JP3093984B2 - Liquid management method of water-soluble processing fluid - Google Patents

Liquid management method of water-soluble processing fluid

Info

Publication number
JP3093984B2
JP3093984B2 JP09019389A JP1938997A JP3093984B2 JP 3093984 B2 JP3093984 B2 JP 3093984B2 JP 09019389 A JP09019389 A JP 09019389A JP 1938997 A JP1938997 A JP 1938997A JP 3093984 B2 JP3093984 B2 JP 3093984B2
Authority
JP
Japan
Prior art keywords
water
soluble
electrodialysis
working fluid
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09019389A
Other languages
Japanese (ja)
Other versions
JPH10216482A (en
Inventor
憲一 鈴木
富美男 清水
和 竹林
武彦 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP09019389A priority Critical patent/JP3093984B2/en
Publication of JPH10216482A publication Critical patent/JPH10216482A/en
Application granted granted Critical
Publication of JP3093984B2 publication Critical patent/JP3093984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水溶性加工液の管
理方法、特に水溶性加工液の性能を維持できる管理方法
に関する。特に、使用に伴って発生してくる酸性物質を
電気透析により除去し、微生物あるいは菌類の繁殖によ
る腐敗および機能低下を防止するための液管理方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for managing a water-soluble working fluid, and more particularly to a method for maintaining the performance of a water-soluble working fluid. In particular, the present invention relates to a liquid management method for removing acidic substances generated during use by electrodialysis to prevent decay and deterioration of functions due to propagation of microorganisms or fungi.

【0002】[0002]

【従来の技術】機械加工、圧延、鍛造、熱処理等の工業
分野において、潤滑、冷却等の目的で各種の加工液が使
用されており、特に水溶性加工液は難燃性の特徴から多
用されている。具体的には、水溶性切削油、研削油、鍛
造型潤滑液、焼き入れ液、作動油等の水溶性加工液が使
用されている。これら水溶性加工液はグリコール類、油
脂等の有機物質を主要成分とし、これらを水に溶解また
は分散させたものであり、一般に液のpHは9〜11の
弱アルカリ性に調整されている。
2. Description of the Related Art In the industrial fields such as machining, rolling, forging, and heat treatment, various working fluids are used for lubrication, cooling, and the like. In particular, water-soluble working fluids are frequently used due to their flame-retardant characteristics. ing. Specifically, water-soluble machining fluids such as water-soluble cutting oil, grinding oil, forging-type lubrication fluid, quenching fluid, and hydraulic oil are used. These water-soluble processing liquids are mainly composed of organic substances such as glycols and oils and fats, and are dissolved or dispersed in water. The pH of the liquid is generally adjusted to 9 to 11 to be weakly alkaline.

【0003】水溶性加工液は使用に伴ってそのpHは次
第に低下し、やがて微生物が繁殖して水溶性加工液の腐
敗が急速に進み、悪臭の発生及び加工液の機能低下をき
たすようになる。また水溶性加工液では外部からの持ち
込み等により各種塩類が蓄積しやすく、それに伴って加
工装置及び被加工物の腐食が発生しやすくなる。従っ
て、水溶性加工液を安定的に長期使用するためには、p
Hを弱アルカリ性に維持するとともに腐食原因となる塩
化物イオン等の蓄積を防止する液管理が必要となる。
[0003] The pH of a water-soluble processing fluid gradually decreases with use, and microorganisms eventually propagate to rapidly decompose the water-soluble processing liquid, causing odors and deteriorating the function of the processing liquid. . Further, in the case of a water-soluble processing liquid, various salts are likely to accumulate due to being brought in from the outside or the like, and accordingly, corrosion of the processing apparatus and the workpiece is easily generated. Therefore, in order to use the water-soluble processing liquid stably for a long time, p
It is necessary to maintain a weak alkalinity of H and to manage the liquid to prevent accumulation of chloride ions and the like which cause corrosion.

【0004】従来、水のアルカリ化法として電解処理が
提案されており、例えば特開平5−174242号公報
には水道水の隔膜電解によりアルカリ水を生成すると同
時に殺菌を行うことが記載されている。一方水への塩類
の蓄積防止法として、例えば特開平7−091879号
公報にはプラント等における冷却水をイオン交換膜で電
気透析する事により、各種塩類を除去できることが記載
されている。
Conventionally, electrolytic treatment has been proposed as a method for alkalizing water. For example, Japanese Patent Application Laid-Open No. 5-174242 describes that sterilization is performed simultaneously with generation of alkaline water by diaphragm electrolysis of tap water. . On the other hand, as a method for preventing salts from accumulating in water, for example, Japanese Patent Application Laid-Open No. Hei 7-091879 describes that various salts can be removed by electrodialysis of cooling water in a plant or the like with an ion exchange membrane.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
5−174242号公報は水道水の改質を図るものであ
り水溶性加工液を処理するものではない。また特開平7
−091879号公報も冷却水を管理するもので水溶性
加工液の液管理を教えるものではない。本発明は水溶性
加工液の腐敗および機能低下を防止し、水溶性加工液の
品質を長期にわたって安定的に維持できる水溶性加工液
の液管理方法を提供することを目的とする。
However, Japanese Patent Application Laid-Open No. Hei 5-174242 aims to reform tap water and does not treat water-soluble working fluid. Also, JP-A-7
Japanese Patent Publication No. 0991879 also manages cooling water and does not teach liquid management of a water-soluble working fluid. An object of the present invention is to provide a liquid management method of a water-soluble processing fluid that can prevent rot and deterioration of the function of the water-soluble processing liquid and can stably maintain the quality of the water-soluble processing liquid for a long period of time.

【0006】[0006]

【課題を解決するための手段】本発明者は水溶性加工液
中に含まれる有機成分が腐敗あるいは酸化されて酸性成
分が生成し、これが水溶性加工液のpHを低下させる原
因となると考えた。そして生成する酸性成分は水溶性加
工液中にイオンとして存在しているため電気透析等で除
去可能であると考えた。また、使用に伴い外部から持ち
込まれる腐食成分も塩類であることから水溶性加工液中
にイオンとして存在しこれも電気透析等で除去可能と考
えた。
Means for Solving the Problems The present inventor considered that the organic component contained in the water-soluble processing liquid was spoiled or oxidized to form an acidic component, which caused the pH of the water-soluble processing liquid to decrease. . Then, it was considered that the generated acidic component can be removed by electrodialysis or the like because it exists as an ion in the water-soluble processing liquid. In addition, since the corrosive component brought in from the outside with use is also a salt, it was considered that it was present as an ion in the water-soluble processing liquid and could be removed by electrodialysis or the like.

【0007】そこで本発明者は水溶性加工液の液管理に
電気透析を活用できると考え、試行錯誤の結果、本発明
を完成したものである。すなわち、本発明の水溶性加工
液の管理方法は、多孔膜もしくはアニオン交換膜を透析
膜として用い、該透析膜により陽極室と陰極室とを隔離
した電気透析装置の陰極室に水溶性加工液を陽極室に水
を供給して電気透析を行い該水溶性加工液のpHを弱ア
ルカリ性のpHに維持することを特徴とするものであ
る。本発明の管理方法を実施すると、水溶性加工液中に
生成する有機酸とか腐食成分として紛れ込むハロゲンイ
オン、硫酸イオン等が水溶性加工液から除去され、水溶
性加工液が再生される。
[0007] The present inventors have considered that take advantage of electrodialysis liquid management of the water-soluble working fluid, the result of trial and error, and completed the present invention. That is, the method for managing a water-soluble working fluid of the present invention uses a porous membrane or an anion exchange membrane as a dialysis membrane, and the water-soluble working fluid is supplied to a cathode chamber of an electrodialysis apparatus in which an anode chamber and a cathode chamber are separated by the dialysis membrane. Is supplied to the anode chamber, and electrodialysis is performed to weaken the pH of the water-soluble processing liquid.
It is characterized in that it is maintained at a lukety pH. When the management method of the present invention is carried out, the organic acid generated in the water-soluble processing fluid and halogen ions, sulfate ions and the like which are mixed in as corrosive components are removed from the water-soluble processing liquid, and the water-soluble processing liquid is regenerated.

【0008】[0008]

【発明の実施の形態】本発明の水溶性加工液の管理方法
では透析膜として多孔膜あるいはアニオン交換膜が使用
される。多孔膜は孔径が0.01〜0.1μm程度の細
孔を持つ膜が好ましい。かかる膜としてはフッ素樹脂製
多孔膜等を使用できる。アニオン交換膜は陰イオンが透
過し陽イオンが透過できない膜で、アニオン交換膜とし
て具体的に旭硝子(株)製APS−3等の膜を使用でき
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for managing a water-soluble working fluid of the present invention, a porous membrane or an anion exchange membrane is used as a dialysis membrane. The porous membrane is preferably a membrane having pores having a pore size of about 0.01 to 0.1 μm. As such a membrane, a fluororesin porous membrane or the like can be used. The anion exchange membrane is a membrane through which anions can pass and cations cannot pass, and a specific membrane such as APS-3 manufactured by Asahi Glass Co., Ltd. can be used as the anion exchange membrane.

【0009】本発明で使用する電気透析装置はこれらの
透析膜を用いて陽極室と陰極室を区画し、これら陽極室
および陰極室にそれぞれ陰極、陽極を配置したものであ
る。なお、この電気透析装置は水溶性加工液を蓄えてい
とか水溶性加工液を使用する装置に組み込むことも
あるいはこれら装置と別に独立して設けることもでき
る。
In the electrodialysis apparatus used in the present invention, the dialysis membrane is used to partition an anode chamber and a cathode chamber, and a cathode and an anode are arranged in the anode chamber and the cathode chamber, respectively. The electrodialysis apparatus can be incorporated in a tank storing a water-soluble processing liquid or in an apparatus using a water-soluble processing liquid, or can be provided independently of these apparatuses.

【0010】この電気透析装置の陰極室に水溶性加工液
を入れ、陽極室に水を入れて電気分解を行う。陽極陰極
間に印加する電圧は5〜100V程度が、好ましい。こ
の電気透析により有機酸およびハロゲン元素等の陰イオ
ンが透析膜を通過し、陰極室より陽極室に移行する。な
お、水溶性加工液の陰イオン以外の成分は透析膜を通過
することができず、陰極室に留まる。このため水溶性加
工液として必要な成分は失われない。このようにして、
水溶性加工液中からpHを低下させる有機酸等の陰イオ
ン、腐食の原因となるハロゲンイオン、硫酸イオン等の
陰イオンが水溶性加工液より除去される。なお、陽極室
の水には陰イオンが集積する。このため陽極室は定期的
に新しい水に取り替えたり、連続的に新鮮な水を循環さ
せることが好ましい。
[0010] A water-soluble working fluid is charged into the cathode chamber of this electrodialysis apparatus, and water is charged into the anode chamber to perform electrolysis. The voltage applied between the anode and the cathode is preferably about 5 to 100 V. By this electrodialysis, anions such as organic acids and halogen elements pass through the dialysis membrane and move from the cathode compartment to the anode compartment. In addition, components other than the anion of the water-soluble processing liquid cannot pass through the dialysis membrane and remain in the cathode compartment. Therefore, components required as a water-soluble processing liquid are not lost. In this way,
Anions such as organic acids that lower the pH, anions such as halogen ions and sulfate ions that cause corrosion are removed from the water-soluble working fluid from the water-soluble working fluid. Note that anions accumulate in the water in the anode chamber. For this reason, it is preferable that the anode chamber is periodically replaced with fresh water or that fresh water is continuously circulated.

【0011】なお、水溶性加工液のpHが8〜9程度に
低下した場合に電気透析を施すようにするのが好まし
い。本発明では、以下の形態をとることができる。上記
水溶性加工液は、切削油、鍛造型潤滑油、作動油等のア
ルカリ性水溶性加工液である。
It is preferred that electrodialysis be performed when the pH of the water-soluble processing liquid has dropped to about 8 to 9. The present invention can take the following forms. The water-soluble working fluid is an alkaline water-soluble working fluid such as a cutting oil, a forging die lubricating oil, and a hydraulic oil.

【0012】上記アニオン交換膜はポリスルホン系のア
ニオン交換膜である。
The above-mentioned anion exchange membrane is a polysulfone-based anion exchange membrane.

【0013】[0013]

【作用】本発明の水溶性加工液の液管理法は、水溶性加
工液を陰極室に水を陽極室に供給して電気透析を行い水
溶性加工液中の各種塩類および酸性成分を透析膜を介し
て陽極室に導いて除去するものである。これにより水溶
性加工液を安定的に長期間維持できる。
According to the method for controlling a water-soluble processing liquid of the present invention, a water-soluble processing liquid is supplied to a cathode chamber and water is supplied to an anode chamber to perform electrodialysis, and various salts and acidic components in the water-soluble processing liquid are dialyzed. Through the anode chamber. Thereby, the water-soluble processing liquid can be stably maintained for a long period of time.

【0014】[0014]

【実施例】本発明の実施例では図1に示す装置を用い
た。この装置は加工液本1と、濾過器2と、電気透析
3と、陰極液循環4と、陽極液循環5と、直流電
源6と、加工液本1より陰極液循環4に濾過器2を
介して加工液を送り陰極液循環4より加工液本1に
加工液を戻す第一配管系7と、陰極液循環4より加工
液を電気透析3の陰極室31に送り再び陰極液循環
4に戻す第二配管系8と、陽極液循環5より水を電気
透析3の陽極室32に送り再び陽極液循環5に戻す
第三配管系9と、水を陽極液循環5に供給し、また、
陽極液循環5より廃液を除去する第四配管系10とか
らなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of the present invention, the apparatus shown in FIG. 1 was used. This device consists of a main tank 1 for working fluid, a filter 2 and an electrodialysis machine.
A tank 3, a catholyte circulation tank 4, the anolyte tank 5, a DC power source 6, the machining fluid present tank 1 catholyte circulation tank 4 sends working fluid through the filter 2 in the catholyte circulation tank 4 from more working fluid from the first pipe system 7 to the tank 1 to return the working fluid, the second piping system back into the cathode chamber 31 to feed the catholyte circulation tank 4 again electrodialysis cell 3 from the machining fluid catholyte circulation tank 4 8 And a third piping system 9 for sending water from the anolyte circulation tank 5 to the anode chamber 32 of the electrodialysis tank 3 and returning it to the anolyte circulation tank 5 again, and supplying water to the anolyte circulation tank 5.
And a fourth piping system 10 for removing waste liquid from the anolyte circulation tank 5.

【0015】なお、電気透析3は透析膜33で区画さ
れた陰極室31と陽極室32とからなり、陰極室31、
陽極室32には図示しない陰極および陽極が設けられ、
これら陰極および陽極は直流電源に接続されている。ま
た、透析膜33としてポリスルホン系のアニオン交換膜
を用いた。透析膜33の有効表面積は2.08dm2
ある。 (実施例1) 図1に示す装置を用い、加工液本1には鋼材の熱処理
に使用した焼き入れ液(ポリグリコール系)を用いた。
この加工液本1より第一配管系7を作動し、焼き入れ
液80リットルを濾過器2を介して陰極液循環4に供
給した。一方、陽極液循環5には第四配管系10を介
して水道水6リットルを供給した。この状態で第二配管
系8および第三配管系9を駆動しつつ陽極と陰極の間に
2アンペアの直流電流を流した。この状態で3時間電気
透析を実施した。
The electrodialysis tank 3 comprises a cathode chamber 31 and an anode chamber 32 partitioned by a dialysis membrane 33.
A cathode and an anode (not shown) are provided in the anode chamber 32,
These cathode and anode are connected to a DC power supply. Further, a polysulfone-based anion exchange membrane was used as the dialysis membrane 33. The effective surface area of the dialysis membrane 33 is 2.08 dm 2 . (Example 1) The apparatus shown in FIG. 1 was used, and a quenching liquid (polyglycol-based) used for heat treatment of a steel material was used for the processing liquid main tank 1.
The first piping system 7 was operated from the processing liquid main tank 1, and 80 liters of the quenching liquid was supplied to the catholyte circulation tank 4 through the filter 2. On the other hand, 6 liters of tap water was supplied to the anolyte circulation tank 5 through the fourth piping system 10. In this state, a DC current of 2 amps was passed between the anode and the cathode while driving the second piping system 8 and the third piping system 9. Electrodialysis was performed for 3 hours in this state.

【0016】なお、陰極液循環4および陽極液循環
5のpH値をそれぞれ20分毎に測定した。また、陽極
液循環5内の水を採取し、その水中に含まれている全
酸濃度を測定した。得られた結果を図2および図3に示
す。図2より明らかなように、陰極液循環4中の焼き
入れ液の電気透析の実施前のpHは8.5程度であった
が,時間の経過とともにpHが高くなり、3時間の電気
透析で陰極液循環中の焼き入れ液のpHは9.5程度
に高くなった。なお、焼き入れに使用されていないバー
ジンの焼き入れ液のpHは、10.0〜10.5程度で
あり、電気透析によりpHが相当回復しているのがわか
る。
The pH values of the catholyte circulation tank 4 and the anolyte circulation tank 5 were measured every 20 minutes. Further, water in the anolyte circulation tank 5 was sampled, and the concentration of total acid contained in the water was measured. The obtained results are shown in FIGS. As is clear from FIG. 2, the pH of the quenching solution in the catholyte circulation tank 4 before the electrodialysis was about 8.5, but the pH increased with the passage of time, and the electrodialysis was performed for 3 hours. As a result, the pH of the quenching solution in the catholyte circulation tank increased to about 9.5. The virgin quenching solution not used for quenching had a pH of about 10.0 to 10.5, indicating that the pH was considerably recovered by electrodialysis.

【0017】一方、陽極液循環5中の水のpHは4.
6程度から3.2程度にpHが低下した。図3に示すよ
うに、この水の全酸濃度も透析時間とともに増大し、全
酸濃度が0.008程度から0.032程度に高くなっ
た。なお、この水には酸性成分として酢酸が主成分とし
て検出された。また、わずかの塩酸が検出された。検出
された酸性成分から電流効率を計算すると、酸除去の電
流効率は56%であった。
On the other hand, the pH of the water in the anolyte circulation tank 5 is 4.
The pH dropped from about 6 to about 3.2. As shown in FIG. 3, the total acid concentration of this water also increased with the dialysis time, and the total acid concentration increased from about 0.008 to about 0.032. In this water, acetic acid was detected as a main component as an acidic component. Also, slight hydrochloric acid was detected. When the current efficiency was calculated from the detected acidic components, the current efficiency of acid removal was 56%.

【0018】(実施例2)水溶性加工液として切削に使
用されたエマルジョンタイプの切削液を用いた。切削液
は新液の場合はpH9.5〜9.7の範囲にあり、塩素
系の極圧添加剤が使用されている。切削液は、使用に伴
って有機成分の酸化および極圧添加剤の分解による塩化
物イオン生成が起こるため、pHが9.0まで低下した
時点で本発明の液管理を実施した。実施例1と同様の透
析装置および透析膜を用いた。陰極液循環槽4に使用後
の切削液(使用液)を2リットル供給し、一方、陽極液
循環槽5には2リットルの水を導入した。陰極液循環槽
4中の切削液を陰極室31に循環し、陽極液循環槽5中
の水を陽極室32に循環した。直流電源より電流を1A
通電し、10時間の電気透析を行った。
(Example 2) An emulsion type cutting fluid used for cutting was used as a water-soluble machining fluid. The cutting fluid is in the range of pH 9.5 to 9.7 in the case of a new fluid, and a chlorine-based extreme pressure additive is used. Since the cutting fluid generates chloride ions due to the oxidation of organic components and the decomposition of the extreme pressure additive with use, the fluid management of the present invention was carried out when the pH dropped to 9.0. The same dialysis apparatus and dialysis membrane as in Example 1 were used. 2 L of the used cutting fluid (used liquid) was supplied to the catholyte circulation tank 4, while 2 L of water was introduced to the anolyte circulation tank 5. The cutting fluid in the catholyte circulation tank 4 was circulated to the cathode chamber 31, and the water in the anolyte circulation tank 5 was circulated to the anode chamber 32. 1A current from DC power supply
Electricity was applied and electrodialysis was performed for 10 hours.

【0019】その結果陰極液循環槽4中の切削液はpH
値が9.6まで上昇し、陽極液循環槽5のpH値は2.
8まで低下した。陽極液循環5中に透析されてきた酸
性成分を分析調査した結果、酢酸等のカルボン酸ととも
に少量の塩酸が検出された。次に、この切削液の電気透
析前後における鋼材への腐食性を調査した。腐食速度の
測定は分極抵抗法で行った。鋼材には普通鋳鉄を用い4
cm2の表面積とした。分極抵抗値から求められた腐食
速度を表1に示す。電気透析により塩化物イオンが除去
された切削液(透析液)では鋼材の腐食速度が新液と同
等にまで減少することが確認された。また、本発明の液
管理を実施しないで使用を続けた切削液では、やがて液
のpHは8.0まで低下し、腐敗による悪臭が発生し
た。
As a result, the cutting fluid in the catholyte circulation tank 4 has pH
Value rises to 9.6, and the pH value of the anolyte circulation tank 5 becomes 2.
To 8. As a result of analyzing and examining the acidic components dialyzed into the anolyte circulation tank 5, a small amount of hydrochloric acid was detected together with carboxylic acids such as acetic acid. Next, the corrosion of the cutting fluid to steel before and after electrodialysis was investigated. The corrosion rate was measured by the polarization resistance method. Use ordinary cast iron for steel 4
cm 2 surface area. Table 1 shows the corrosion rates determined from the polarization resistance values. It was confirmed that the corrosion rate of the steel material in the cutting fluid (dialysis fluid) from which chloride ions were removed by electrodialysis was reduced to the same level as that of the new fluid. Further, in the cutting fluid which was continuously used without performing the fluid management of the present invention, the pH of the fluid eventually decreased to 8.0, and a bad smell due to rot was generated.

【0020】[0020]

【表1】 (実施例3)水溶性加工液として、鋼材の熱間鍛造時に
使用した型潤滑液(天然樹脂系)を用いた。この潤滑液
は新液の場合はpH9.2前後であるが、使用に伴って
樹脂成分の酸化が起こりpHが低下する。そして、pH
が低下すると腐敗が進行して悪臭が発生する。ここでは
pHがすでに6.3まで低下し、悪臭が発生している潤
滑液について本発明の液管理を実施した。
[Table 1] (Example 3) As a water-soluble working fluid, a mold lubricating fluid (natural resin type) used at the time of hot forging of a steel material was used. This lubricating liquid has a pH of about 9.2 in the case of a new liquid, but with use, oxidation of the resin component occurs and the pH decreases. And pH
When the water content is reduced, rot proceeds and a bad smell is generated. Here, the liquid management of the present invention was carried out for a lubricating liquid whose pH had already been reduced to 6.3 and a malodor was generated.

【0021】実施例1と同様の透析装置を用い、透析膜
として多孔膜(フッ素樹脂製)を組み込んだ。膜1枚の
有効表面積は2.08dm2である。陰極液循環槽に使
用後の潤滑液を3リットルを仕込み、一方、陽極液循環
槽には3リットルの水を仕込んだ。そして、陰極液循環
槽中の潤滑液を陰極室に循環し、陽極液循環槽中の水を
陽極室に循環しつつ直流電源より電流を1A通電し、陰
極液循環槽中の潤滑液のpHが9.2に回復するまで酸
成分の透析を行った。このとき使用した電極は白金であ
る。
Using the same dialysis apparatus as in Example 1, a porous membrane (made of fluororesin) was incorporated as a dialysis membrane. The effective surface area of one film is 2.08 dm 2 . 3 liters of the used lubricating liquid were charged in the catholyte circulation tank, while 3 liters of water were charged in the anolyte circulation tank. Then, the lubricating liquid in the catholyte circulating tank is circulated to the cathode chamber, and the water in the anolyte circulating tank is circulated to the anode chamber, and a current of 1 A is supplied from a DC power supply, and the pH of the lubricating liquid in the catholyte circulating tank is adjusted. The acid component was dialyzed until the pH recovered to 9.2. The electrode used at this time is platinum.

【0022】途中、潤滑液のpH値が8.2および8.
7まで上昇した時点で液のサンプリングを行った。透析
終了後、いずれの透析サンプルでも腐敗臭は軽減されて
いた。続いて、各サンプルについて、サニチェック(商
品名)を用いてバクテリア数の測定を行った。また、各
サンプルを容器に詰めて2週間放置し、腐敗臭を評価し
た。結果をまとめて表2に示す。使用液では総菌数が1
×107個/ml以上であったが、透析液ではいずれも
1×103個/ml未満に低下していた。放置後の腐敗
臭は、pH8.7および9.2の透析液では、透析直後
と同様に弱い臭気であった。一方、pH8.2の透析液
では、使用液と類似の強い臭気が発生しており、嫌気性
菌が再び繁殖するのを防止できなかったことが判明し
た。
On the way, the pH value of the lubricating fluid is 8.2 and 8.
The liquid was sampled at the time when it rose to 7. After completion of the dialysis, putrefaction odor was reduced in all the dialysis samples. Subsequently, the bacteria count of each sample was measured using Sanicheck (trade name). In addition, each sample was packed in a container and allowed to stand for 2 weeks, and the putrefaction odor was evaluated. Table 2 summarizes the results. Total number of bacteria is 1 in working solution
It was × 10 7 cells / ml or more, but all of the dialysates were reduced to less than 1 × 10 3 cells / ml. The putrefaction odor after standing was as weak as the dialysis solution at pH 8.7 and 9.2, just like immediately after dialysis. On the other hand, in the dialysate having a pH of 8.2, a strong odor similar to that of the used solution was generated, and it was found that the anaerobic bacteria could not be prevented from growing again.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明によれば、水溶性加工液の使用に
伴って増加する酸性成分および塩類を簡便かつ低コスト
で除去し、加工液のpHを弱アルカリ性に維持、管理す
ることができる。このため、バクテリア等の繁殖が抑制
され、腐敗による悪臭の発生、加工液本来の機能の低
下、加工装置および被加工物の腐食を防止することがで
き、水溶性加工液の更新期間を大幅に延長することが可
能となる。
According to the present invention, acidic components and salts which increase with the use of a water-soluble processing liquid can be easily and inexpensively removed, and the pH of the processing liquid can be maintained and controlled to be slightly alkaline. . For this reason, the propagation of bacteria and the like is suppressed, the generation of offensive odor due to decay, the deterioration of the original function of the processing fluid, the corrosion of the processing equipment and the workpiece can be prevented, and the renewal period of the water-soluble processing fluid is greatly reduced. It can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例で使用した電気透析装置の工程図であ
る。
FIG. 1 is a process diagram of an electrodialysis apparatus used in Examples.

【図2】 実施例1の電気透析時間と陰極液循環およ
び陽極液循環中の液のpH濃度との関係を示す線図で
ある。
FIG. 2 is a diagram showing the relationship between the electrodialysis time and the pH concentration of the liquid in the catholyte circulation tank and the anolyte circulation tank in Example 1.

【図3】 実施例1の電気透析時間と陽極液循環中の
液の全酸濃度との関係を示す線図である。
FIG. 3 is a diagram showing the relationship between the electrodialysis time and the total acid concentration of the solution in the anolyte circulation tank in Example 1.

【符号の説明】[Explanation of symbols]

1:加工液本 2:濾過器 3:電気透析 4:加工液本槽 5:濾過器 6:電気透析
7:第一配管系 8:第二配管系 9:第三配管系 10:第四配管
1: Working fluid main tank 2: Filter 3: Electrodialysis tank 4: Working fluid main tank 5: Filter 6: Electrodialysis tank
7: First piping system 8: Second piping system 9: Third piping system 10: Fourth piping system

フロントページの続き (72)発明者 竹林 和 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 西口 武彦 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭63−47370(JP,A) 特開 昭51−51548(JP,A) 特開 平4−293526(JP,A) 特開 平1−130783(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 61/44 500 Continuing on the front page (72) Inventor Kazutake Takebayashi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Takehiko Nishiguchi 1 Toyota Town Toyota City, Aichi Prefecture Toyota Motor Corporation (56) Reference Document JP-A-63-47370 (JP, A) JP-A-51-51548 (JP, A) JP-A-4-293526 (JP, A) JP-A-1-130783 (JP, A) (58) Field (Int.Cl. 7 , DB name) B01D 61/44 500

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔膜もしくはアニオン交換膜を透析膜
として用い、該透析膜により陽極室と陰極室とを隔離し
た電気透析装置の陰極室に水溶性加工液を陽極室に水を
供給して電気透析を行い該水溶性加工液のpHを弱アル
カリ性のpHに維持することを特徴とする水溶性加工液
の液管理方法。
1. A water-soluble working fluid is supplied to a cathode chamber of an electrodialysis apparatus in which a porous membrane or an anion exchange membrane is used as a dialysis membrane, and an anode chamber and a cathode chamber are separated by the dialysis membrane. weak Al the pH of the water-soluble working fluid performs a electrodialysis
A liquid management method for a water-soluble processing liquid, comprising maintaining a potash pH.
【請求項2】 該水溶性加工液は、切削油、鍛造型潤滑
油、作動油等のアルカリ性水溶性加工液である請求項1
記載の水溶性加工液の液管理方法。
2. The water-soluble working fluid is an alkaline water-soluble working fluid such as a cutting oil, a forging die lubricating oil, and a hydraulic oil.
The liquid management method of the water-soluble processing liquid described in the above.
【請求項3】 該アニオン交換膜はポリスルホン系のア
ニオン交換膜である請求項1記載の水溶性加工液の液管
理方法。
3. The method according to claim 1, wherein the anion exchange membrane is a polysulfone-based anion exchange membrane.
JP09019389A 1997-01-31 1997-01-31 Liquid management method of water-soluble processing fluid Expired - Fee Related JP3093984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09019389A JP3093984B2 (en) 1997-01-31 1997-01-31 Liquid management method of water-soluble processing fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09019389A JP3093984B2 (en) 1997-01-31 1997-01-31 Liquid management method of water-soluble processing fluid

Publications (2)

Publication Number Publication Date
JPH10216482A JPH10216482A (en) 1998-08-18
JP3093984B2 true JP3093984B2 (en) 2000-10-03

Family

ID=11997938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09019389A Expired - Fee Related JP3093984B2 (en) 1997-01-31 1997-01-31 Liquid management method of water-soluble processing fluid

Country Status (1)

Country Link
JP (1) JP3093984B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW524776B (en) * 2000-09-21 2003-03-21 Takahashi Kinzoku Kk Method and apparatus for re-cycling water soluble cutting oil
TW508368B (en) * 2000-09-21 2002-11-01 Takahashi Kinzoku Kk Water soluble cutting oil containing electrolytic ions, and apparatus for making the same
JP2007090277A (en) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd Water treatment system and fungistatic method
JP5093437B2 (en) * 2006-03-02 2012-12-12 栗田工業株式会社 Bacteria control method for fuel cell system

Also Published As

Publication number Publication date
JPH10216482A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
EP2158163A1 (en) Electrolytic process for removing fluorides and other contaminants from water
El-Ashtoukhy et al. Treatment of real wastewater produced from Mobil car wash station using electrocoagulation technique
CN205313291U (en) Refrigeration cycle water integrated processing system
JP5955389B2 (en) Desalination treatment apparatus and method of operating desalination treatment apparatus
WO2007113915A1 (en) Method of liquid-quality control, liquid-quality control apparatus, and electrical discharge machining apparatus making use of the same
JP2007245150A (en) Waste water treating device
JP2015508017A (en) Electrodes for electrochemically reducing the chemical oxygen demand of industrial waste
CN111330449A (en) Method for cleaning and regenerating reverse osmosis membrane pollution
JP5471242B2 (en) Water treatment method and apparatus
JP3093984B2 (en) Liquid management method of water-soluble processing fluid
CA2192889C (en) Method and apparatus for separating oil from water in wastewater containing an emulsified oil
JP6158658B2 (en) Purified water production equipment
JP2003093802A (en) Wastewater treatment apparatus and operation method therefor
JP2000176452A (en) Production of electrolytically ionized water
JP3353964B2 (en) Method and apparatus for producing electrolyzed water
JP3685384B2 (en) Slime prevention method
JPH09323029A (en) Water desalting method and device therefor
JP3220355B2 (en) Electrochemical treatment method for water to be treated
CN217838626U (en) Concentrated salt-containing wastewater recycling treatment system
KR101801068B1 (en) Cleaning system for cooling water of cooling tower
JP3028248U (en) Coolant device with sterilizing ionic liquid generation
JP6103976B2 (en) Drainage treatment method and drainage treatment apparatus for surface treatment wastewater
JPH11192487A (en) Circulating water purifying and sterilizing device and method therefor
JP3269784B2 (en) Ozone water production method and ozone water production device
JP2023121052A (en) Circulation type electrolysis coolant liquid generation system and coolant regeneration electrolytic treatment device applied to the system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees