JP3095860B2 - Method for manufacturing bidirectional nonlinear resistance element - Google Patents

Method for manufacturing bidirectional nonlinear resistance element

Info

Publication number
JP3095860B2
JP3095860B2 JP4990792A JP4990792A JP3095860B2 JP 3095860 B2 JP3095860 B2 JP 3095860B2 JP 4990792 A JP4990792 A JP 4990792A JP 4990792 A JP4990792 A JP 4990792A JP 3095860 B2 JP3095860 B2 JP 3095860B2
Authority
JP
Japan
Prior art keywords
resistance element
film
nonlinear resistance
electrolytic
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4990792A
Other languages
Japanese (ja)
Other versions
JPH05249501A (en
Inventor
俊貴 中島
哲彌 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Waseda University
Original Assignee
Seiko Epson Corp
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Waseda University filed Critical Seiko Epson Corp
Priority to JP4990792A priority Critical patent/JP3095860B2/en
Publication of JPH05249501A publication Critical patent/JPH05249501A/en
Application granted granted Critical
Publication of JP3095860B2 publication Critical patent/JP3095860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置等に用い
るスイッチング用非線形抵抗素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a switching nonlinear resistance element used for a liquid crystal display device or the like.

【0002】[0002]

【従来の技術】現在、液晶テレビの画像表示方法は大別
して単純マトリックス方式とアクティブマトリックス方
式がある。単純マトリックス方式は互いにその方向が直
角をなすように設けられた2組の帯状電極群間に液晶を
はさんだもので、これらの帯状電極にそれぞれ駆動回路
が接続される。この方式は構造が簡単なため低価格のシ
ステムが実現できるが、クロストークによりコントラス
トが低いという問題がある。これに比較してアクティブ
マトリックス方式は各画素ごとにスイッチを設け電圧を
保持するもので、時分割駆動しても選択時の電圧を維持
できるので表示容量を増やせ、コントラストなど画質に
関する特性が良い反面、構造が複雑で製造コストが高い
ことが欠点である。我々はスイッチング素子として導電
体/絶縁体/導電体(Metal/Insulator
/Metal)という構造を持つ双方向非線形抵抗素子
を用いてアクティブマトリックス型液晶表示パネルを製
造している。従来、該絶縁体には下側電極であるTaを
陽極酸化したTaOx を用いていた。しかし、その比誘
電率は26程度であり、一般的な素子形状5マイクロメ
ートル×4マイクロメートル、陽極酸化膜厚が0.06
マイクロメートルの条件では素子キャパシタンスは0.
1pFになり、一般的な画素部分(200マイクロメー
トル×200マイクロメートル)の液晶キャパシタンス
の1/3程度と大きなものとなっていた。液晶表示パネ
ルに電圧を印加した際、電圧は液晶と素子の容量比の逆
数に比例して分割されるが、従来の容量比では双方向非
線形抵抗素子に十分な電圧がかからずスイッチング特性
が悪くなり、その結果、表示品質がスイッチング素子と
してTFT(薄膜トランジスタ)を用いた液晶表示パネ
ルより劣るという問題点を有していた。そこで、この問
題を解決するために、該絶縁体部に、電解重合法により
成膜した有機絶縁膜を用い、スイッチング特性の改善を
行った(特願平1−85374号)。一般に有機絶縁膜
の比誘電率は10以下であり、液晶キャパシタンスに対
し素子キャパシタンスが十分小さくとれ、スイッチング
特性が十分改善できた。有機絶縁膜の作製は、重合の出
発物質であるモノマーあるいはダイマー、オリゴマーお
よび、支持塩としてNaCl04 ,LiBF4 等の無機
塩またはCF3 SO3 Na,CF3 COONa等の有機
酸の塩を含む水溶液、あるいは有機溶媒を用いた溶液中
において電解重合により、有機膜を導電体上に成膜した
後、完全に絶縁体化するために電気化学的に脱ドープ処
理を行なっていた。また支持塩としてNaOH等の水酸
化アルカリを用いることにより、成膜状態で絶縁性の膜
を得ており、前記脱ドープ処理を行なわずに有機絶縁膜
を形成するという改善も行なっている(特願平1−85
372号)。
2. Description of the Related Art At present, image display methods of a liquid crystal television are roughly classified into a simple matrix system and an active matrix system. In the simple matrix system, a liquid crystal is sandwiched between two sets of strip electrodes provided so that their directions are at right angles to each other, and a drive circuit is connected to each of these strip electrodes. This method can realize a low-cost system because of its simple structure, but has a problem that the contrast is low due to crosstalk. In contrast, the active matrix method has a switch provided for each pixel to hold the voltage, and the voltage at the time of selection can be maintained even when driving in a time-division manner. The disadvantage is that the structure is complicated and the manufacturing cost is high. We use conductors / insulators / conductors (Metal / Insulator) as switching elements.
An active matrix type liquid crystal display panel is manufactured using a bidirectional nonlinear resistance element having a structure of / Metal). Conventionally, TaO x obtained by anodizing Ta as the lower electrode has been used as the insulator. However, its relative dielectric constant is about 26, the general element shape is 5 μm × 4 μm, and the anodic oxide film thickness is 0.06 μm.
Under the micrometer condition, the element capacitance is 0.
It was 1 pF, which was as large as about 液晶 of the liquid crystal capacitance of a general pixel portion (200 μm × 200 μm). When a voltage is applied to the liquid crystal display panel, the voltage is divided in proportion to the reciprocal of the capacitance ratio between the liquid crystal and the device.However, with the conventional capacitance ratio, sufficient voltage is not applied to the bidirectional nonlinear resistance element, and the switching characteristics are poor. As a result, there is a problem that the display quality is inferior to that of a liquid crystal display panel using a TFT (thin film transistor) as a switching element. In order to solve this problem, an organic insulating film formed by an electrolytic polymerization method was used for the insulator portion to improve the switching characteristics (Japanese Patent Application No. 1-85374). In general, the relative dielectric constant of the organic insulating film was 10 or less, and the element capacitance was sufficiently smaller than the liquid crystal capacitance, and the switching characteristics were sufficiently improved. Preparation of the organic insulating film includes a monomer or dimer as a starting material for polymerization, oligomers and, NaCl0 4, LiBF 4 or the like of the inorganic salt or CF 3 SO 3 Na as a supporting salt, a salt of an organic acid such as CF 3 COONa After an organic film is formed on a conductor by electrolytic polymerization in an aqueous solution or a solution using an organic solvent, a dedoping process is performed electrochemically to completely form an insulator. Further, by using an alkali hydroxide such as NaOH as a supporting salt, an insulating film is obtained in a film-formed state, and an improvement has been made such that an organic insulating film is formed without performing the undoping treatment. 1-85 Ganping
372).

