JP2984480B2 - Stacked heat exchanger - Google Patents

Stacked heat exchanger

Info

Publication number
JP2984480B2
JP2984480B2 JP4271562A JP27156292A JP2984480B2 JP 2984480 B2 JP2984480 B2 JP 2984480B2 JP 4271562 A JP4271562 A JP 4271562A JP 27156292 A JP27156292 A JP 27156292A JP 2984480 B2 JP2984480 B2 JP 2984480B2
Authority
JP
Japan
Prior art keywords
plate
refrigerant
flat tube
heat exchanger
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4271562A
Other languages
Japanese (ja)
Other versions
JPH06123578A (en
Inventor
昌照 林
康彦 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4271562A priority Critical patent/JP2984480B2/en
Publication of JPH06123578A publication Critical patent/JPH06123578A/en
Application granted granted Critical
Publication of JP2984480B2 publication Critical patent/JP2984480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空調機用の積層型熱交
換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated heat exchanger for an air conditioner.

【0002】[0002]

【従来の技術】図7,図8に基づいて従来の積層型熱交
換器を説明する。図7には従来の積層型熱交換器の側
面、図8には図7中の右側部の拡大断面を示してある。
2. Description of the Related Art A conventional laminated heat exchanger will be described with reference to FIGS. FIG. 7 shows a side view of a conventional laminated heat exchanger, and FIG. 8 shows an enlarged cross section of the right side in FIG.

【0003】図7,図8において、1は偏平チューブで
あり偏平チューブ1はプレス成形された2枚のプレート
2が突合わされて形成されている。偏平チューブ1の一
端部(図中上端部)には出入口タンク部3が形成されて
いる。
In FIGS. 7 and 8, reference numeral 1 denotes a flat tube, and the flat tube 1 is formed by abutting two press-formed plates 2. An entrance / exit tank portion 3 is formed at one end (upper end in the figure) of the flat tube 1.

【0004】偏平チューブ1とコルゲートフィン4が交
互に積層され、出入口タンク部3が連結されて積層型熱
交換器(エバポレータ)5が構成されている。
[0004] The flat tubes 1 and corrugated fins 4 are alternately stacked, and the inlet / outlet tank portion 3 is connected to form a stacked heat exchanger (evaporator) 5.

【0005】両端に位置する偏平チューブ1aの外方側
はエンドプレート6となり、出入口タンク部3における
エンドプレート6には流通孔7が設けられている。一方
の流通孔7は冷媒の導入配管8に連結され、他方の流通
孔7は冷媒の排出配管9に連結されている。
The outer side of the flat tubes 1a located at both ends is an end plate 6, and a flow hole 7 is provided in the end plate 6 of the entrance / exit tank portion 3. One of the flow holes 7 is connected to a refrigerant introduction pipe 8, and the other flow hole 7 is connected to a refrigerant discharge pipe 9.

【0006】導入配管8及び排出配管9はサイドプレー
ト10で固定され、サイドプレート10とエンドプレー
ト6の間にはコルゲートフィン4が設けられている。
The introduction pipe 8 and the discharge pipe 9 are fixed by a side plate 10, and a corrugated fin 4 is provided between the side plate 10 and the end plate 6.

【0007】出入口タンク部3は、偏平チューブ1の板
幅方向に入口部11と出口部12とに仕切られ、エバポ
レータ5を構成した際隣接する出入口タンク部3は入口
部11同士及び出口部12同士が連通孔13によって連
通されている。
The inlet / outlet tank section 3 is divided into an inlet section 11 and an outlet section 12 in the plate width direction of the flat tube 1, and when the evaporator 5 is constructed, the adjacent inlet / outlet tank sections 3 are connected to each other. These are communicated with each other by the communication hole 13.

【0008】図9,図10に基づいて偏平チューブ1を
説明する。図9には偏平チューブ1を構成するプレート
2の正面、図10には図9中のX−X線矢視を示してあ
る。
The flat tube 1 will be described with reference to FIGS. FIG. 9 is a front view of the plate 2 constituting the flat tube 1, and FIG. 10 is a view taken along line XX in FIG.

