JP3095547B2 - Stacked heat exchanger - Google Patents
Stacked heat exchangerInfo
- Publication number
- JP3095547B2 JP3095547B2 JP04271570A JP27157092A JP3095547B2 JP 3095547 B2 JP3095547 B2 JP 3095547B2 JP 04271570 A JP04271570 A JP 04271570A JP 27157092 A JP27157092 A JP 27157092A JP 3095547 B2 JP3095547 B2 JP 3095547B2
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- tube
- inlet
- outlet
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
- F28D1/0308—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
- F28D1/0325—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
- F28D1/0333—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
- F28D1/0341—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、空調機用の積層型熱交
換器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated heat exchanger for an air conditioner.
【0002】[0002]
【従来の技術】図8,図9に基づいて従来の積層型熱交
換器を説明する。図8には従来の積層型熱交換器の側
面、図9には図8中の右側部の拡大断面を示してある。2. Description of the Related Art A conventional laminated heat exchanger will be described with reference to FIGS. FIG. 8 is a side view of a conventional laminated heat exchanger, and FIG. 9 is an enlarged cross section of the right side in FIG.
【0003】図8,図9において、1は偏平チューブで
あり偏平チューブ1はプレス成形された2枚のプレート
2が突合わされて形成されている。偏平チューブ1の一
端部(図中上端部)には出入口タンク部3が形成されて
いる。8 and 9, reference numeral 1 denotes a flat tube, and the flat tube 1 is formed by abutting two press-formed plates 2. An entrance / exit tank portion 3 is formed at one end (upper end in the figure) of the flat tube 1.
【0004】偏平チューブ1とコルゲートフィン4が交
互に積層され、出入口タンク部3が連結されて積層型熱
交換器(エバポレータ)5が構成されている。[0004] The flat tubes 1 and corrugated fins 4 are alternately stacked, and the inlet / outlet tank portion 3 is connected to form a stacked heat exchanger (evaporator) 5.
【0005】両端に位置する偏平チューブ1aの外方側
はエンドプレート6となり、出入口タンク部3における
エンドプレート6には流通孔7が設けられている。一方
の流通孔7は冷媒の導入配管8に連結され、他方の流通
孔7は冷媒の排出配管9に連結されている。The outer side of the flat tubes 1a located at both ends is an end plate 6, and a flow hole 7 is provided in the end plate 6 of the entrance / exit tank portion 3. One of the flow holes 7 is connected to a refrigerant introduction pipe 8, and the other flow hole 7 is connected to a refrigerant discharge pipe 9.
【0006】サイドプレート10とエンドプレート6の
間にはコルゲートフィン4が設けられている。[0006] corrugated fin 4 is provided between the sub id plate 10 and the end plate 6.
【0007】出入口タンク部3は、偏平チューブ1の板
幅方向に入口部11と出口部12とに仕切られ、エバポ
レータ5を構成した際隣接する出入口タンク部3は入口
部11同士及び出口部12同士が連通孔13によって連
通されている。The inlet / outlet tank section 3 is divided into an inlet section 11 and an outlet section 12 in the plate width direction of the flat tube 1, and when the evaporator 5 is constructed, the adjacent inlet / outlet tank sections 3 are connected to each other. These are communicated with each other by the communication hole 13.
【0008】図10,図11に基づいて偏平チューブ1
を説明する。図10には偏平チューブ1を構成するプレ
ート2の正面、図11には図10中のXI−XI線矢視を示
してある。[0008] The flat tube 1 will be described with reference to Figs.
Will be described. FIG. 10 is a front view of the plate 2 constituting the flat tube 1, and FIG. 11 is a view taken along line XI-XI in FIG.
【0009】プレート2の上端部には出入口タンク部3
を形成するための膨出部14が設けられ、プレート2の
内空部は中央部の上下方向に延びる仕切壁15によって
2つの室16,17に仕切られている。仕切壁15は下
端部が欠如され、プレート2の下端は冷媒をUターンさ
せるUターン部18となっている。2枚のプレート2を
突き合わせることで、仕切壁15によって、出入口タン
ク部3が入口部11と出口部12とに仕切られると共
に、入口部11に連続する室16と出口部12に連続す
る室17とに仕切られる。更に、室16と室17とはU
ターン部18で連通され、室16,17及びUターン部
18で流体通路が形成されている。An entrance / exit tank section 3 is provided at the upper end of the plate 2.
Is formed, and the inner space of the plate 2 is partitioned into two chambers 16 and 17 by a partition wall 15 extending vertically in the center. A lower end of the partition wall 15 is absent, and a lower end of the plate 2 is a U-turn portion 18 for making a U-turn of the refrigerant. By abutting the two plates 2, the entrance / exit tank portion 3 is partitioned by the partition wall 15 into an inlet portion 11 and an outlet portion 12, and a chamber 16 continuous with the inlet portion 11 and a chamber continuous with the outlet portion 12. 17 and is divided. Further, the chambers 16 and 17 are U
Fluid passages are formed in the chambers 16 and 17 and the U-turn part 18 so as to communicate with each other at the turn part 18.