【0003】[0003]

【発明が解決しようとする課題】有機電解重合膜を用い
た双方向非線形抵抗素子は液晶とのキャパシタンス比の
改善により、そのスイッチング性が大幅に改善できた。
また、支持塩としてNaOH等の水酸化アルカリを用い
ることにより、成膜状態で絶縁性の膜を得ており、容易
に絶縁膜を得ることが可能となった。しかし、我々が発
明した有機電解重合膜を用いた双方向非線形抵抗素子
は、抵抗が小さく、絶縁体として従来のTaOx を用い
た同一面積の素子の抵抗の1/10から1/100であ
るという欠点を有していた。すなわち素子抵抗が小さい
ため、クロストークが発生し、また、一旦液晶に書き込
まれた電荷が保持されにくく表示パネルとして十分なコ
ントラストが確保できないという問題が生じた。素子サ
イズを小さくすれば抵抗値は増加するが、一方でフォト
リソグラフィーを用いて小サイズの素子部分を作製しよ
うとすると、高価な作製装置が必要であり、コストアッ
プにつながるという課題を有していた。そこで、本発明
の目的は、この課題を解決するものであり、高抵抗値を
持った有機電解重合膜を絶縁体として用いた双方向非線
形抵抗素子の製造方法を提供するものである。
The switching property of a bidirectional nonlinear resistance element using an organic electrolytic polymer film could be greatly improved by improving the capacitance ratio with the liquid crystal.
In addition, by using an alkali hydroxide such as NaOH as a supporting salt, an insulating film was obtained in a film-formed state, and an insulating film could be easily obtained. However, the bidirectional nonlinear resistance element using the organic electropolymerized film we invented has a small resistance, which is 1/10 to 1/100 of the resistance of the element having the same area using the conventional TaO x as an insulator. Had the disadvantage that That is, since the element resistance is low, crosstalk occurs, and the electric charge once written in the liquid crystal is not easily retained, so that a sufficient contrast as a display panel cannot be secured. If the element size is reduced, the resistance value increases. On the other hand, if a small-sized element portion is manufactured by using photolithography, an expensive manufacturing apparatus is required, which has a problem that the cost is increased. Was. Therefore, an object of the present invention is to solve this problem, and to provide a method of manufacturing a bidirectional nonlinear resistance element using an organic electrolytic polymer film having a high resistance value as an insulator.