【0009】プレート2の上端部には出入口タンク部3
を形成するための膨出部14が設けられ、プレート2の
内空部は中央部の上下方向に延びる仕切壁15によって
2つの室16,17に仕切られている。仕切壁15は下
端部が欠如され、プレート2の下端は冷媒をUターンさ
せるUターン部18となっている。2枚のプレート2を
突き合わせることで、仕切壁15によって、出入口タン
ク部3が入口部11と出口部12とに仕切られると共
に、入口部11に連続する室16と出口部12に連続す
る室17とに仕切られる。更に、室16と室17とはU
ターン部18で連通され、室16,17及びUターン部
18で流体通路が形成されている。
An entrance / exit tank section 3 is provided at the upper end of the plate 2.
Is formed, and the inner space of the plate 2 is partitioned into two chambers 16 and 17 by a partition wall 15 extending vertically in the center. A lower end of the partition wall 15 is absent, and a lower end of the plate 2 is a U-turn portion 18 for making a U-turn of the refrigerant. By abutting the two plates 2, the entrance / exit tank portion 3 is partitioned by the partition wall 15 into an inlet portion 11 and an outlet portion 12, and a chamber 16 continuous with the inlet portion 11 and a chamber continuous with the outlet portion 12. 17 and is divided. Further, the chambers 16 and 17 are U
Fluid passages are formed in the chambers 16 and 17 and the U-turn part 18 so as to communicate with each other at the turn part 18.

【0010】室16,17には多数のリブ19が突設さ
れ、室16,17内が迷路状に細分化されている。Uタ
ーン部18には案内リブ20が突設され、冷媒は案内リ
ブ20によって室16から室17への流れ(Uターン)
が案内される。
A large number of ribs 19 project from the chambers 16 and 17, and the inside of the chambers 16 and 17 is subdivided into a maze. A guide rib 20 protrudes from the U-turn portion 18, and the refrigerant flows from the chamber 16 to the chamber 17 by the guide rib 20 (U-turn).
Will be guided.

【0011】図11に基づいて上述したエバポレータ5
における冷媒の流れを説明する。図11には冷媒の流れ
状況を示してある。
The evaporator 5 described above with reference to FIG.
Will be described. FIG. 11 shows the flow state of the refrigerant.

【0012】エバポレータ5は3つの群21,22,2
3に大別され、導入配管8及び排出配管9が接続される
群21,23における入口部11及び出口部12の配置
が同一となり、群22における入口部11及び出口部1
2の配置が逆になっている。群21と群22の間及び群
22と群23の間で対向する出入口タンク部3は、群2
1の出口部12と群22の入口部11が連通し、群22
の出口部12と群23の入口部11が連通している。そ
して、群21の入口部11はエンドプレート6の流通孔
7により導入配管8につながれ、群23の出口部12は
エンドプレート6の流通孔7により排出配管9につなが
れている。
The evaporator 5 has three groups 21, 22, 2
3 and the arrangement of the inlet 11 and the outlet 12 in the groups 21 and 23 to which the introduction pipe 8 and the discharge pipe 9 are connected are the same, and the inlet 11 and the outlet 1 in the group 22 are the same.
The arrangement of 2 is reversed. The entrance / exit tank unit 3 facing between the groups 21 and 22 and between the groups 22 and 23 is group 2
1 and the inlet 11 of the group 22 communicate with each other.
The outlet 12 of the group 23 and the inlet 11 of the group 23 communicate with each other. The inlet 11 of the group 21 is connected to the introduction pipe 8 by the flow hole 7 of the end plate 6, and the outlet 12 of the group 23 is connected to the discharge pipe 9 by the flow hole 7 of the end plate 6.

【0013】導入配管8からエバポレータ5に導入され
た冷媒31は、群21の入口部11から室16を通って
Uターン部18に送られ、Uターン部18でUターンさ
れて室17を通って出口部12に送られる。群21の出
口部12に送られた冷媒31は、群22の入口部11に
送られて群21と同様な流れで群23に送られ、群23
の流体通路(室16,17,Uターン部18)を通って
排出配管9から排出される。
The refrigerant 31 introduced into the evaporator 5 from the introduction pipe 8 is sent from the inlet 11 of the group 21 to the U-turn part 18 through the chamber 16, is U-turned by the U-turn part 18, and passes through the chamber 17. To the outlet 12. The refrigerant 31 sent to the outlet 12 of the group 21 is sent to the inlet 11 of the group 22 and sent to the group 23 in the same flow as the group 21,
Is discharged from the discharge pipe 9 through the fluid passages (chambers 16, 17 and the U-turn portion 18).

【0014】この間、コルゲートフィン4の間に空気3
2が送られ、冷媒31の蒸発潜熱を利用して空気32が
冷却される。
During this time, the air 3 is placed between the corrugated fins 4.
2 is sent, and the air 32 is cooled using the latent heat of evaporation of the refrigerant 31.

【0015】[0015]

【発明が解決しようとする課題】上述したエバポレータ
5では、偏平チューブ1のプレート2の内側の室16,
17に多数のリブ19を設けて冷媒の伝熱面積を拡大さ
せているが、未だ不十分であり、より一層の熱伝達率の
向上が望まれていた。
In the evaporator 5 described above, the chambers 16 inside the plate 2 of the flat tube 1 are provided.
Although a large number of ribs 19 are provided on 17 to increase the heat transfer area of the refrigerant, it is still insufficient, and further improvement in the heat transfer coefficient has been desired.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、流体の出入口タンク部と流体通路を
形成するコア部とをプレス成形した2枚のプレートを突
き合せてその間にインナーフィンを挟み込み偏平チュー
ブを形成し、同チューブとフィンとを交互に多数積層し
てなる積層型熱交換器において、前記プレートとインナ
ーフィンとで形成される流体通路のプレート部に微細な
エンボシングを施したことを特徴とする。
Configuration of the present invention for solving the above object, according to an aspect of the, and a core portion that forms the entrance tank and the fluid passage of the fluid therebetween butting two plates obtained by press molding In a laminated heat exchanger in which a flat tube is formed by sandwiching an inner fin and a plurality of the tubes and the fins are alternately laminated, the plate and the inner
And fine embossing is applied to a plate portion of the fluid passage formed by the fins .

【0017】[0017]

【作用】前記構成によれば、冷媒の伝熱面積のより一層
の拡大と乱流促進により熱伝達率が一段と向上される。
According to the above construction, the heat transfer coefficient is further improved by further expanding the heat transfer area of the refrigerant and promoting turbulence.

【0018】[0018]

【実施例】図1には本発明の一実施例に係る積層型熱交
換器における偏平チューブの分解斜視、図2には偏平チ
ューブを構成するプレートの接合面を表わす正面、図3
には図2中の矢印III 部の詳細状態、図4には積層型熱
交換器の側面、図5には図4中のV-V 線矢視、図6には
エンボシングの変形例を示すプレートの要部斜視を示し
てある。
FIG. 1 is an exploded perspective view of a flat tube in a laminated heat exchanger according to an embodiment of the present invention. FIG. 2 is a front view showing a joining surface of plates constituting the flat tube.
2 shows a detailed state of an arrow III part in FIG. 2, FIG. 4 shows a side view of the stacked heat exchanger, FIG. 5 shows a view taken along a line VV in FIG. 4, and FIG. The perspective view of the main part is shown.

【0019】偏平チューブ41はプレス成形された2枚
のプレート42が突合わされて形成されている。偏平チ
ューブ41の一端部(図2中上端部)には出入口タンク
部43が形成されている。
The flat tube 41 is formed by abutting two press-formed plates 42. An inlet / outlet tank part 43 is formed at one end (the upper end in FIG. 2) of the flat tube 41.

【0020】図4に示すように、偏平チューブ41とコ
ルゲートフィン65が交互に積層され、出入口タンク部
43が連結されて積層型熱交換器(エバポレータ)66
が構成される。図中69aは流体としての冷媒の導入配
管、69bは冷媒の排出配管である。出入口タンク部4
3は、偏平チューブ41の板幅方向に入口部44と出口
部45とに仕切られ、エバポレータ66を構成した際、
隣接する出入口タンク部43は入口部44同士及び出口
部45同士が連通孔46によって連通されている。
As shown in FIG. 4, the flat tubes 41 and the corrugated fins 65 are alternately stacked, and the inlet / outlet tank section 43 is connected to form a stacked heat exchanger (evaporator) 66.
Is configured. In the figure, 69a is a piping for introducing a refrigerant as a fluid, and 69b is a piping for discharging the refrigerant. Doorway tank part 4
3 is divided into an inlet portion 44 and an outlet portion 45 in the plate width direction of the flat tube 41 to constitute an evaporator 66.
Adjacent entrance / exit tank portions 43 have inlet portions 44 and outlet portions 45 communicating with each other through communication holes 46.

【0021】プレート42の内空部は中央部の上下方向
に延びる仕切壁47によって2つの室48,49に仕切
られている。仕切壁47は下端部が欠如され、プレート
42の下端は冷媒をUターンさせるUターン部50とな
っている。2枚のプレート42を突き合わせることで、
仕切壁47によって、出入口タンク部43が入口部44
と出口部45とに仕切られると共に、入口部44に連続
する室48と出口部45に連続する室49とに仕切られ
る。更に、室48と室49とはUターン部50で連通さ
れ、室48,49及びUターン部50で流体通路(コア
部)51が形成されている。
The inner space of the plate 42 is partitioned into two chambers 48 and 49 by a partition wall 47 extending vertically in the center. A lower end of the partition wall 47 is absent, and a lower end of the plate 42 is a U-turn portion 50 for making a U-turn of the refrigerant. By abutting the two plates 42,
The partition wall 47 allows the entrance / exit tank portion 43 to be connected to the entrance portion 44
And an outlet 45, and a chamber 48 connected to the inlet 44 and a chamber 49 connected to the outlet 45. Further, the chamber 48 and the chamber 49 are communicated by a U-turn part 50, and a fluid passage (core part) 51 is formed by the chambers 48, 49 and the U-turn part 50.

【0022】流体通路51の室48,49の部分(直線
部分)には波形インナフィン52,53が挿入されてい
る。図5に示すように、波形インナフィン52,53に
は、室48,49の長さ方向(上下方向)に沿う流路5
4,55が複数分離して区画形成されるように、長さ方
向に沿った波形52a,53aが複数形成されている。
Corrugated inner fins 52 and 53 are inserted into the chambers 48 and 49 (linear portions) of the fluid passage 51. As shown in FIG. 5, the corrugated inner fins 52, 53 are provided with flow paths 5 along the longitudinal direction (up-down direction) of the chambers 48, 49.
A plurality of waveforms 52a and 53a along the length direction are formed so that a plurality of sections 4 and 55 are separately formed.

【0023】室48,49には仕切壁47に沿って平行
に延びプレート42の外側が溝状となる突壁67が成形
されている。2枚のプレート42を突き合わせて接合し
た際、図5に示すように、波形インナフィン52,53
は中央部が突壁67に挾まれた状態で装着される。
In the chambers 48 and 49, a protruding wall 67 is formed which extends parallel to the partition wall 47 and has a groove-like outside of the plate 42. When the two plates 42 are butted and joined, as shown in FIG.
Is mounted with its central portion sandwiched between the projecting walls 67.

【0024】突壁67によってプレート42の外側に溝
を形成することにより、偏平チューブ41の外側面に
は、仕切壁47によって形成される溝と突壁67によっ
て形成される溝とが存在することになり、凝縮水の流下
を促進させて露飛びを防止することができる。
By forming a groove on the outside of the plate 42 by the protruding wall 67, a groove formed by the partition wall 47 and a groove formed by the protruding wall 67 are present on the outer surface of the flat tube 41. And the flow of the condensed water can be promoted to prevent dew dropping.

【0025】また、プレート42のコア部51内面には
エンボシングが施され、多数の微小突起70がコア部5
1内に突出される。このエンボシングは微小突起70に
限らず、図6に示すように、直線的な突条71a(図6
のaの場合)や蛇行する突条71b(図6のbの場合)
でも良い。なお、図5中では、図面が繁雑となるため微
小突起70を省略している。また、図示例では、エンボ
シングをコア部51内面に施しているが、出入口タンク
部43内面に施しても良い。
The inner surface of the core portion 51 of the plate 42 is embossed, and a large number of minute projections 70 are formed on the core portion 5.
1 is protruded. This embossing is not limited to the minute protrusion 70, and as shown in FIG.
A) or meandering ridge 71b (b in FIG. 6)
But it is good. In FIG. 5, the minute projections 70 are omitted because the drawing is complicated. In the illustrated example, embossing is performed on the inner surface of the core portion 51, but may be performed on the inner surface of the entrance / exit tank portion 43.

【0026】図5に示すように、波形インナフィン5
2,53の端縁部52c,53cの高さPはプレート4
2の室48,49形成部のプレス成形深さQより小さく
なっている。これにより、波形インナフィン52,53
を室48,49に配して2枚のプレート42を突き合わ
せて接合した際、波形インナフィン52,53の端縁部
52c,53cがプレート42の接合縁42aに挟まれ
ることがない。また、波形インナフィン52,53の端
縁部52c,53cがプレート42の接合縁42aに押
されて波形インナフィン52,53がずれることがな
い。
As shown in FIG.
The height P of the edge portions 52c and 53c of the
The press forming depth Q of the portion where the second chambers 48 and 49 are formed is smaller than the press forming depth Q. Thereby, the corrugated inner fins 52, 53
Are arranged in the chambers 48 and 49 and the two plates 42 are abutted and joined to each other, so that the edges 52 c and 53 c of the corrugated inner fins 52 and 53 are not sandwiched between the joining edges 42 a of the plates 42. In addition, the edge portions 52c, 53c of the corrugated inner fins 52, 53 are not pushed by the joining edge 42a of the plate 42, so that the corrugated inner fins 52, 53 do not shift.

【0027】従って、この波形インナフィン52,53
を用いることにより、2枚のプレート42で形成される
室48,49内の所定位置に確実にしかも容易に波形イ
ンナフィン52,53を配設することができる。
Therefore, the corrugated inner fins 52, 53
By using, the corrugated inner fins 52 and 53 can be reliably and easily arranged at predetermined positions in the chambers 48 and 49 formed by the two plates 42.

【0028】流体通路51のUターン部50の部分に
は、冷媒のUターンを案内するためのU字状流路56が
複数分離して区画形成されている。U字状流路56はプ
レート42の突合わせ面にプレス成形された複数のU字
状ビード57によって形成され、U字状流路56はプレ
ート42の形状に沿ったU字形となっている。
In the U-turn section 50 of the fluid passage 51, a plurality of U-shaped flow paths 56 for guiding the U-turn of the refrigerant are separately formed. The U-shaped channel 56 is formed by a plurality of U-shaped beads 57 press-formed on the abutting surface of the plate 42, and the U-shaped channel 56 has a U-shape that conforms to the shape of the plate 42.

【0029】室48,49間で冷媒が流れる場合、偏平
チューブ41の幅方向外側の流路54,55を流れる冷
媒は、Uターン部50の外側のU字状流路56を流れ
る。また、偏平チューブ41の幅方向内側の流路54,
55を流れる冷媒は、Uターン部50の内側のU字状流
路56を流れる。つまり、偏平チューブ41内の冷媒
は、内側から内側、外側から外側を通って流体通路51
を流れる。
When the refrigerant flows between the chambers 48 and 49, the refrigerant flowing through the channels 54 and 55 on the outside in the width direction of the flat tube 41 flows through the U-shaped channel 56 on the outside of the U-turn part 50. Further, the flow path 54 on the inner side in the width direction of the flat tube 41,
The refrigerant flowing through 55 flows through a U-shaped channel 56 inside the U-turn part 50. That is, the refrigerant in the flat tube 41 passes from the inside to the inside and from the outside to the outside, and passes through the fluid passage 51.
Flows through.

【0030】上述した偏平チューブ41では、入口部4
4から流入した流体としての冷媒は、波形インナフィン
52で区画された流路54を通ってUターン部50に導
かれ、U字状ビード57で区画されたU字状流路56で
Uターンされ、波形インナフィン53で区画された流路
55を通って出口部45まで流れる。この偏平チューブ
41とコルゲートフィンとを交互に積層したエバポレー
タ全体における冷媒及び空気の流れの一例は、図11で
示した状況と同一である。
In the flat tube 41 described above, the inlet 4
The refrigerant as the fluid flowing from 4 is guided to the U-turn section 50 through the flow path 54 defined by the corrugated inner fin 52, and is U-turned in the U-shaped flow path 56 defined by the U-shaped bead 57. , And flows to the outlet 45 through a flow path 55 defined by the corrugated inner fins 53. An example of the flow of the refrigerant and the air in the entire evaporator in which the flat tubes 41 and the corrugated fins are alternately stacked is the same as the situation shown in FIG.

【0031】偏平チューブ41内を流れる冷媒は、区画
された流路54,55及びU字状流路56を流れるの
で、流体通路51の内側から内側、外側から外側を冷媒
が流れ、Uターン部50での遠心力に伴なう気液二相流
冷媒の分離がU字状流路56内だけとなり、二相流冷媒
の気液それぞれの分配量の分布が小さくなる。また、U
ターン部50のU字状流路56はプレート42の形状に
沿ったU字形となっているので、冷媒の流れに澱みが生
じることがなくなる。
Since the refrigerant flowing in the flat tube 41 flows through the divided flow paths 54 and 55 and the U-shaped flow path 56, the refrigerant flows from the inside to the inside of the fluid passage 51 and from the outside to the outside. The separation of the gas-liquid two-phase flow refrigerant due to the centrifugal force at 50 is limited only to the U-shaped flow path 56, and the distribution of the gas-liquid distribution of the two-phase flow refrigerant is reduced. Also, U
Since the U-shaped flow path 56 of the turn portion 50 has a U-shape that follows the shape of the plate 42, no stagnation occurs in the flow of the refrigerant.

【0032】このため、冷媒の気液分配量の分布が小さ
くなって偏りによる熱効率の低下が生じにくくなると共
に、冷媒の流れに澱みが生じて熱交換量が不均一になる
ことがなくなる。
As a result, the distribution of the gas-liquid distribution amount of the refrigerant is reduced, so that the thermal efficiency is not easily reduced due to the bias, and the flow of the refrigerant does not stagnate and the heat exchange amount does not become uneven.

【0033】また、本実施例では、前述したコア部51
内面に多数の微小突起70が設けられているため、冷媒
の伝熱面積の増大が図れるとともに、冷媒の乱流生成が
促進され、この結果冷媒側の熱伝達率が一段と向上され
る。
In this embodiment, the core 51
Since a large number of minute projections 70 are provided on the inner surface, the heat transfer area of the refrigerant can be increased, and the generation of turbulent flow of the refrigerant is promoted. As a result, the heat transfer coefficient on the refrigerant side is further improved.

【0034】図3に示すように、プレート42の接合縁
42a及び仕切壁47のUターン部50側には、突起6
1がプレス成形されている。突起61により波形インナ
フィン52,53の室48,49内での位置決めが行な
われ、U字状流路56(U字状ビード57)の上端位置
に対する波形インナフィン52,53の下端縁52b,
53bの位置が規制される。
As shown in FIG. 3, the projection 6 is formed on the joint edge 42a of the plate 42 and the U-turn portion 50 side of the partition wall 47.
1 is press-formed. The projections 61 position the corrugated inner fins 52, 53 in the chambers 48, 49, and the lower edges 52b, 52b, of the corrugated inner fins 52, 53 with respect to the upper end position of the U-shaped flow path 56 (U-shaped bead 57).
The position of 53b is regulated.

【0035】U字状流路56の上端位置と波形インナフ
ィン52,53の下端縁52b,53bとの隙間Sは
0.5mm乃至5mmに設定されている。
The gap S between the upper end of the U-shaped channel 56 and the lower edges 52b, 53b of the corrugated inner fins 52, 53 is set to 0.5 mm to 5 mm.

【0036】この隙間Sが0.5mm未満の場合、波形イ
ンナフィン52,53で形成された流路54,55のピ
ッチとU字状流路56のピッチが異なるため、U字状流
路56を形成するU字状ビード57と合致する流路5
4,55を通る冷媒が流れにくくなってしまう。
When the gap S is less than 0.5 mm, the pitch of the flow paths 54 and 55 formed by the corrugated inner fins 52 and 53 and the pitch of the U-shaped flow path 56 are different. The flow path 5 that matches the U-shaped bead 57 to be formed
The refrigerant passing through 4, 55 becomes difficult to flow.

【0037】また、隙間Sが5mmを越えると、プレート
42をろう付けして接合した際に、末ろう付け部が大き
くなって耐圧強度が不足してしまう。
On the other hand, if the gap S exceeds 5 mm, when the plate 42 is brazed and joined, the brazing portion becomes large and the pressure resistance is insufficient.

【0038】図2に示すように、プレート42の接合縁
42aの4箇所にはかしめ止め部68が設けられてい
る。2枚のプレート42で形成される室48,49内に
波形インナフィン52,53を配し、プレート42を突
き合わせてかしめ止め部68により2枚のプレート42
をかしめることで、波形インナフィン52,53が挿入
された偏平チューブ41が組立品として構成される。
As shown in FIG. 2, crimping stoppers 68 are provided at four positions on the joining edge 42a of the plate 42. The corrugated inner fins 52 and 53 are arranged in the chambers 48 and 49 formed by the two plates 42, and the plates 42 are butted against each other by the caulking portion 68.
By caulking, the flat tube 41 into which the corrugated inner fins 52 and 53 are inserted is configured as an assembly.

【0039】上記構成の偏平チューブ41を用いたエバ
ポレータ66の製造方法を説明する。
A method of manufacturing the evaporator 66 using the flat tube 41 having the above configuration will be described.

【0040】2枚のプレート42で形成される室48,
49内に波形インナフィン52,53を挿入し、プレー
ト42を突き合わせてかしめ止め部68により2枚のプ
レート42を一体にして組立品としての偏平チューブ4
1とする。
A chamber 48 formed by two plates 42,
The corrugated inner fins 52 and 53 are inserted into 49, the plates 42 are butted against each other, and the two plates 42 are integrated by the caulking portion 68 to form the flat tube 4 as an assembly.
Let it be 1.

【0041】組立品の偏平チューブ41とコルゲートフ
ィン65とを交互に多数積層状態に組立て、これを炉中
でろう付け接合してエバポレータ66を製造する。
A plurality of flat tubes 41 and corrugated fins 65 are assembled alternately in a stacked state and brazed in an oven to produce an evaporator 66.

【0042】上述した方法で製造したエバポレータ66
は、予め偏平チューブ41を組立品として作成している
ので、偏平チューブ41を高い信頼性で作成することが
でき、冷媒漏れが生じることがない。
The evaporator 66 manufactured by the method described above.
Since the flat tube 41 is manufactured as an assembly in advance, the flat tube 41 can be manufactured with high reliability, and no refrigerant leakage occurs.

【0043】上記構成のエバポレータ66では、偏平チ
ューブ41の室48,49の長さ方向の流路54,55
を波形インナフィン52,53によって分離形成してい
るので、冷媒の流れをスムーズにさせて流路面積を増大
させることができる。また、波形インナフィン52,5
3の端縁部52c,53cの高さPをプレート42の室
48,49形成部分のプレス成形深さQより小さくした
ので、端縁部52c,53cがプレート42の接合縁4
2aに乗り上げてプレート42を接合した際に接合縁4
2aに端縁部52c,53cが挟まれることがない。ま
た、プレート42の接合時に端縁部52c,53cが接
合縁42aに押されて波形インナフィン52,53がず
れることがない。
In the evaporator 66 having the above structure, the flow paths 54, 55 in the longitudinal direction of the chambers 48, 49 of the flat tube 41 are provided.
Are formed separately by the corrugated inner fins 52 and 53, so that the flow of the refrigerant can be made smooth and the flow path area can be increased. Also, the corrugated inner fins 52, 5
Since the height P of the edge portions 52c, 53c of the plate 3 is smaller than the press forming depth Q of the chambers 48, 49 of the plate 42, the edge portions 52c, 53c are
When the plate 42 is joined by riding on 2a, the joining edge 4
The edge portions 52c and 53c are not sandwiched between 2a. Further, the edge portions 52c, 53c are not pushed by the joining edge 42a when the plate 42 is joined, so that the corrugated inner fins 52, 53 do not shift.

【0044】[0044]

【発明の効果】本発明の積層型熱交換器は、流体の出入
口タンク部と流体通路を形成するコア部とをプレス成形
した2枚のプレートを突き合せてその間にインナーフィ
ンを挟み込み偏平チューブを形成し、同チューブとフィ
ンとを交互に多数積層してなる積層型熱交換器におい
て、前記プレートとインナーフィンとで形成される流体
通路のプレート部に微細なエンボシングを施したことを
特徴とするので、インナーフィンによる熱交換効率の向
上と微細エンボシングを設けたことによる熱交換効率の
向上の相乗効果が得られ、冷媒の伝熱面積のより一層の
拡大と乱流促進により熱伝達率の向上が図れる。
As described above, the stacked heat exchanger of the present invention is capable of
Press forming the mouth tank and the core forming the fluid passage
Butt the two plates and insert the inner
To form a flat tube.
Stack heat exchanger consisting of multiple layers
And the fluid formed by the plate and the inner fin
That the plate part of the passage was finely embossed
Because of this feature, the heat exchange efficiency is improved by the inner fins.
The heat exchange efficiency of the upper and fine embossing
A synergistic effect of improvement is obtained, and the heat transfer area can be improved by further expanding the heat transfer area of the refrigerant and promoting turbulence.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る積層型熱交換器におけ
る偏平チューブの分解斜視図。
FIG. 1 is an exploded perspective view of a flat tube in a laminated heat exchanger according to one embodiment of the present invention.

【図2】偏平チューブを構成するプレートの接合面を表
わす正面図。
FIG. 2 is a front view showing a joint surface of a plate constituting the flat tube.

【図3】図2中の矢印III 部の詳細図。FIG. 3 is a detailed view of an arrow III part in FIG. 2;

【図4】積層型熱交換器の側面図。FIG. 4 is a side view of the stacked heat exchanger.

【図5】図4中のV-V 線矢視図。FIG. 5 is a view taken along line VV in FIG. 4;

【図6】エンボシングの変形例を示すプレートの要部斜
視図。
FIG. 6 is an essential part perspective view of a plate showing a modification of embossing.

【図7】従来の積層型熱交換器の側面図。FIG. 7 is a side view of a conventional laminated heat exchanger.

【図8】図7中の右側部の拡大断面図。FIG. 8 is an enlarged sectional view of the right side in FIG. 7;

【図9】偏平チューブを構成するプレートの正面図。FIG. 9 is a front view of a plate constituting the flat tube.

【図10】図9中のX−X線矢視図。FIG. 10 is a view taken along line XX in FIG. 9;

【図11】冷媒の流れ状況説明図。FIG. 11 is an explanatory diagram of a flow state of a refrigerant.

【符号の説明】[Explanation of symbols]

41 偏平チューブ 42 プレート 42a 接合縁 43 出入口タンク部 44 入口部 45 出口部 46 連通孔 47 仕切壁 48,49 室 50 Uターン部 51 流体通路 52,53 波形インナフィン 52c,53c 端縁部 54 流路 56 U字状流路 57 U字状ビード 65 コルゲートフィン 66 エバポレータ 68 かしめ止め部 70 微小突起 71a,71b 突条 41 Flat tube 42 Plate 42a Joining edge 43 Inlet / outlet tank part 44 Inlet part 45 Outlet part 46 Communication hole 47 Partition wall 48, 49 chamber 50 U-turn part 51 Fluid passage 52, 53 Corrugated inner fin 52c, 53c Edge 54 Passage 56 U-shaped flow path 57 U-shaped bead 65 corrugated fin 66 evaporator 68 caulking stopper 70 minute projection 71a, 71b ridge

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F28D 1/03 F28F 3/00 - 3/14 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) F28D 1/03 F28F 3/00-3/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流体の出入口タンク部と流体通路を形成
するコア部とをプレス成形した2枚のプレートを突き合
せてその間にインナーフィンを挟み込み偏平チューブを
形成し、同チューブとフィンとを交互に多数積層してな
る積層型熱交換器において、前記プレートとインナーフ
ィンとで形成される流体通路のプレート部に微細なエン
ボシングを施したことを特徴とする積層型熱交換器。
1. A flat tube formed by pressing two plates formed by press-forming a fluid inlet / outlet tank portion and a core portion forming a fluid passage , sandwiching an inner fin therebetween, and alternately forming the flat tube. In the stacked heat exchanger having a large number of layers, the plate and the inner
A laminated heat exchanger in which a fine embossing is applied to a plate portion of a fluid passage formed by the heat exchanger.
JP4271562A 1992-10-09 1992-10-09 Stacked heat exchanger Expired - Fee Related JP2984480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4271562A JP2984480B2 (en) 1992-10-09 1992-10-09 Stacked heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4271562A JP2984480B2 (en) 1992-10-09 1992-10-09 Stacked heat exchanger

Publications (2)

Publication Number Publication Date
JPH06123578A JPH06123578A (en) 1994-05-06
JP2984480B2 true JP2984480B2 (en) 1999-11-29

Family

ID=17501814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4271562A Expired - Fee Related JP2984480B2 (en) 1992-10-09 1992-10-09 Stacked heat exchanger

Country Status (1)

Country Link
JP (1) JP2984480B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3085137B2 (en) * 1995-04-21 2000-09-04 株式会社デンソー Stacked heat exchanger
KR100640068B1 (en) * 2000-05-31 2006-10-31 한라공조주식회사 Integrated plate type heat exchanger
JP2009103360A (en) * 2007-10-23 2009-05-14 Tokyo Roki Co Ltd Plate laminated heat exchanger
JP2010121925A (en) * 2008-10-21 2010-06-03 Atago Seisakusho:Kk Heat exchanger
JP5620685B2 (en) * 2010-02-02 2014-11-05 国立大学法人東京大学 Heat exchanger
FR3007514B1 (en) * 2013-06-20 2017-12-15 Valeo Systemes Thermiques PHASE CHANGE MATERIAL TANK TUBE FOR HEAT EXCHANGE BEAM, IN PARTICULAR FOR EVAPORATOR OF A VEHICLE AIR CONDITIONING CIRCUIT
CN105339752B (en) * 2013-06-27 2018-09-28 达纳加拿大公司 Fluid line with performance enhancing components and the device for including the fluid line
JP6102612B2 (en) * 2013-07-31 2017-03-29 株式会社デンソー Heat exchanger

Also Published As

Publication number Publication date
JPH06123578A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
AU670302B2 (en) Stacked heat exchanger and method of manufacturing the same
US5318114A (en) Multi-layered type heat exchanger
US5517757A (en) Method of manufacturing a stacked heat exchanger
AU676116B2 (en) Stacked heat exchanger
JP3814917B2 (en) Stacked evaporator
JP2984480B2 (en) Stacked heat exchanger
JPH0961084A (en) Manufacture of inlet or outlet pipe for stacked type heat exchanger
JP3281648B2 (en) Stacked heat exchanger
JPH0933187A (en) Laminated heat exchanger
JPH05322467A (en) Heat exchanger
JP2984481B2 (en) Stacked heat exchanger
JP2002011570A (en) Manufacture of heat exchanger
JPH06123582A (en) Stacked type heat exchanger
JP2930486B2 (en) Stacked heat exchanger
JP2000055583A (en) Heat exchanger
JP2000161888A (en) Heat exchanger
JP3327584B2 (en) Stacked heat exchanger
JPH08271167A (en) Heat exchanger
JP3073331B2 (en) Stacked heat exchanger
JP3095540B2 (en) Stacked heat exchanger
JP3316492B2 (en) Stacked heat exchanger
JP3095547B2 (en) Stacked heat exchanger
JPH0674679A (en) Lamination type heat exchanger
JP3297092B2 (en) Stacked heat exchanger
JPH0674686A (en) Lamination type heat exchanger

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990824

LAPS Cancellation because of no payment of annual fees