【0010】室16,17には多数のリブ19が突設さ
れ、室16,17内が迷路状に細分化されている。Uタ
ーン部18には案内リブ20が突設され、冷媒は案内リ
ブ20によって室16から室17への流れ(Uターン)
が案内される。A large number of ribs 19 project from the chambers 16 and 17, and the inside of the chambers 16 and 17 is subdivided into a maze. A guide rib 20 protrudes from the U-turn portion 18, and the refrigerant flows from the chamber 16 to the chamber 17 by the guide rib 20 (U-turn).
Will be guided.
【0011】図12に基づいて上述したエバポレータ5
における冷媒の流れを説明する。図12には冷媒の流れ
状況を示してある。The evaporator 5 described above with reference to FIG.
Will be described. FIG. 12 shows the flow state of the refrigerant.
【0012】エバポレータ5は3つの群21,22,2
3に大別され、導入配管8及び排出配管9が接続される
群21,23における入口部11及び出口部12の配置
が同一となり、群22における入口部11及び出口部1
2の配置が逆になっている。群21と群22の間及び群
22と群23の間で対向する出入口タンク部3は、群2
1の出口部12と群22の入口部11が連通し、群22
の出口部12と群23の入口部11が連通している。そ
して、群21の入口部11はエンドプレート6の流通孔
7により導入配管8につながれ、群23の出口部12は
エンドプレート6の流通孔7により排出配管9につなが
れている。The evaporator 5 has three groups 21, 22, 2
3 and the arrangement of the inlet 11 and the outlet 12 in the groups 21 and 23 to which the introduction pipe 8 and the discharge pipe 9 are connected are the same, and the inlet 11 and the outlet 1 in the group 22 are the same.
The arrangement of 2 is reversed. The entrance / exit tank unit 3 facing between the groups 21 and 22 and between the groups 22 and 23 is group 2
1 and the inlet 11 of the group 22 communicate with each other.
The outlet 12 of the group 23 and the inlet 11 of the group 23 communicate with each other. The inlet 11 of the group 21 is connected to the introduction pipe 8 by the flow hole 7 of the end plate 6, and the outlet 12 of the group 23 is connected to the discharge pipe 9 by the flow hole 7 of the end plate 6.
【0013】導入配管8からエバポレータ5に導入され
た冷媒31は、群21の入口部11から室16を通って
Uターン部18に送られ、Uターン部18でUターンさ
れて室17を通って出口部12に送られる。群21の出
口部12に送られた冷媒31は、群22の入口部11に
送られて群21と同様な流れで群23に送られ、群23
の流体通路(室16,17,Uターン部18)を通って
排出配管9から排出される。The refrigerant 31 introduced into the evaporator 5 from the introduction pipe 8 is sent from the inlet 11 of the group 21 to the U-turn part 18 through the chamber 16, is U-turned by the U-turn part 18, and passes through the chamber 17. To the outlet 12. The refrigerant 31 sent to the outlet 12 of the group 21 is sent to the inlet 11 of the group 22 and sent to the group 23 in the same flow as the group 21,
Is discharged from the discharge pipe 9 through the fluid passages (chambers 16, 17 and the U-turn portion 18).
【0014】この間、コルゲートフィン4の間に空気3
2が送られ、冷媒31の蒸発潜熱を利用して空気32が
冷却される。During this time, the air 3 is placed between the corrugated fins 4.
2 is sent, and the air 32 is cooled using the latent heat of evaporation of the refrigerant 31.
【0015】[0015]
【発明が解決しようとする課題】上述したエバポレータ
5では、各群21〜23のチューブ径が同一であるた
め、冷媒がエバポレータの入口部で略80%液体となっ
ていたのが、出口部で100%ガス体になると、体積が
数百倍となって圧力損失(ΔPh)が非常に大きくなっ
て性能低下を招くという問題点を解決するためには冷媒
下流側のチューブ群のチューブ本数を冷媒上流側のチュ
ーブ群のチューブ本数より多くする必要があった。な
お、前記チューブ本数を増やすと圧損低減に効果がある
が、増やし過ぎると、冷媒分配,冷媒側熱伝達に悪影響
を与え、性能低下を招くという欠点がある。In the above-mentioned evaporator 5, since the tube diameter of each group 21 to 23 is the same, the refrigerant is almost 80% liquid at the inlet of the evaporator. When it becomes 100% gas, the volume becomes
In order to solve the problem that the pressure loss (ΔPh) becomes several hundred times and the pressure drop (ΔPh) becomes very large, the performance is reduced.
The number of tubes in the downstream tube group is
It was necessary to increase the number of tubes in the group. Increasing the number of tubes has the effect of reducing pressure loss, but increasing the number excessively has an adverse effect on refrigerant distribution and refrigerant-side heat transfer.
And there is a disadvantage that the performance is reduced.
【0016】[0016]
【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、流体の出入口タンク部と流体流路を
形成するコア部とを有する一対の成形プレートを流体流
路部に波形インナフィンを挿入して重ね合せ偏平チュー
ブを形成し、同偏平チューブとコルゲートフィンとを交
互に多数積層すると共に、これら多数の偏平チューブを
流体の入口側から出口側にかけて複数のチューブ群に仕
切った積層型熱交換器において、前記出口側チューブ群
の各偏平チューブに挿入されている波形インナフィンの
フィンピッチを入口側チューブ群の波形インナフィンの
フィンピッチより大きくしたことを特徴とする。According to the structure of the present invention, a pair of forming plates having a fluid inlet / outlet tank portion and a core portion forming a fluid flow path are provided on a fluid flow path portion. An inner fin is inserted to form a superimposed flat tube, and a plurality of the flat tubes and corrugated fins are alternately laminated, and the plurality of flat tubes are divided into a plurality of tube groups from the inlet side to the outlet side of the fluid. /> in the Tsu switching laminated heat exchanger, characterized by being larger than the fin pitch of the waveform inner fins of the inlet-side tube group fin pitch waveforms inner fins being inserted into the flat tube of the outlet-side tube group .
【0017】また、一端に設けられた流体の出入口タン
ク部と他端でターンするU字状の流体流路を形成するコ
ア部とを有する一対の成形プレートを前記U字状流路の
直線部分にそれぞれ波形インナフィンを挿入して重ね合
せ偏平チューブを形成し、同偏平チューブとコルゲート
フィンとを交互に多数積層すると共に、これら多数の偏
平チューブを流体の入口側から出口側にかけて複数のチ
ューブ群に仕切った積層型熱交換器において、少なくと
も一つのチューブ群について、該チューブ群の各偏平チ
ューブのU字状流路の上流側流路に挿入する波形インナ
フィンのフィンピッチより下流側流路に挿入する波形イ
ンナフィンのフィンピッチを大きくしたことを特徴とす
る。Further, a pair of forming plates having a fluid inlet / outlet tank portion provided at one end and a core portion forming a U-shaped fluid flow passage which turns at the other end are formed by a linear portion of the U-shaped flow passage. A corrugated inner fin is inserted into each to form a superimposed flat tube, and a plurality of the flat tubes and corrugated fins are alternately laminated, and these many flat tubes are formed into a plurality of tube groups from the inlet side to the outlet side of the fluid. in the stacked heat exchanger Tsu partition less when
The fin pitch of the corrugated inner fin inserted into the downstream flow path is larger than the fin pitch of the corrugated inner fin inserted into the upstream flow path of the U-shaped flow path of each flat tube of the one tube group. It is characterized by.
【0018】[0018]
【作用】前記構成によれば、チューブ本数の若干の増加
に加えて出口側チューブでの内部抵抗の減少が図れ、性
能低下を招くことなく冷媒の圧力損失が低減される。According to the above construction, in addition to a slight increase in the number of tubes, the internal resistance at the outlet tube can be reduced, and the pressure loss of the refrigerant can be reduced without lowering the performance.
【0019】[0019]
【実施例】図1には本発明の一実施例に係る積層型熱交
換器における偏平チューブの分解斜視、図2には偏平チ
ューブを構成するプレートの接合面を表わす正面、図3
には図2中の矢印III 部の詳細状態、図4には積層型熱
交換器の側面、図5には同じく平面、図6には偏平チュ
ーブの断面を示してある。FIG. 1 is an exploded perspective view of a flat tube in a laminated heat exchanger according to an embodiment of the present invention. FIG. 2 is a front view showing a joining surface of plates constituting the flat tube.
4 shows a detailed state of an arrow III part in FIG. 2, FIG. 4 shows a side view of the laminated heat exchanger, FIG. 5 shows the same plane, and FIG. 6 shows a cross section of a flat tube.
【0020】偏平チューブ41はプレス成形された2枚
のプレート42が突合わされて形成されている。偏平チ
ューブ41の一端部(図2中上端部)には出入口タンク
部43が形成されている。The flat tube 41 is formed by abutting two press-formed plates 42. An inlet / outlet tank part 43 is formed at one end (the upper end in FIG. 2) of the flat tube 41.
【0021】図4及び図5に示すように、偏平チューブ
41とコルゲートフィン65が交互に積層され、出入口
タンク部43が連結されて積層型熱交換器(エバポレー
タ)66が構成される。図中69aは流体としての冷媒
の導入配管、69bは冷媒の排出配管である。本実施例
では、冷媒の入口側から出口側にかけて三つのチューブ
群53a〜53cに仕切られ、そのうちの出口側のチュ
ーブ群53cのチューブ本数がその他のチューブ群53
a,53bが6本であるのに対し7本と増やされてい
る。また、出入口タンク部43は、偏平チューブ41の
板幅方向に入口部44と出口部45とに仕切られ、エバ
ポレータ66を構成した際、隣接する出入口タンク部4
3は入口部44同士及び出口部45同士が連通孔46に
よって連通されている。As shown in FIGS. 4 and 5, flat tubes 41 and corrugated fins 65 are alternately stacked, and the inlet / outlet tank section 43 is connected to form a stacked heat exchanger (evaporator) 66. In the figure, 69a is a piping for introducing a refrigerant as a fluid, and 69b is a piping for discharging the refrigerant. In this embodiment, the refrigerant is divided into three tube groups 53a to 53c from the inlet side to the outlet side of the refrigerant, and the number of tubes in the tube group 53c on the outlet side is the other tube group 53c.
The number of a and 53b is increased from six to seven. The entrance / exit tank section 43 is partitioned into an entrance section 44 and an exit section 45 in the plate width direction of the flat tube 41, and when the evaporator 66 is configured, the entrance / exit tank section 4 adjacent thereto is formed.
In 3, the inlet portions 44 and the outlet portions 45 are communicated by the communication holes 46.
【0022】プレート42の内空部は中央部の上下方向
に延びる仕切壁47によって2つの室48,49に仕切
られている。仕切壁47は下端部が欠如され、プレート
42の下端は冷媒をUターンさせるUターン部50とな
っている。2枚のプレート42を突き合わせることで、
仕切壁47によって、出入口タンク部43が入口部44
と出口部45とに仕切られると共に、入口部44に連続
する室48と出口部45に連続する室49とに仕切られ
る。更に、室48と室49とはUターン部50で連通さ
れ、室48,49及びUターン部50で流体通路(コア
部)51が形成されている。The inner space of the plate 42 is divided into two chambers 48 and 49 by a partition wall 47 extending vertically in the center. A lower end of the partition wall 47 is absent, and a lower end of the plate 42 is a U-turn portion 50 for making a U-turn of the refrigerant. By abutting the two plates 42,
The partition wall 47 allows the entrance / exit tank portion 43 to be connected to the entrance portion 44
And an outlet 45, and a chamber 48 connected to the inlet 44 and a chamber 49 connected to the outlet 45. Further, the chamber 48 and the chamber 49 are communicated by a U-turn part 50, and a fluid passage (core part) 51 is formed by the chambers 48, 49 and the U-turn part 50.
【0023】流体通路51の室48,49の部分(直線
部分)には波形インナフィン52a〜52dが挿入さ
れ、図6に示すように、室48,49の長さ方向(上下
方向)に沿う流路が複数分離して区画形成されるように
なっている。The corrugated inner fins 52a to 52d are inserted into the chambers 48, 49 (linear portions) of the fluid passage 51, and flow along the length direction (vertical direction) of the chambers 48, 49 as shown in FIG. A plurality of roads are formed separately from each other.
【0024】室48,49には仕切壁47に沿って平行
に延びプレート42の外側が溝状となる突壁67が成形
されている。2枚のプレート42を突き合わせて接合し
た際、図6に示すように、波形インナフィン52a〜5
2dは前記仕切壁47と突壁67によって位置決め固定
される。Projecting walls 67 are formed in the chambers 48 and 49 so as to extend in parallel along the partition wall 47 and form a groove on the outside of the plate 42. When the two plates 42 are butted and joined, as shown in FIG. 6, the corrugated inner fins 52a to 52a-5
2d is positioned and fixed by the partition wall 47 and the protruding wall 67.
【0025】突壁67によってプレート42の外側に溝
を形成することにより、偏平チューブ41の外側面に
は、仕切壁47によって形成される溝と突壁67によっ
て形成される溝とが存在することになり、凝縮水の流下
を促進させて露飛びを防止することができる。By forming a groove on the outside of the plate 42 by the protruding wall 67, a groove formed by the partition wall 47 and a groove formed by the protruding wall 67 exist on the outer surface of the flat tube 41. And the flow of the condensed water can be promoted to prevent dew dropping.
【0026】また、本実施例では、図6に示すように、
入口側のチューブ群53a,53bに挿入された波形イ
ンナフィン52a〜52dのフィンピッチより出口側の
チューブ群53cに挿入された波形インナフィン52a
〜52dのフィンピッチの方が大きく設定され、内部抵
抗が低減されている。同様の見地から、図6に限らず、
図7に示すように、出口側のチューブ群53cにおい
て、冷媒流れの上流側に位置する波形インナフィン52
c,52dのフィンピッチよりも下流側に位置する波形
インナフィン52a,52bのフィンピッチを大きく設
定しても良い。In this embodiment, as shown in FIG.
The inlet side of the tube group 53a, 53b to the inserted waveform Lee <br/> runner fins 52a~52d of the outlet side of the fin pitch tube group 53c in the inserted waveform inner fins 52a
The fin pitch of ~ 52d is set larger, and the internal resistance is reduced. From a similar point of view, not limited to FIG.
As shown in FIG. 7, the corrugated inner fin 52 located on the upstream side of the refrigerant flow in the tube group 53c on the outlet side.
The fin pitches of the corrugated inner fins 52a and 52b located downstream of the fin pitches of c and 52d may be set larger.
【0027】流体通路51のUターン部50の部分に
は、冷媒のUターンを案内するためのターン流路56が
複数分離して区画形成されている。ターン流路56はプ
レート42の突合わせ面にプレス成形された複数のU字
状ビード57によって形成され、ターン流路56はプレ
ート42の形状に沿ったU字形となっている。In the U-turn section 50 of the fluid passage 51, a plurality of turn flow paths 56 for guiding the U-turn of the refrigerant are separately formed. The turn channel 56 is formed by a plurality of U-shaped beads 57 press-formed on the abutting surface of the plate 42, and the turn channel 56 has a U-shape along the shape of the plate 42.
【0028】室48,49間で冷媒が流れる場合、偏平
チューブ41の幅方向外側の流路を流れる冷媒は、Uタ
ーン部50の外側のターン流路56を流れる。また、偏
平チューブ41の幅方向内側の流路を流れる冷媒は、U
ターン部50の内側のターン流路56を流れる。つま
り、偏平チューブ41内の冷媒は、内側から内側、外側
から外側を通って流体通路51を流れる。When the refrigerant flows between the chambers 48 and 49, the refrigerant flowing through the flow path outside the flat tube 41 in the width direction flows through the turn flow path 56 outside the U-turn part 50. The refrigerant flowing through the flow path inside the flat tube 41 in the width direction is U
It flows through the turn channel 56 inside the turn part 50. That is, the refrigerant in the flat tube 41 flows through the fluid passage 51 from inside to inside and from outside to outside.
【0029】上述した偏平チューブ41では、入口部4
4から流入した流体としての冷媒は、波形インナフィン
52a,52bで区画された流路を通ってUターン部5
0に導かれ、U字状ビード57で区画されたターン流路
56でUターンされ、波形インナフィン52c,52d
で区画された流路を通って出口部45まで流れる。この
偏平チューブ41とコルゲートフィンとを交互に積層し
たエバポレータ全体における冷媒及び空気の流れの一例
は、図12で示した状況と同一である。In the flat tube 41 described above, the inlet 4
The refrigerant as the fluid flowing from the U-turn portion 5 passes through a flow path defined by the corrugated inner fins 52a and 52b.
0, and is U-turned in the turn flow path 56 defined by the U-shaped bead 57, and the corrugated inner fins 52c, 52d
And flows to the outlet 45 through the flow path defined by. An example of the flow of the refrigerant and the air in the entire evaporator in which the flat tubes 41 and the corrugated fins are alternately stacked is the same as the situation shown in FIG.
【0030】偏平チューブ41内を流れる冷媒は、区画
された流路及びターン流路56を流れるので、流体通路
51の内側から内側、外側から外側を冷媒が流れ、Uタ
ーン部50での遠心力に伴なう気液二相流冷媒の分離が
ターン流路56内だけとなり、二相流冷媒の気液それぞ
れの分配量の分布が小さくなる。また、Uターン部50
のターン流路56はプレート42の形状に沿ったU字形
となっているので、冷媒の流れに澱みが生じることがな
くなる。Since the refrigerant flowing in the flat tube 41 flows through the partitioned flow path and the turn flow path 56, the refrigerant flows from the inside to the inside of the fluid passage 51 and from the outside to the outside. As a result, the gas-liquid two-phase refrigerant is separated only in the turn channel 56, and the distribution of the gas-liquid distribution of the two-phase refrigerant becomes smaller. The U-turn section 50
Since the turn flow path 56 has a U-shape conforming to the shape of the plate 42, no stagnation occurs in the flow of the refrigerant.
【0031】このため、冷媒の気液分配量の分布が小さ
くなって偏りによる熱効率の低下が生じにくくなると共
に、冷媒の流れに澱みが生じて熱交換量が不均一になる
ことがなくなる。As a result, the distribution of the gas-liquid distribution amount of the refrigerant is reduced, so that the thermal efficiency is not easily reduced due to the bias, and the flow of the refrigerant does not become stagnant, so that the heat exchange amount is not uniform.
【0032】図3に示すように、プレート42の接合縁
42a及び仕切壁47のUターン部50側には、突起6
1がプレス成形されている。突起61により波形インナ
フィン52a〜52dの室48,49内での位置決めが
行なわれ、ターン流路56(U字状ビード57)の上端
位置に対する波形インナフィン52a〜52dの下端縁
の位置が規制される。As shown in FIG. 3, the projection 6 is formed on the joint edge 42a of the plate 42 and the U-turn portion 50 side of the partition wall 47.
1 is press-formed. The projections 61 position the corrugated inner fins 52a to 52d in the chambers 48 and 49, and regulate the position of the lower edge of the corrugated inner fins 52a to 52d with respect to the upper end position of the turn flow path 56 (U-shaped bead 57). .
【0033】ターン流路56の上端位置と波形インナフ
ィン52a〜52d下端縁との隙間Sは0.5mm乃至5
mmに設定されている。The gap S between the upper end position of the turn channel 56 and the lower end edges of the corrugated inner fins 52a to 52d is 0.5 mm to 5 mm.
is set to mm.
【0034】この隙間Sが0.5mm未満の場合、波形イ
ンナフィン52a〜52dで形成された流路のピッチと
ターン流路56のピッチが異なるため、ターン流路56
を形成するU字状ビード57と合致する流路を通る冷媒
が流れにくくなってしまう。When the gap S is smaller than 0.5 mm, the pitch of the flow path formed by the corrugated inner fins 52a to 52d and the pitch of the turn flow path 56 are different.
Therefore, it becomes difficult for the refrigerant to flow through the flow path that matches the U-shaped bead 57 that forms
【0035】また、隙間Sが5mmを越えると、プレート
42をろう付けして接合した際に、末ろう付け部が大き
くなって耐圧強度が不足してしまう。On the other hand, if the gap S exceeds 5 mm, when the plate 42 is brazed and joined, the brazed portion becomes large and the pressure resistance is insufficient.
【0036】図2に示すように、プレート42の接合縁
42aの4箇所にはかしめ止め部68が設けられてい
る。2枚のプレート42で形成される室48,49内に
波形インナフィン52a〜52dを配し、プレート42
を突き合わせてかしめ止め部68により2枚のプレート
42をかしめることで、波形インナフィン52a〜52
dが挿入された偏平チューブ41が組立品として構成さ
れる。As shown in FIG. 2, crimping stoppers 68 are provided at four positions on the joining edge 42a of the plate 42. Corrugated inner fins 52 a to 52 d are arranged in chambers 48 and 49 formed by two plates 42,
Are crimped and the two plates 42 are caulked by the caulking stopper 68 so that the corrugated inner fins 52 a to 52
The flat tube 41 into which d is inserted is configured as an assembly.
【0037】上記構成の偏平チューブ41を用いたエバ
ポレータ66の製造方法を説明する。A method of manufacturing the evaporator 66 using the flat tube 41 having the above configuration will be described.
【0038】2枚のプレート42で形成される室48,
49内に波形インナフィン52a〜52dを挿入し、プ
レート42を突き合わせてかしめ止め部68により2枚
のプレート42を一体にして組立品としての偏平チュー
ブ41とする。A chamber 48 formed by two plates 42,
The corrugated inner fins 52 a to 52 d are inserted into 49, the plates 42 are butted against each other, and the two plates 42 are integrated by the caulking portion 68 to form a flat tube 41 as an assembly.
【0039】組立品の偏平チューブ41とコルゲートフ
ィン65とを交互に多数積層状態に組立て、これを炉中
でろう付け接合してエバポレータ66を製造する。A plurality of flat tubes 41 and corrugated fins 65 are assembled alternately in a stacked state, and these are brazed in a furnace to produce an evaporator 66.
【0040】上述した方法で製造したエバポレータ66
は、予め偏平チューブ41を組立品として作成している
ので、偏平チューブ41を高い信頼性で作成することが
でき、冷媒漏れが生じることがない。The evaporator 66 manufactured by the method described above.
Since the flat tube 41 is manufactured as an assembly in advance, the flat tube 41 can be manufactured with high reliability, and no refrigerant leakage occurs.
【0041】上記構成のエバポレータ66では、偏平チ
ューブ41の室48,49の長さ方向の流路を波形イン
ナフィン52a〜52dによって分離形成しているの
で、冷媒の流れをスムーズにさせて流路面積を増大させ
ることができる。また、波形インナフィン52a〜52
dにおいて、出口側のチューブ群53cのフィンピッチ
を入口側のチューブ群53a,53bのフィンピッチよ
りも大きくして内部抵抗を可及的に減少させるようにし
たので、出口側のチューブ群53cのチューブ本数を1
本増やしたことと相俟って、性能を低下させずに冷媒の
圧力損失を低減することができる。In the evaporator 66 having the above-described structure, the flow paths in the longitudinal direction of the chambers 48 and 49 of the flat tube 41 are separated and formed by the corrugated inner fins 52a to 52d. Can be increased. Also, the corrugated inner fins 52a to 52
In (d), the fin pitch of the tube group 53c on the outlet side is made larger than the fin pitch of the tube groups 53a and 53b on the inlet side to reduce the internal resistance as much as possible. 1 tube
Together with the increase, the pressure loss of the refrigerant can be reduced without lowering the performance.
【0042】[0042]
【発明の効果】本発明の積層型熱交換器は、出口側のチ
ューブ群においてチューブ本数を若干増やすとともに波
形インナフィンのフィンピッチを可及的に大きくしたの
で、冷媒の圧力損失を効果的に低減できる。According to the laminated heat exchanger of the present invention, the number of tubes in the tube group on the outlet side is slightly increased and the fin pitch of the corrugated inner fin is increased as much as possible, so that the pressure loss of the refrigerant is effectively reduced. it can.
【図1】本発明の一実施例に係る積層型熱交換器におけ
る偏平チューブの分解斜視図。FIG. 1 is an exploded perspective view of a flat tube in a laminated heat exchanger according to one embodiment of the present invention.
【図2】偏平チューブを構成するプレートの接合面を表
わす正面図。FIG. 2 is a front view showing a joint surface of a plate constituting the flat tube.
【図3】図2中の矢印III 部の詳細図。FIG. 3 is a detailed view of an arrow III part in FIG. 2;
【図4】積層型熱交換器の側面図。FIG. 4 is a side view of the stacked heat exchanger.
【図5】積層型熱交換器の平面図。FIG. 5 is a plan view of the stacked heat exchanger.
【図6】偏平チューブの断面図。FIG. 6 is a sectional view of a flat tube.
【図7】偏平チューブの変形例の断面図。FIG. 7 is a sectional view of a modification of the flat tube.
【図8】従来の積層型熱交換器の側面図。FIG. 8 is a side view of a conventional laminated heat exchanger.
【図9】図8中の右側部の拡大断面図。FIG. 9 is an enlarged sectional view of the right side in FIG. 8;
【図10】偏平チューブを構成するプレートの正面図。FIG. 10 is a front view of a plate constituting the flat tube.
【図11】図10中のXI−XI線矢視図。FIG. 11 is a view taken along line XI-XI in FIG. 10;
【図12】冷媒の流れ状況説明図。FIG. 12 is an explanatory diagram of a flow state of a refrigerant.
41 偏平チューブ 42 プレート 42a 接合縁 43 出入口タンク部 44 入口部 45 出口部 46 連通孔 47 仕切壁 48,49 室 50 Uターン部 51 流体通路 52a〜52d 波形インナフィン 56 ターン流路 57 U字状ビード 65 コルゲートフィン 66 エバポレータ 68 かしめ止め部 41 Flat tube 42 Plate 42a Joining edge 43 Inlet / outlet tank part 44 Inlet part 45 Outlet part 46 Communication hole 47 Partition wall 48, 49 chamber 50 U-turn part 51 Fluid passage 52a-52d Waved inner fin 56 Turn flow path 57 U-shaped bead 65 Corrugated fin 66 Evaporator 68 Pre-staking part
フロントページの続き (72)発明者 川合 秀直 愛知県名古屋市中村区岩塚町字高道1番 地 三菱重工業株式会社 名古屋研究所 内 (56)参考文献 特開 平4−254170(JP,A) 特開 平3−207969(JP,A) 特開 昭61−55565(JP,A) 特開 昭48−100746(JP,A) 特開 昭61−173097(JP,A) 実開 平5−52563(JP,U) 実開 昭56−28587(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 39/02 F28F 1/40 Continued on the front page (72) Inventor Hidenao Kawai 1 Nagoya Laboratory, Iwazuka-cho, Nakamura-ku, Nagoya-shi, Aichi Nagoya Research Laboratory Mitsubishi Heavy Industries, Ltd. (56) References JP-A-4-254170 (JP, A) JP-A-3-207969 (JP, A) JP-A-61-55565 (JP, A) JP-A-48-100746 (JP, A) JP-A-61-173097 (JP, A) (JP, U) Jikkai Sho 56-28587 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F25B 39/02 F28F 1/40
Claims (2)
するコア部とを有する一対の成形プレートを流体流路部
に波形インナフィンを挿入して重ね合せ偏平チューブを
形成し、同偏平チューブとコルゲートフィンとを交互に
多数積層すると共に、これら多数の偏平チューブを流体
の入口側から出口側にかけて複数のチューブ群に仕切っ
た積層型熱交換器において、前記出口側チューブ群の各
偏平チューブに挿入されている波形インナフィンのフィ
ンピッチを入口側チューブ群の波形インナフィンのフィ
ンピッチより大きくしたことを特徴とする積層型熱交換
器。A flat tube is formed by superimposing a pair of forming plates having a fluid inlet / outlet tank portion and a core portion forming a fluid flow path by inserting a corrugated inner fin into the fluid flow path portion to form a flat tube. with a large number laminated and corrugated fins alternately, partition Tsu multiple tube group toward the outlet side a number of flat tubes them from the inlet side of the fluid
In the stacked heat exchanger, the laminated heat exchanger, characterized in that larger than the fin pitch of the waveform inner fins of the inlet-side tube group fin pitch waveforms inner fins being inserted into the flat tube of the outlet-side tube group vessel.
と他端でターンするU字状の流体流路を形成するコア部
とを有する一対の成形プレートを前記U字状流路の直線
部分にそれぞれ波形インナフィンを挿入して重ね合せ偏
平チューブを形成し、同偏平チューブとコルゲートフィ
ンとを交互に多数積層すると共に、これら多数の偏平チ
ューブを流体の入口側から出口側にかけて複数のチュー
ブ群に仕切った積層型熱交換器において、少なくとも一
つのチューブ群について該チューブ群の各偏平チューブ
のU字状流路の上流側流路に挿入する波形インナフィン
のフィンピッチより下流側流路に挿入する波形インナフ
ィンのフィンピッチを大きくしたことを特徴とする積層
型熱交換器。2. A pair of forming plates having a fluid inlet / outlet tank part provided at one end and a core part forming a U-shaped fluid flow path turning at the other end, and a linear portion of the U-shaped flow path. A corrugated inner fin is inserted into each to form a superimposed flat tube, and a plurality of the flat tubes and corrugated fins are alternately laminated, and these many flat tubes are formed into a plurality of tube groups from the inlet side to the outlet side of the fluid. in the stacked heat exchanger Tsu partition, at least a
The fin pitch of the corrugated inner fin inserted into the downstream flow path is larger than the fin pitch of the corrugated inner fin inserted into the upstream flow path of the U-shaped flow path of each flat tube of the two tube groups. Stacked heat exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04271570A JP3095547B2 (en) | 1992-10-09 | 1992-10-09 | Stacked heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04271570A JP3095547B2 (en) | 1992-10-09 | 1992-10-09 | Stacked heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06123522A JPH06123522A (en) | 1994-05-06 |
JP3095547B2 true JP3095547B2 (en) | 2000-10-03 |
Family
ID=17501926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04271570A Expired - Fee Related JP3095547B2 (en) | 1992-10-09 | 1992-10-09 | Stacked heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3095547B2 (en) |
-
1992
- 1992-10-09 JP JP04271570A patent/JP3095547B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06123522A (en) | 1994-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100353020B1 (en) | Multilayer Heat Exchanger | |
AU670302B2 (en) | Stacked heat exchanger and method of manufacturing the same | |
US6523606B1 (en) | Heat exchanger tube block with multichamber flat tubes | |
JP5002797B2 (en) | Heat exchanger | |
US5447194A (en) | Stacked heat exchanger | |
JPH0674677A (en) | Manufacture of lamination type heat exchanger | |
US6823933B2 (en) | Stacked-type, multi-flow heat exchangers | |
JP2006132920A (en) | Heat exchanger | |
JPH04155191A (en) | Lamination type heat exchanger | |
JP2984480B2 (en) | Stacked heat exchanger | |
US20090223656A1 (en) | Heat exchanger tube | |
JPH0933187A (en) | Laminated heat exchanger | |
JP2002147990A (en) | Heat exchanger | |
JP3281648B2 (en) | Stacked heat exchanger | |
JP3095547B2 (en) | Stacked heat exchanger | |
JP2984481B2 (en) | Stacked heat exchanger | |
JP3327584B2 (en) | Stacked heat exchanger | |
JPH0894274A (en) | Accumulated type heat exchanger | |
JP2930486B2 (en) | Stacked heat exchanger | |
JP3095540B2 (en) | Stacked heat exchanger | |
JPH0460387A (en) | Laminated heat exchanger | |
JPH0345301B2 (en) | ||
JP3316492B2 (en) | Stacked heat exchanger | |
JP3073331B2 (en) | Stacked heat exchanger | |
JPH06123582A (en) | Stacked type heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000627 |
|
LAPS | Cancellation because of no payment of annual fees |