【0004】[0004]

【課題を解決するための手段】本発明の双方向非線形抵
抗素子の製造方法は、所定のパターンを持った電極1上
に絶縁性の高い有機電解重合膜2を電解重合法により成
膜した後、電極1の材料と同じか、あるいは異なる導電
体を所定のパターンをもって有機電解重合膜2上に形成
した電極3を有する、導電体1/絶縁体(有機電解重合
膜2)/導電体3という構造のスイッチング用双方向非
線形抵抗素子の製造方法において、電解重合時の支持塩
として炭酸塩または炭酸水素塩を用い、該絶縁体を形成
すること、また、該支持塩濃度を、炭酸塩の場合0.0
5Mより大きく、0.5M未満の濃度で用いること、炭
酸水素塩の場合0.1Mより大きい濃度で用いることを
特徴とする。
According to the method of manufacturing a bidirectional nonlinear resistance element of the present invention, a highly insulating organic electrolytic polymer film 2 is formed on an electrode 1 having a predetermined pattern by an electrolytic polymerization method. A conductor / insulator (organic electrolytic polymer film 2) / conductor 3 having an electrode 3 in which a conductor which is the same as or different from the material of the electrode 1 is formed on the organic electrolytic polymer film 2 in a predetermined pattern. In the method of manufacturing a bidirectional nonlinear resistance element for switching of a structure, a carbonate or a hydrogen carbonate is used as a supporting salt at the time of electrolytic polymerization to form the insulator. 0.0
It is characterized in that it is used at a concentration of more than 5M and less than 0.5M, and in the case of bicarbonate, it is used at a concentration of more than 0.1M.

【0005】[0005]

【作用】電解重合時の支持塩として炭酸塩あるいは炭酸
水素塩を用いた場合、該支持塩は有機電解重合膜にドー
ピングしないため絶縁膜が形成され、同様に絶縁膜が得
られる支持塩である水酸化アルカリに比較して高抵抗な
膜が得られる。また、pHが低いため、高電位において
電解を行っても溶媒のアノード分解が起きにくく、重合
したポリマーも分解し難いため、安定な成膜が可能とな
る。支持塩濃度が請求項2および3で示した範囲以下の
場合、電解電流が小さくなるため膜厚が薄くなり、抵抗
値が低下し、また耐電圧が低くなり、該有機電解重合膜
を用いた双方向非線形抵抗素子は安定な電気特性を示さ
なくなる。また、炭酸塩を用い、支持塩濃度が請求項2
で示した範囲より高い場合、抵抗値が低下することが実
験的に確認された。
When a carbonate or a bicarbonate is used as a supporting salt at the time of electrolytic polymerization, the supporting salt does not dope the organic electropolymerized film, so that an insulating film is formed. A film having higher resistance than alkali hydroxide can be obtained. In addition, since the pH is low, even when electrolysis is performed at a high potential, anodic decomposition of the solvent hardly occurs, and the polymerized polymer is hardly decomposed. When the supporting salt concentration is below the range shown in claims 2 and 3, the electrolytic current is small, the film thickness is thin, the resistance value is low, and the withstand voltage is low. The bidirectional nonlinear resistance element does not exhibit stable electric characteristics. Further, a carbonate is used, and a supporting salt concentration is set to claim 2.
It has been experimentally confirmed that the resistance value decreases when it is higher than the range indicated by.

【0006】[0006]

【実施例】【Example】

(実施例1)ガラス基板上に、スパッタによりITO膜
を0.15マイクロメートル形成し、フォトリソグラフ
ィーにより所定のパターンのITO下側電極を得た(図
1(a))。この電極材料は特にITOには限らず、導
電率の十分高いものならば良い。このITOパターン上
に電解重合により有機絶縁膜2を形成した。電解重合
は、モノマーとして0.25Mのピロールを含む水溶液
に支持塩として0.2M炭酸水素ナトリウムを加えたも
のを用いた。電解セルの対極には白金板、参照極に銀塩
化銀電極を用いた。該電解液中に上記ITO付きガラス
基板を浸漬し、+1.5Vの定電位で60分間電解重合
を行いポリピロール電解重合膜を形成した(図1
(b))。電解重合膜の膜厚は0.14マイクロメータ
ーであった。該電解重合膜を純水で洗浄し、Arガスに
より緩やかに乾燥した後、スパッタ成膜およびフォトリ
ソグラフィーによるパターニングにより、ITO上側電
極3を0.15マイクロメートルの厚さで形成し素子を
作製した(図1(c))。該双方向非線形抵抗素子の面
積あたりの抵抗値は107.2 ohm cm2 であり、従
来の電解重合有機膜を絶縁体として用いた双方向非線形
抵抗素子の約5倍の高い抵抗値を示した。また安定なス
イッチング特性を示した。該双方向非線形抵抗素子を組
み込んだアクティブマトリックス型液晶表示装置は従来
の電解重合膜(比較例1)を絶縁体とした双方向非線形
抵抗素子を用いた場合と比較して、クロストーク、およ
びコントラスト比の改善がみられた。
Example 1 An ITO film having a thickness of 0.15 μm was formed on a glass substrate by sputtering, and an ITO lower electrode having a predetermined pattern was obtained by photolithography (FIG. 1A). This electrode material is not particularly limited to ITO, but may be any material having a sufficiently high conductivity. An organic insulating film 2 was formed on the ITO pattern by electrolytic polymerization. In the electrolytic polymerization, a solution obtained by adding 0.2 M sodium hydrogen carbonate as a supporting salt to an aqueous solution containing 0.25 M pyrrole as a monomer was used. A platinum plate was used as a counter electrode of the electrolytic cell, and a silver / silver chloride electrode was used as a reference electrode. The glass substrate with ITO was immersed in the electrolytic solution and subjected to electrolytic polymerization at a constant potential of +1.5 V for 60 minutes to form a polypyrrole electrolytic polymerized film (FIG. 1).
(B)). The thickness of the electropolymerized film was 0.14 micrometers. After washing the electrolytic polymer film with pure water and gently drying it with Ar gas, an ITO upper electrode 3 was formed to a thickness of 0.15 μm by sputtering film formation and patterning by photolithography to produce a device. (FIG. 1 (c)). The resistance value per area of the bidirectional nonlinear resistance element was 10 7.2 ohm cm 2 , which was about five times higher than that of a conventional bidirectional nonlinear resistance element using an electropolymerized organic film as an insulator. In addition, stable switching characteristics were exhibited. The active matrix type liquid crystal display device incorporating the bidirectional nonlinear resistance element has a higher crosstalk and contrast than a conventional bidirectional nonlinear resistance element using an electrolytic polymerized film (Comparative Example 1) as an insulator. There was an improvement in the ratio.

【0007】(実施例2)実施例1と同様であるが、電
解重合時の支持塩として0.5Mの炭酸水素ナトリウム
を含むピロール水溶液を用い、ポリピロール電解重合膜
を形成することにより、双方向非線形抵抗素子を作製し
た。該電解重合膜の膜厚は、0.18マイクロメーター
であった。該双方向非線形抵抗素子の面積あたりの抵抗
値は107. 3 ohm cm2 であり、実施例1と同様の
効果が得られた。
Example 2 Same as Example 1, except that a polypyrrole electrolytic polymerized film was formed using a pyrrole aqueous solution containing 0.5 M sodium bicarbonate as a supporting salt at the time of electrolytic polymerization. A non-linear resistance element was manufactured. The thickness of the electropolymerized film was 0.18 micrometers. Resistance per area of the bidirectional non-linear resistance element is 10 7. 3 ohm cm 2, obtained the same effects as in Example 1.

【0008】(実施例3)実施例1と同様であるが、銀
塩化銀参照電位+1.9Vの定電位で60分間電解重合
を行いポリピロール電解重合膜を形成することにより、
双方向非線形抵抗素子を作製した。該電解重合膜の膜厚
は、0.14マイクロメーターであった。該双方向非線
形抵抗素子の面積あたりの抵抗値は107.5 ohm c
2 であり、従来の電解重合有機膜を絶縁体として用い
た双方向非線形抵抗素子の約10倍の高い抵抗値を示し
た。また安定なスイッチング特性を示した。該双方向非
線形抵抗素子を組み込んだアクティブマトリックス型液
晶表示装置は従来(比較例1)、または実施例1におけ
る電解重合膜を絶縁体とした双方向非線形抵抗素子を用
いた場合と比較して、クロストーク、およびコントラス
ト比の改善がみられた。
Example 3 Same as Example 1, except that a polypyrrole electropolymerized film is formed by performing electropolymerization at a constant potential of silver-silver chloride reference potential +1.9 V for 60 minutes.
A bidirectional nonlinear resistance element was fabricated. The thickness of the electrolytic polymerized film was 0.14 micrometers. The resistance value per area of the bidirectional nonlinear resistance element is 10 7.5 ohm c.
m 2, which is about 10 times higher than that of a conventional bidirectional nonlinear resistance element using an electropolymerized organic film as an insulator. In addition, stable switching characteristics were exhibited. The active matrix type liquid crystal display device incorporating the bidirectional nonlinear resistance element is compared with the conventional one (Comparative Example 1) or the case where the bidirectional nonlinear resistance element using the electrolytically polymerized film as an insulator in Example 1 is used. Crosstalk and contrast ratio were improved.

【0009】(実施例4)実施例1と同様であるが、電
解重合時の支持塩として0.2Mの炭酸ナトリウムを含
むピロール水溶液を用い、ポリピロール電解重合膜を形
成することにより、双方向非線形抵抗素子を作製した。
該電解重合膜の膜厚は、0.28マイクロメーターであ
った。該双方向非線形抵抗素子の面積あたりの抵抗値は
107.2 ohm cm2 であり、実施例1と同様の効果
が得られた。
Example 4 The same as Example 1, but using a pyrrole aqueous solution containing 0.2 M sodium carbonate as a supporting salt at the time of electrolytic polymerization and forming a polypyrrole electrolytic polymerized film, A resistance element was manufactured.
The film thickness of the electrolytic polymerization film was 0.28 micrometers. The resistance value per area of the bidirectional nonlinear resistance element was 10 7.2 ohm cm 2 , and the same effect as in Example 1 was obtained.

【0010】(比較例1)従来の有機電解重合膜を絶縁
体として用いた双方向非線形抵抗素子の製造方法を示
す。実施例1と同様であるが、電解重合時の支持塩とし
て0.01M水酸化ナトリウムを含むピロール水溶液を
用いた。該濃度は、支持塩として水酸化ナトリウムを使
った場合、最も高抵抗かつ安定な電気特性が得られる最
適濃度である。該重合溶液中でポリピロール電解重合膜
を形成することにより、双方向非線形抵抗素子を作製し
た。該電解重合膜の膜厚は、0.20マイクロメーター
であった。該双方向非線形抵抗素子の面積あたりの抵抗
値は106.5 ohm cm2 を示した。
Comparative Example 1 A method for manufacturing a bidirectional nonlinear resistance element using a conventional organic electrolytic polymer film as an insulator will be described. Same as Example 1, except that a pyrrole aqueous solution containing 0.01 M sodium hydroxide was used as a supporting salt at the time of electrolytic polymerization. This concentration is the optimum concentration at which the highest resistance and stable electrical characteristics are obtained when sodium hydroxide is used as the supporting salt. By forming a polypyrrole electrolytic polymerized film in the polymerization solution, a bidirectional nonlinear resistance element was produced. The film thickness of the electrolytic polymerization film was 0.20 micrometers. The resistance value per area of the bidirectional nonlinear resistance element was 10 6.5 ohm cm 2 .

【0011】(比較例2)実施例1と同様であるが、電
解重合時の支持塩として0.1M 炭酸水素ナトリウム
を含むピロール水溶液を用い、ポリピロール電解重合膜
を形成することにより、双方向非線形抵抗素子を作製し
た。該電解重合膜の膜厚は、0.10マイクロメーター
であった。該双方向非線形抵抗素子の面積あたりの抵抗
値は105.9 ohm cm2 を示した。
Comparative Example 2 The same as Example 1, except that a polypyrrole electrolytically polymerized film was formed using a pyrrole aqueous solution containing 0.1 M sodium hydrogencarbonate as a supporting salt during electrolytic polymerization, whereby bidirectional non-linearity was obtained. A resistance element was manufactured. The thickness of the electropolymerized film was 0.10 micrometers. Resistance per area of the bidirectional non-linear resistance element showed 10 5.9 ohm cm 2.

【0012】(比較例3)実施例1と同様であるが、電
解重合時の支持塩として0.5M 炭酸ナトリウムを含
むピロール水溶液を用い、ポリピロール電解重合膜を形
成することにより、双方向非線形抵抗素子を作製した。
該電解重合膜の膜厚は、0.29マイクロメーターであ
った。該双方向非線形抵抗素子の面積あたりの抵抗値は
106.2 ohm cm2 を示した。
Comparative Example 3 The same as Example 1, except that a polypyrrole electrolytically polymerized film was formed using a pyrrole aqueous solution containing 0.5 M sodium carbonate as a supporting salt at the time of electrolytic polymerization. An element was manufactured.
The thickness of the electrolytic polymerized film was 0.29 micrometers. Resistance per area of the bidirectional non-linear resistance element showed 10 6.2 ohm cm 2.

【0013】(比較例4)実施例1と同様であるが、電
解重合時の支持塩として0.05M 炭酸ナトリウムを
含むピロール水溶液を用い、ポリピロール電解重合膜を
形成することにより、双方向非線形抵抗素子を作製し
た。該電解重合膜の膜厚は、0.14マイクロメーター
であった。該双方向非線形抵抗素子の面積あたりの抵抗
値は106.6ohm cm2 を示した。
Comparative Example 4 The same as in Example 1, except that a pyrrole aqueous solution containing 0.05 M sodium carbonate was used as a supporting salt at the time of electrolytic polymerization to form a polypyrrole electrolytically polymerized film, thereby obtaining a bidirectional nonlinear resistance. An element was manufactured. The thickness of the electrolytic polymerized film was 0.14 micrometers. The resistance value per area of the bidirectional nonlinear resistance element was 10 6.6 ohm cm 2 .

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】本発明により、従来に比較して最大で1
0倍の抵抗値を持った有機電解重合膜を絶縁体として用
いた双方向非線形抵抗素子の製造方法が提供できた。該
双方向非線形抵抗素子を組み込んだアクティブマトリッ
クス液晶表示素子は、従来の有機電解重合膜を絶縁体と
して用いた場合と比較して、クロストークおよびコント
ラスト比の改善がみられた。
According to the present invention, a maximum of 1
A method for manufacturing a bidirectional nonlinear resistance element using an organic electrolytic polymer film having a resistance value of 0 as an insulator can be provided. The active matrix liquid crystal display device incorporating the bidirectional nonlinear resistance element exhibited improved crosstalk and contrast ratio as compared with the case where a conventional organic electrolytic polymer film was used as an insulator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のスイッチング用非線形抵抗素子の各製
造プロセスにおける断面図。
FIG. 1 is a cross-sectional view in each manufacturing process of a switching nonlinear resistance element of the present invention.

【符号の説明】[Explanation of symbols]

1 下側電極 2 有機電解重合膜 3 上側電極 4 基板 Reference Signs List 1 lower electrode 2 organic electropolymerized film 3 upper electrode 4 substrate

フロントページの続き (56)参考文献 特開 平3−237435(JP,A) 特開 昭64−55540(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1362 G02F 1/13 101 H01L 49/02 H01L 21/312 Continuation of the front page (56) References JP-A-3-237435 (JP, A) JP-A-64-55540 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1 / 1362 G02F 1/13 101 H01L 49/02 H01L 21/312

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定のパターンを持った電極1上に絶縁
性の高い有機電解重合膜2を電解重合法により成膜した
後、電極1の材料と同じか、あるいは異なる導電体を所
定のパターンをもって有機電解重合膜2上に形成した電
極3を有する、導電体1/絶縁体(有機電解重合膜2)
/導電体3という構造のスイッチング用双方向非線形抵
抗素子の製造方法において、電解重合時の支持塩として
炭酸塩または炭酸水素塩を用い、該絶縁体を形成するこ
とを特徴とする双方向非線形抵抗素子の製造方法。
An organic electropolymerized film having a high insulating property is formed on an electrode having a predetermined pattern by an electropolymerization method, and then a conductive material which is the same as or different from the material of the electrode is used. Conductor 1 / Insulator (organic electrolytic polymer film 2) having electrode 3 formed on organic electrolytic polymer film 2 with
In a method for manufacturing a bidirectional nonlinear resistance element for switching having a structure of / conductor, a carbonate or bicarbonate is used as a supporting salt during electrolytic polymerization, and the insulator is formed. Device manufacturing method.
【請求項2】 電解重合時の支持塩として0.05Mよ
り大きく、0.5M未満の濃度の炭酸塩を用いることを
特徴とする請求項1記載の双方向非線形抵抗素子の製造
方法。
2. The method for producing a bidirectional nonlinear resistance element according to claim 1, wherein a carbonate having a concentration of more than 0.05 M and less than 0.5 M is used as a supporting salt at the time of electrolytic polymerization.
【請求項3】 電解重合時の支持塩として0.1Mより
大きく、溶解限界濃度以下の濃度の炭酸水素塩を用いる
ことを特徴とする請求項1記載の双方向非線形抵抗素子
の製造方法。
3. The method for producing a bidirectional nonlinear resistance element according to claim 1, wherein a bicarbonate having a concentration of more than 0.1 M and less than a solubility limit concentration is used as a supporting salt at the time of electrolytic polymerization.
【請求項4】 有機電解重合膜のモノマーとして、ピロ
ールまたはその誘導体を用いることを特徴とする請求項
2および3記載の双方向非線形抵抗素子の製造方法。
4. The method according to claim 2, wherein pyrrole or a derivative thereof is used as a monomer of the organic electropolymerized film.
JP4990792A 1992-03-06 1992-03-06 Method for manufacturing bidirectional nonlinear resistance element Expired - Lifetime JP3095860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4990792A JP3095860B2 (en) 1992-03-06 1992-03-06 Method for manufacturing bidirectional nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4990792A JP3095860B2 (en) 1992-03-06 1992-03-06 Method for manufacturing bidirectional nonlinear resistance element

Publications (2)

Publication Number Publication Date
JPH05249501A JPH05249501A (en) 1993-09-28
JP3095860B2 true JP3095860B2 (en) 2000-10-10

Family

ID=12844088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4990792A Expired - Lifetime JP3095860B2 (en) 1992-03-06 1992-03-06 Method for manufacturing bidirectional nonlinear resistance element

Country Status (1)

Country Link
JP (1) JP3095860B2 (en)

Also Published As

Publication number Publication date
JPH05249501A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
DE60218814T2 (en) STABLE, CONJUGATED POLYMER-CONTAINING ELECTROCHROMIC DEVICES WITH IONIC LIQUIDS
US4691005A (en) Thiophene derivative polymer, polymer composition, and methods for manufacture thereof
JPH0831400B2 (en) Solid electrolytic capacitor
Pyo et al. Long-term redox switching stability of polypyrrole
JPH02831A (en) Active element, and active matrix type electrooptical device formed by using the active element and its production
US5122237A (en) High molecular humidity sensor and manufacturing method thereof by electrochemical method
JP2002287173A (en) Electrochromic display element and method for manufacturing the same
JP3095860B2 (en) Method for manufacturing bidirectional nonlinear resistance element
US5175114A (en) Method for production of a bidirectional nonlinear resistor, active matrix liquid crystal panel using bidirectional nonlinear resistor
US5294560A (en) Bidirectional nonlinear resistor, active matrix liquid crystal panel using bidirectional nonlinear resistor, and method for production thereof
Zotti et al. Electrochemical n-doping of poly (dithienylvinylene). A comparison of cyclovoltammetric and conductive properties in n-and p-doping
CN104570423A (en) Display substrate, manufacturing method of display substrate, display panel and display device
JPH05323383A (en) Production of two-way nonlinear resistive element
JPH05249500A (en) Production of bi-directional nonlinear resistor element and liquid crystal display element using the same
JPH01109328A (en) Nonlinear two-terminal element
JPS63199325A (en) Electrochromic display element and its production
JPH0711631B2 (en) Liquid crystal display manufacturing method
EP0449226A1 (en) Non-linear resistor switching element, active matrix liquid crystal panel using the same, and method for manufacturing the non-linear resistor switching element
JP2725633B2 (en) Liquid crystal display
JP4858804B2 (en) Thin layer chemical transistor and manufacturing method thereof
JPH03239382A (en) Manufacture of nonlinear type resistance element for switching
JPH04342235A (en) Production of bidirectional nonlinear resistance element
JPS62160424A (en) Ferroelectric liquid crystal element
JPH03223722A (en) Nonlinear resistance element for switching and active matrix liquid crystal panel using this element and production of nonlinear resistance element for switching thereof
JP2721353B2 (en) Electrochromic device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12