 shows the magnet properties of the magnet obtained by molding, sintering, and magnetizing in the same manner as in Example 1.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【発明の効果】この発明は、特定量の錯形成剤と還元剤
を添加した水温10℃以下の水、あるいはさらに不活性
ガスをバブリングした水温10℃以下の水を溶媒にして
湿式微粉砕するため、粉砕粉の組成ずれがなく、従来の
有機溶媒を用いた微粉砕法に対し、安全性が高く、且つ
低コストで磁石特性も従来の有機溶媒を用いた場合の磁
石と同等以上の磁石特性の希土類磁石が得られた。
According to the present invention, wet pulverization is carried out using water having a water temperature of 10 ° C. or lower to which a specific amount of a complexing agent and a reducing agent are added or water having a water temperature of 10 ° C. or lower in which an inert gas is bubbled. Therefore, compared to the conventional pulverization method using an organic solvent, there is no deviation in the composition of the pulverized powder. Rare earth magnets with characteristics were obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/08 C22C 33/02 C22C 38/00 303 H01F 1/053 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01F 1/08 C22C 33/02 C22C 38/00 303 H01F 1/053

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 湿式微粉砕にてR−Co系磁石あるいは
R−Fe−B系磁石等の希土類磁石粉末を得る希土類磁
石の製造方法において、錯形成剤を0.001〜1mo
l/l及び還元剤として10g/l以下のNa2SO3
添加した水温10℃以下の水を溶媒に用いて湿式微粉砕
し、微粉砕後の濾過分離した粉末中の不溶性不純物量を
0.1ppm以下にすると共に粉砕粉の組成ずれを防止
したことを特徴とする希土類磁石の製造方法。
1. A method for producing a rare earth magnet for obtaining a rare earth magnet powder such as an R—Co magnet or an R—Fe—B magnet by wet pulverization.
Wet pulverization using water having a water temperature of 10 ° C. or less to which 1 g / l and 10 g / l or less of Na 2 SO 3 as a reducing agent has been added, and reducing the amount of insoluble impurities in the powder separated by filtration after the fine pulverization to 0. 1. A method for producing a rare earth magnet, wherein the composition is adjusted to 1 ppm or less and the composition deviation of the pulverized powder is prevented.
【請求項2】 湿式微粉砕にてR−Co系磁石あるいは
R−Fe−B系磁石等の希土類磁石粉末を得る希土類磁
石の製造方法において、錯形成剤を0.001〜1mo
l/l及び還元剤として10g/l以下のNa2SO3
添加し、かつ前記水中に不活性ガスを噴射して水中のO
2量を1ppm以下に低減した水温10℃以下の水を溶
媒に用いて湿式微粉砕し、微粉砕後の濾過分離した粉末
中の不溶性不純物量を0.1ppm以下にすると共に粉
砕粉の組成ずれを防止したことを特徴とする希土類磁石
の製造方法。
2. A method for producing a rare earth magnet which obtains a rare earth magnet powder such as an R—Co magnet or an R—Fe—B magnet by wet pulverization.
l / l and 10 g / l or less of Na 2 SO 3 as a reducing agent are added, and an inert gas is injected into the water to reduce O 2 in the water.
(2 ) Wet pulverization using water having a water temperature of 10 ° C. or less with the amount reduced to 1 ppm or less as a solvent, reducing the insoluble impurity content in the powder separated by filtration after the pulverization to 0.1 ppm or less, and the composition deviation of the pulverized powder. A method for manufacturing a rare earth magnet, characterized in that the occurrence of the rare earth magnet is prevented.
JP03223303A 1991-08-07 1991-08-07 Rare earth magnet manufacturing method Expired - Fee Related JP3096105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03223303A JP3096105B2 (en) 1991-08-07 1991-08-07 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03223303A JP3096105B2 (en) 1991-08-07 1991-08-07 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH0547531A JPH0547531A (en) 1993-02-26
JP3096105B2 true JP3096105B2 (en) 2000-10-10

Family

ID=16796036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03223303A Expired - Fee Related JP3096105B2 (en) 1991-08-07 1991-08-07 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP3096105B2 (en)

Also Published As

Publication number Publication date
JPH0547531A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
US7485193B2 (en) R-FE-B based rare earth permanent magnet material
KR20000048146A (en) Rare earth/iron/boron-based per manent magnet alloy composition
EP1675133A2 (en) Nd-Fe-B rare earth permanent magnet material
CN1125472C (en) Feedstock powder for R-Fe-B magnet and process for producing R-Fe-B magnet
EP0237587A1 (en) Method for producing a rare earth alloy and rare earth alloy
JPH05205925A (en) Material powder for r-fe-b base permanent magnet
JPH11319752A (en) Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby
JP2001355050A (en) R-t-b-c based rare earth magnet powder and bond magnet
JP3096105B2 (en) Rare earth magnet manufacturing method
JP3029711B2 (en) Rare earth magnet manufacturing method
US5064465A (en) Process for preparing rare earth-iron-boron alloy powders
JP4305182B2 (en) R-T-B-C Rare Earth Quenched Alloy Magnet Manufacturing Method
JP4862269B2 (en) Rare earth-transition metal-nitrogen based magnet powder, method for producing the same, composition for bonded magnet using the same, and bonded magnet
JPH0547530A (en) Manufacturing method of rare earth magnet
JPH0536511A (en) Manufacture of rare earth magnet
JP3863643B2 (en) Method for producing alloy powder for rare earth magnet
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3715331B2 (en) Method for producing raw powder for anisotropic bonded magnet
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JPS6160809A (en) Production of rare earth alloy powder
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0586441B2 (en)
JP2000109908A (en) Production of alloy for rare heath-iron-boron magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees