JP3092204B2 - Superconducting element manufacturing method - Google Patents

Superconducting element manufacturing method

Info

Publication number
JP3092204B2
JP3092204B2 JP03112990A JP11299091A JP3092204B2 JP 3092204 B2 JP3092204 B2 JP 3092204B2 JP 03112990 A JP03112990 A JP 03112990A JP 11299091 A JP11299091 A JP 11299091A JP 3092204 B2 JP3092204 B2 JP 3092204B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
substrate
thin film
superconducting
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03112990A
Other languages
Japanese (ja)
Other versions
JPH04340776A (en
Inventor
紘一 水野
謙太郎 瀬恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03112990A priority Critical patent/JP3092204B2/en
Publication of JPH04340776A publication Critical patent/JPH04340776A/en
Application granted granted Critical
Publication of JP3092204B2 publication Critical patent/JP3092204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超伝導応用技術の超伝導
素子に関し、特にアルカリ土類金属を含むBi系酸化物
超伝導体を一対の電極とし、この両電極の間に結晶粒界
よりなる弱結合部を設けた構造を有する超伝導素子に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting element of a superconducting application technology, and more particularly to a Bi-based oxide superconductor containing an alkaline earth metal as a pair of electrodes. The present invention relates to a superconducting element having a structure in which a weak coupling portion is provided.

【0002】[0002]

【従来の技術】近年発見された酸化物超伝導体の中に
は、その超伝導遷移温度が液体窒素温度(77.3ケル
ビン)を越えるものがあり、超伝導体の応用分野を大き
く広げることとなった。
2. Description of the Related Art Some oxide superconductors discovered in recent years have a superconducting transition temperature exceeding liquid nitrogen temperature (77.3 Kelvin), which will greatly expand the field of application of superconductors. It became.

【0003】その実用化の一つである超伝導素子につい
て、酸化物超伝導体を二つに割り、再びわずかに接触さ
せたジョセフソン素子、酸化物超伝導体を薄膜にし、小
さなくびれをつけたブリッジ型ジョセフソン素子、酸化
物超伝導体間をAu、Ag等の貴金属で接続したジョセ
フソン素子が従来試作されている。
[0003] With regard to the superconducting element which is one of the practical applications, the oxide superconductor is divided into two parts, and the Josephson element and the oxide superconductor which are brought into slight contact again are made into a thin film, and a small constriction is formed. Conventionally, a bridge-type Josephson device and a Josephson device in which oxide superconductors are connected with a noble metal such as Au or Ag have been manufactured.

【0004】[0004]

【発明が解決しようとしている課題】従来試作されてい
る素子のうち、結晶粒界を弱結合部とする超伝導素子で
は、基体上の超伝導体薄膜中に偶然生じた結晶粒界を見
いだし、その部分を超伝導素子の弱結合部として利用す
るものであり、任意の場所に、制御性よく超伝導素子を
作製することは困難であった。さらに、基体上に複数個
の素子を同時に集積化して作製することは難しかった。
Among the devices which have been conventionally manufactured, in a superconducting device having a crystal grain boundary as a weak coupling portion, a crystal grain boundary generated by chance in a superconductor thin film on a substrate is found. This portion is used as a weak coupling portion of the superconducting element, and it has been difficult to manufacture the superconducting element at an arbitrary location with good controllability. Furthermore, it has been difficult to simultaneously integrate and fabricate a plurality of elements on a substrate.

【0005】また、特定の場所に結晶粒界を作製し、超
伝導素子を作製した例として、バイクリスタル基板を基
体に用い、その基体上に酸化物超伝導薄膜をエピタキシ
ャル成長させ、基板の結晶粒界を反映してできた酸化物
超伝導体薄膜の結晶粒界を利用した超伝導素子がある。
しかしながら、このバイクリスタル基版とは、結晶方位
の異なる単結晶を高温高圧で張り合わせ、その単結晶よ
り面内に結晶粒界を含む形で、基版状に切り出し、研磨
したしたものであり、そのバイクリスタル基板自体の作
製が困難で、また酸化物超伝導薄膜のエピタキシャル成
長も高度な技術を要するという課題があった。
[0005] Further, as an example in which a crystal grain boundary is formed at a specific place and a superconducting element is formed, a bicrystal substrate is used as a base, and an oxide superconducting thin film is epitaxially grown on the base to form a crystal grain of the substrate. There is a superconducting element using a crystal grain boundary of an oxide superconductor thin film formed by reflecting a boundary.
However, this bicrystal base plate is obtained by laminating single crystals having different crystal orientations at a high temperature and a high pressure, cutting the single crystal into a base plate shape including a crystal grain boundary in a plane, and polishing it. It is difficult to fabricate the bicrystal substrate itself, and the epitaxial growth of the oxide superconducting thin film also requires a high technique.

【0006】本発明は、結晶粒界を弱結合部として利用
する超伝導素子において、バイクリスタル基板を用いず
に、その弱結合部を基体上の任意の部分に作製する超伝
導素子の製造方法を提供することを目的とする。
The present invention relates to a method of manufacturing a superconducting element utilizing a crystal grain boundary as a weak coupling portion, wherein the weak coupling portion is formed at an arbitrary portion on a base without using a bicrystal substrate. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】基体上に作製した酸化物
超伝導体薄膜中の任意の場所に結晶粒界を作製するた
め、基体の一部を除き表面を被覆する緩衝層を設け、露
出した基体表面を種結晶とする、あるいは基体上に、結
晶核となる種結晶を作製する、または酸化物超伝導体を
キャップシール層で覆うという3つの方法のうち一つを
施す。
Means for Solving the Problems In order to form a crystal grain boundary at an arbitrary position in an oxide superconductor thin film formed on a substrate, a buffer layer covering the surface except for a part of the substrate is provided. One of the three methods of using the surface of the base as a seed crystal, forming a seed crystal serving as a crystal nucleus on the base, or covering the oxide superconductor with a cap seal layer is performed.

【0008】さらに、その酸化物超伝導体薄膜を、融点
以上に加熱再結晶化させ、結晶粒界を特定の場所に生じ
させる。
Further, the oxide superconductor thin film has a melting point
Heat recrystallization is performed as described above , and crystal grain boundaries are generated at specific locations.

【0009】[0009]

【作用】基体上に緩衝層を設け、その一部に基体表面が
露出するように複数の窓をあけ、その上にCuを含む酸
化物超伝導体薄膜を作製し、さらにその後、酸化物超伝
導体薄膜を加熱再結晶化させると、基体と超伝導体薄膜
が接している部分より、基体の結晶方位を反映して結晶
化するため、窓と窓の中間領域に結晶粒界が形成され
る。
A buffer layer is provided on a substrate, a plurality of windows are formed on a portion of the buffer layer so that the surface of the substrate is exposed, and an oxide superconductor thin film containing Cu is formed thereon. When the conductor thin film is heated and recrystallized, the portion where the substrate and the superconductor thin film are in contact is crystallized by reflecting the crystal orientation of the substrate, so that a crystal grain boundary is formed in the middle region between the windows. You.

【0010】また、基体上に結晶核となる複数の種結晶
を形成し、その上にCuを含む酸化物超伝導体薄膜を作
製し、さらにその後、酸化物超伝導体薄膜を加熱再結晶
化させると、種結晶の結晶方位を反映して結晶化が起こ
るため、種結晶と種結晶の中間位置に結晶粒界が生じ
る。
In addition, a plurality of seed crystals serving as crystal nuclei are formed on a substrate, an oxide superconductor thin film containing Cu is formed thereon, and thereafter, the oxide superconductor thin film is recrystallized by heating. When this is done, crystallization takes place reflecting the crystal orientation of the seed crystal, so that a crystal grain boundary is generated at an intermediate position between the seed crystals.

【0011】さらに、酸化物超伝導体薄膜を被覆するよ
うにキャップシール層を堆積し、さらにその後、酸化物
超伝導体薄膜を加熱再結晶化させると、酸化物超伝導体
のキャップシール部に接する部分と中心部分に温度差が
生じ、中心部分に結晶粒界が生じる。
Further, a cap seal layer is deposited so as to cover the oxide superconductor thin film, and thereafter, the oxide superconductor thin film is heated and recrystallized. A temperature difference occurs between the contacting portion and the central portion, and a crystal grain boundary occurs at the central portion.

【0012】この加熱再結晶化させる際、加熱方法を線
条加熱装置、あるいはレーザ光加熱装置、電子ビーム走
査装置によって行うと、加熱時の温度分布を制御できる
ため、結晶粒界任意を位置に作製するため好ましい。こ
の中で、レーザ光加熱装置は、レンズによる集光、ある
いはデフォーカスを行うことにより、酸化物薄膜の温度
分布を、結晶粒界が形成し易い分布にすることができ
た。また、電子ビーム走査装置による加熱方法は、電気
的制御で容易に、基体上の加熱部分の温度分布を変える
ことができる。さらに、電子ビーム走査装置をのぞく他
の加熱方法は、試料を酸素中で加熱再結晶化させること
ができ、酸化物超伝導体にたいする酸素の供給が十分行
え、超伝導特性の向上に効果があるため好ましい。ま
た、Pt、またはPtを含む合金による線条加熱装置
は、酸化雰囲気中でも焼損することなく安定して加熱処
理が行える。
If the heating method is performed by a linear heating device, a laser beam heating device, or an electron beam scanning device during the heating and recrystallization, the temperature distribution at the time of heating can be controlled. It is preferable for production. Among these, the laser beam heating device could make the temperature distribution of the oxide thin film a distribution in which crystal grain boundaries are easily formed by performing focusing or defocusing by a lens. In addition, the heating method using the electron beam scanning device can easily change the temperature distribution of the heated portion on the base by electrical control. Further, other heating methods except for the electron beam scanning device can heat and recrystallize the sample in oxygen, sufficiently supply oxygen to the oxide superconductor, and are effective in improving superconductivity. Therefore, it is preferable. In addition, the wire heating device made of Pt or an alloy containing Pt can stably perform heat treatment without burning even in an oxidizing atmosphere.

【0013】さらに以上述べたこれらの製造方法により
同一基板上に複数個の超電導素子を作製したところ、各
素子の特性にばらつきがちいさく、また、設計どうりの
位置に作製できる。また、液体窒素温度以上でも良好な
超伝導特性を示し、ジョセフソン効果を示す。
Further, when a plurality of superconducting elements are manufactured on the same substrate by the above-described manufacturing methods, the characteristics of each element have small variations, and the elements can be manufactured at positions corresponding to the design. In addition, it shows good superconductivity even at a temperature of liquid nitrogen or higher, and shows a Josephson effect.

【0014】[0014]

【実施例】本発明は、結晶粒界を弱結合部とする超伝導
素子において、その結晶粒界を基体上の特定の場所に作
製することを目的とし、基体上の酸化物超伝導体を加熱
再結晶化させ、超電導素子を作製するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention aims at fabricating a crystal grain boundary at a specific location on a substrate in a superconducting element having a crystal grain boundary as a weakly bonded portion. The superconducting element is produced by heating and recrystallizing.

【0015】本発明の超伝導素子は、特に同一基板上に
複数の超電導素子を集積させることが必要な超電導素子
の応用に対して、その効果をより顕著に示すものであ
る。
The superconducting element of the present invention shows its effect more remarkably, especially for the application of a superconducting element which requires integrating a plurality of superconducting elements on the same substrate.

【0016】以下に具体的実施例を挙げて、本発明をよ
り詳細に説明する。実施例1 電子ビーム走査装置によ
る実施例図1は本発明の第1の発明を説明する概略図で
ある。基体2に(100)SrTiO3を用い、基体を
300℃に保ったまま、スパッタリング法により、Ar
ガス100パーセント、投入電力200Wで緩衝層4と
なるSrTiO3を200nm堆積させた。この条件で
堆積したSrTiO3は、形成温度が低いため非晶質と
なる。その後、フォトレジスト及び化学的エッチング方
法によって、緩衝層4の一部を除去し、基体2の一部を
露出させ、窓6を形成した。次にRFマグネトロンスパ
ッタリング法により、基体上の全面に酸化物超伝導体薄
膜1である、123系の酸化物超伝導体、YBa2Cu
3Oxを680℃で300nm堆積させた。つぎに電子
ビーム走査装置に基板を設置し、2X10-5Pa以下に
真空排気した後、線条に電子ビーム5を走査し、基板上
の一部を約1000℃付近に加熱し、溶融させた。この
時、線条の電子ビーム5の走査部分を、その走査方向と
異なる方向に徐々に移動させると、電子ビーム5の通過
した部分より再結晶化した。この溶融部分が緩衝層4に
開けた窓6の部分、つまり、基体2と酸化物超伝導体薄
膜1と接触している部分を通過すると、基体2の結晶性
を反映して、酸化物超伝導体薄膜1の結晶化がエピタキ
シャル的におこり、窓と窓の中間部付近に結晶粒界3が
形成された。電子ビーム5の走査は、電気的信号で容易
に制御できるため、走査中の基体2の温度分布を任意に
設定することが可能であった。
Hereinafter, the present invention will be described in more detail with reference to specific examples. Embodiment 1 Embodiment Using an Electron Beam Scanning Apparatus FIG. 1 is a schematic diagram illustrating a first invention of the present invention. The substrate 2 was made of (100) SrTiO 3 , and the substrate was kept at 300 ° C. by sputtering to obtain Ar
SrTiO 3 serving as the buffer layer 4 was deposited to a thickness of 200 nm with 100% gas and a power of 200 W. SrTiO 3 deposited under these conditions becomes amorphous due to the low formation temperature. Thereafter, a part of the buffer layer 4 was removed by a photoresist and a chemical etching method, and a part of the base 2 was exposed to form a window 6. Next, a 123-based oxide superconductor, YBa2Cu, which is an oxide superconductor thin film 1, is formed on the entire surface of the substrate by RF magnetron sputtering.
3Ox was deposited at 680 ° C. to 300 nm. Next, the substrate was placed in an electron beam scanning device, and after evacuating to 2 × 10 −5 Pa or less, the electron beam 5 was scanned over the filament, and a part of the substrate was heated to about 1000 ° C. and melted. . At this time, when the scanning portion of the linear electron beam 5 was gradually moved in a direction different from the scanning direction, recrystallized from the portion where the electron beam 5 passed. When this melted portion passes through the portion of the window 6 opened in the buffer layer 4, that is, the portion in contact with the base 2 and the oxide superconductor thin film 1, the oxide Crystallization of the conductor thin film 1 occurred epitaxially, and a crystal grain boundary 3 was formed near a window and an intermediate portion of the window. Since the scanning of the electron beam 5 can be easily controlled by an electric signal, the temperature distribution of the substrate 2 during the scanning can be set arbitrarily.

【0017】実施例2 酸素雰囲気中、レーザ光加熱装
置による実施例、 図2は本発明の第2の発明を説明する概略図である。基
体2に溶融石英を用い、その上に720℃で、酸化物超
伝導体薄膜として、主として2212相の酸化物超伝導
体を含むBi系酸化物超伝導体 (Bi1-yPby2−Sr2−Ca1−Cu2−Ox、 (但し0≦y<0.5、xは任意) が堆積するように調整した酸化物粉末のターゲットを用
い、厚さ300nmの酸化物超伝導体薄膜を堆積させ
た。ひき続き真空容器に酸素を1気圧導入し、950℃
1時間の熱処理を行い、直径数十μmから数百μm程度
の多数の種結晶8となる結晶体を形成した。その後、フ
ォトレジスト及び化学的エッチング方法によって、特定
の部位の結晶体(種結晶8)以外の酸化物超伝導体を除
去した。その後、フォトレジスト除去後、全面に、酸化
物超伝導体薄膜1を成膜した。成膜は、720℃で、主
として2212相の酸化物超伝導体を含むBi系酸化物
超伝導体 (Bi1-yPby2−Sr2−Ca1−Cu2−Ox、 (但し0≦y<0.5、xは任意) をRFマグネトロンスパッタリング法により、300n
m堆積させた。つぎにレーザ光加熱装置に基体2を設置
し、純酸素1気圧中で基体2にレーザ光7を照射し、基
体2上の一部を約950℃付近に加熱し、溶融させた。
この時、レーザ光7をレンズによって線条に絞り、レー
ザ光7を線条方向と異なる方向に徐々に移動させると、
レーザ光7の通過した部分より再結晶化する。この溶融
部分が結晶成長時の種結晶8の部分、つまり、最初に結
晶化していた酸化物超伝導体で、基体2上に残した部分
を通過すると、種結晶8の結晶方位を反映して、酸化物
超伝導体薄膜1の結晶化がエピタキシャル的におこり、
隣合う種結晶と、種結晶の中間部付近に結晶粒界3が形
成された。レーザ光7の走査は、レーザの光路の途中の
ミラーを機械的に制御することで、簡単に実現できた。
Embodiment 2 An embodiment using a laser beam heating device in an oxygen atmosphere. FIG. 2 is a schematic diagram illustrating a second invention of the present invention. The fused silica used in the base body 2, at 720 ° C. thereon, oxide as superconductor thin film, Bi-based oxide superconductor mainly including an oxide superconductor of 2212 phase (Bi 1-y Pb y) 2 -Sr 2 -Ca 1 -Cu 2 -O x , where 0 ≦ y <0.5, where x is arbitrary, an oxide superconductor thin film having a thickness of 300 nm using an oxide powder target adjusted to deposit Was deposited. Subsequently, one atmosphere of oxygen was introduced into the vacuum vessel, and 950 ° C.
Heat treatment was performed for one hour to form a large number of seed crystals 8 having a diameter of several tens μm to several hundreds μm. Thereafter, oxide superconductors other than the crystal (seed crystal 8) at a specific portion were removed by a photoresist and a chemical etching method. Then, after removing the photoresist, an oxide superconductor thin film 1 was formed on the entire surface. Deposition, at 720 ° C., Bi-based oxide superconductor mainly including an oxide superconductor of 2212 phase (Bi 1-y Pb y) 2 -Sr 2 -Ca 1 -Cu 2 -O x, ( where 0 ≦ y <0.5, x is arbitrary) by RF magnetron sputtering to 300 n
m. Next, the substrate 2 was placed in a laser beam heating device, and the substrate 2 was irradiated with the laser beam 7 at 1 atm of pure oxygen, and a part of the substrate 2 was heated to about 950 ° C. and melted.
At this time, when the laser beam 7 is narrowed down to a line by a lens and the laser beam 7 is gradually moved in a direction different from the line direction,
Recrystallization is performed from the portion where the laser beam 7 has passed. When this molten portion passes through the portion of the seed crystal 8 at the time of crystal growth, that is, the portion of the oxide superconductor initially crystallized and left on the base 2, it reflects the crystal orientation of the seed crystal 8. The crystallization of the oxide superconductor thin film 1 occurs epitaxially,
A crystal grain boundary 3 was formed in the vicinity of an intermediate portion between the adjacent seed crystal and the seed crystal. The scanning of the laser beam 7 was easily realized by mechanically controlling a mirror in the optical path of the laser.

【0018】実施例3 Ptをヒータとする線条加熱装
置による実施例 図3は本発明の第3の発明を説明する概略図である。基
体2に(100)MgO基板を用い、その上に720℃
で、酸化物超伝導体薄膜1として、主として下記のTl
系酸化物超伝導体 Tl2−Ba2−Ca2−Cu3−Ox、 (但しxは任意) が堆積するように調整した酸化物粉末のターゲットを用
い、厚さ300nmの酸化物超伝導体薄膜1を堆積させ
た。その後、フォトレジスト及び化学的エッチング方法
によって、酸化物超伝導体薄膜1にストライプ状の溝を
形成した。さらに、フォトレジスト除去後、全面に、3
00℃で、200nmのイットリウム安定化ジルコニア
(YSZ)薄膜を、キャップシール層10としてRFマ
グネトロンスパッタリング法で堆積させた。つぎにPt
線を線条加熱装置9に用いた線条加熱用容器に基体2を
設置し、純酸素1気圧中で基体2および酸化物超伝導体
薄膜1を加熱、酸化物超伝導体薄膜1を再結晶化させ
た。基体の加熱は約930℃付近であった。この時、線
条加熱装置9をキャップシール層10の溝方向(ストラ
イプ方向)に徐々に移動させると、Ptヒータの通過し
た部分より再結晶化する。この際、キャップシール層の
端に接している部分と、中心部では、温度分布がことな
る(中心部が高温になる、または冷却速度が遅い)ため
中心部に結晶粒界3ができた。
Embodiment 3 Embodiment Using a Wire Heating Apparatus Using Pt as a Heater FIG. 3 is a schematic diagram illustrating a third invention of the present invention. A (100) MgO substrate was used for the substrate 2, and 720 ° C.
The oxide superconductor thin film 1 mainly has the following Tl
System oxide superconductor Tl 2 -Ba 2 -Ca 2 -Cu 3 -O x, ( where x is any) using an oxide powder target was adjusted so that is deposited, oxide thickness 300nm superconducting A body thin film 1 was deposited. Thereafter, a stripe-shaped groove was formed in the oxide superconductor thin film 1 by a photoresist and a chemical etching method. After removing the photoresist,
At 200C, a 200 nm yttrium stabilized zirconia (YSZ) thin film was deposited as a cap seal layer 10 by RF magnetron sputtering. Then Pt
The substrate 2 is placed in a wire heating container using the wire as the wire heating device 9, and the substrate 2 and the oxide superconductor thin film 1 are heated in one atmosphere of pure oxygen, and the oxide superconductor thin film 1 is re-heated. Crystallized. Heating of the substrate was around 930 ° C. At this time, when the linear heating device 9 is gradually moved in the groove direction (stripe direction) of the cap seal layer 10, recrystallization starts from the portion where the Pt heater has passed. At this time, since the temperature distribution is different between the portion in contact with the end of the cap seal layer and the central portion (the central portion becomes high temperature or the cooling rate is low), a crystal grain boundary 3 is formed in the central portion.

【0019】図4に、さきに説明した第2の発明の基板
を用いて製造した超伝導素子の一例の概略図を示す。こ
れは、粒界接合ジョセフソン素子と言われるもので、複
数個のジョセフソン素子を多数個、同一基板上に作製し
た例である。各素子は、超伝導量子干渉系を形成してお
り、各素子とも特性にばらつきはほとんどなく、液体窒
素温度においても良好な超伝導素子特性を示した。
FIG. 4 is a schematic view showing an example of a superconducting element manufactured using the substrate of the second invention described above. This is what is called a grain boundary junction Josephson element, and is an example in which a large number of a plurality of Josephson elements are formed on the same substrate. Each device formed a superconducting quantum interference system, and each device showed almost no variation in characteristics, and exhibited good superconducting device characteristics even at liquid nitrogen temperature.

【0020】以上のように、加熱再結晶化の際、加熱方
法として、線条加熱装置、あるいはレーザ光加熱装置、
電子ビーム走査装置によって行うと、加熱時の温度分布
を制御できるため、結晶粒界を任意の位置に作製できる
効果がある。この中で、レーザ光加熱装置は、レンズに
よる集光、あるいはデフォーカスを行うことにより、酸
化物薄膜の温度分布を、結晶粒界が形成し易い分布にで
き、また、電子ビーム走査装置による加熱方法は、電気
的制御で容易に温度分布を変えることができる効果があ
る。さらに、電子ビーム走査装置をのぞく他の加熱方法
は、試料を酸素中で加熱再結晶化させることができ、酸
化物超伝導体にたいする酸素の供給が十分行え、超伝導
特性の向上に効果がある。また、Pt、またはPtを含
む合金による線条加熱装置は、酸化雰囲気中でも焼損す
ることなく安定して加熱処理が行える効果がある。
As described above, upon heating and recrystallization, as a heating method, a linear heating device, a laser beam heating device,
When using an electron beam scanning device, the temperature distribution during heating can be controlled, and thus there is an effect that a crystal grain boundary can be formed at an arbitrary position. Among these, the laser beam heating device can condense or defocus by a lens to make the temperature distribution of the oxide thin film a distribution in which crystal grain boundaries are easily formed, and heating by an electron beam scanning device. The method has an effect that the temperature distribution can be easily changed by electric control. Further, other heating methods except for the electron beam scanning device can heat and recrystallize the sample in oxygen, sufficiently supply oxygen to the oxide superconductor, and are effective in improving superconductivity. . In addition, the wire heating device using Pt or an alloy containing Pt has an effect of performing a stable heat treatment without burning out even in an oxidizing atmosphere.

【0021】さらに以上述べたこれらの製造方法を用い
て、超電導素子を作製したところ、液体窒素温度以上で
も良好な超伝導特性を示し、ジョセフソン効果が得られ
た。
When a superconducting element was manufactured by using the above-described manufacturing methods, good superconducting characteristics were exhibited even at a temperature of liquid nitrogen or higher, and a Josephson effect was obtained.

【0022】現在超伝導応用のひとつとしてジョセフソ
ン素子を構成要素とする超伝導量子干渉計があげられ
る。本発明の超伝導素子は液体窒素温度でジョセフソン
素子として動作しており、この素子を用いると液体窒素
温度で動作する超伝導量子干渉計を構成することが可能
となった。この超伝導量子干渉計は磁場に対して非常に
高感度に応答し、生体磁気測定、地磁気測定等の磁気測
定や、また低消費電力のスイッチング素子を用いた計算
機メモリー、計算機ロジック等に応用できる。特に生体
磁気測定の分野では、従来非侵襲で測定できなかった脳
の神経活動を、磁気的信号として非侵襲で取り出せるた
め、基礎医学分野のみならず臨床医学の分野で注目され
ている。
One superconducting application at present is a superconducting quantum interferometer having a Josephson element as a constituent element. The superconducting device of the present invention operates as a Josephson device at the temperature of liquid nitrogen. Using this device, it has become possible to construct a superconducting quantum interferometer that operates at the temperature of liquid nitrogen. This superconducting quantum interferometer responds with extremely high sensitivity to magnetic fields, and can be applied to magnetic measurements such as biomagnetism measurement and geomagnetism measurement, as well as computer memory and computer logic using switching elements with low power consumption. . In particular, in the field of biomagnetism measurement, the neural activity of the brain, which could not be measured non-invasively conventionally, can be non-invasively extracted as a magnetic signal, so that it has attracted attention not only in the field of basic medicine but also in the field of clinical medicine.

【0023】これらの点で本発明の実用的効果は、基礎
医学分野および臨床医学分野での生体磁気計測応用、低
消費電力のスイッチング素子を用いた計算機応用、電子
機器応用などの分野で大である。
In these respects, the practical effects of the present invention are large in fields such as biomagnetism measurement applications in basic medicine and clinical medicine fields, computer applications using switching elements with low power consumption, and electronic device applications. is there.

【0024】[0024]

【発明の効果】本発明によれば、基体上のCuを含む酸
化物超伝導体を加熱再結晶化させ、その際に生じる結晶
粒界を弱結合部として利用する超電導素子の製造方法に
おいて、粒界を所定の場所に形成するため、基体の表面
を被覆する緩衝層を形成し、その一部に基体を露出させ
る窓を設け、さらにその上に酸化物超伝導体を形成し、
その基体を加熱再結晶化させる、または、基体上に結晶
核となる種結晶を形成し、その上に酸化物超伝導体を形
成し、その基体を加熱再結晶化させる、あるいは基体上
に酸化物超伝導体を形成し、その酸化物超伝導体を被覆
するようにキャップシール層を堆積させ、その基体を加
熱再結晶化させると、基体上の特定の部分に結晶粒界を
製造できる効果がある。
According to the present invention, there is provided a method for manufacturing a superconducting element in which an oxide superconductor containing Cu on a substrate is recrystallized by heating, and a crystal grain boundary generated at that time is used as a weak coupling part. In order to form grain boundaries at predetermined locations, a buffer layer covering the surface of the substrate is formed, a window is provided on a portion of the buffer layer to expose the substrate, and an oxide superconductor is further formed thereon,
The substrate is recrystallized by heating, or a seed crystal serving as a crystal nucleus is formed on the substrate, an oxide superconductor is formed thereon, and the substrate is recrystallized by heating or oxidized on the substrate. Forming a material superconductor, depositing a cap seal layer so as to cover the oxide superconductor, and heating and recrystallizing the substrate, the effect that a grain boundary can be produced at a specific portion on the substrate There is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)は第1の発明の実施例の製造方法を示す斜視図 (b)は第1の発明の実施例の製造方法を示す断面図FIG. 1A is a perspective view illustrating a manufacturing method according to an embodiment of the first invention; FIG. 1B is a cross-sectional view illustrating a manufacturing method according to an embodiment of the first invention;

【図2】 (a)は第2の発明の実施例の製造方法を示す斜視図 (b)は第2の発明の実施例の製造方法を示す断面図FIG. 2A is a perspective view illustrating a manufacturing method according to an embodiment of the second invention; FIG. 2B is a cross-sectional view illustrating a manufacturing method according to the embodiment of the second invention;

【図3】 (a)は第3の発明の実施例の製造方法を示す斜視図 (b)は第3の発明の実施例の製造方法を示す断面図FIG. 3A is a perspective view illustrating a manufacturing method according to an embodiment of the third invention; FIG. 3B is a cross-sectional view illustrating a manufacturing method according to the embodiment of the third invention;

【図4】本発明により作製した粒界接合ジョセフソン素
子の一例を示す斜視図
FIG. 4 is a perspective view showing an example of a grain boundary junction Josephson device manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

1 酸化物超伝導体薄膜 2 基体 3 結晶粒界 4 緩衝層 5 電子ビーム 6 窓 7 レーザ光 8 種結晶 9 線条加熱装置 10 キャップシール層 DESCRIPTION OF SYMBOLS 1 Oxide superconductor thin film 2 Substrate 3 Crystal grain boundary 4 Buffer layer 5 Electron beam 6 Window 7 Laser beam 8 Seed crystal 9 Wire heating device 10 Cap seal layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−271913(JP,A) 特開 平2−260475(JP,A) 特開 平2−258696(JP,A) 特開 平2−279597(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/24 H01L 39/22 H01L 39/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-271913 (JP, A) JP-A-2-260475 (JP, A) JP-A-2-258696 (JP, A) JP-A-2-271 279597 (JP, A) (58) Fields studied (Int. Cl. 7 , DB name) H01L 39/24 H01L 39/22 H01L 39/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基体上に少なくとも2つの開口部を持つ
緩衝層を形成し、前記緩衝層上にCuを含む酸化物超伝
導体を形成し、さらに前記開口部を結ぶ線を横切る方向
に線条加熱方法を施し、前記Cuを含む酸化物超伝導体
の再結晶化処理を行うことを特徴とする超伝導素子の製
造方法。
1. A buffer layer having at least two openings is formed on a base, an oxide superconductor containing Cu is formed on the buffer layer, and a line is formed in a direction crossing a line connecting the openings. A method for manufacturing a superconducting element, comprising: performing a heating method to recrystallize the oxide superconductor containing Cu.
【請求項2】 基体上に少なくとも2つの結晶核となる
種結晶を形成し、前記種結晶を含む前記基体上にCuを
含む酸化物超伝導体を形成し、さらに前記種結晶を結ぶ
線を横切る方向に線条加熱を施し、前記Cuを含む酸化
物超伝導体の再結晶化処理を行うことを特徴とする超伝
導素子の製造方法。
2. A seed crystal serving as at least two crystal nuclei is formed on a base, an oxide superconductor containing Cu is formed on the base including the seed crystal, and a line connecting the seed crystals is formed. A method of manufacturing a superconducting element, comprising applying linear heating in a transverse direction to perform recrystallization treatment of the oxide superconductor containing Cu.
【請求項3】 基体表面の一部を除き前記基体上にCu
を含む酸化物超伝導体を設け、さらに前記Cuを含む酸
化物超伝導体と前記基体表面を被覆するようにキャップ
シール層を堆積し、さらに線条加熱方法を施し、前記C
uを含む酸化物超伝導体の再結晶化処理を行うことを特
徴とする超伝導素子の製造方法。
3. Cu on the substrate except for a part of the substrate surface
Is provided, a cap sealing layer is further deposited so as to cover the oxide superconductor containing Cu and the surface of the substrate , and a wire heating method is applied.
A method for manufacturing a superconducting element, comprising recrystallizing an oxide superconductor containing u.
JP03112990A 1991-05-17 1991-05-17 Superconducting element manufacturing method Expired - Fee Related JP3092204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03112990A JP3092204B2 (en) 1991-05-17 1991-05-17 Superconducting element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03112990A JP3092204B2 (en) 1991-05-17 1991-05-17 Superconducting element manufacturing method

Publications (2)

Publication Number Publication Date
JPH04340776A JPH04340776A (en) 1992-11-27
JP3092204B2 true JP3092204B2 (en) 2000-09-25

Family

ID=14600663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03112990A Expired - Fee Related JP3092204B2 (en) 1991-05-17 1991-05-17 Superconducting element manufacturing method

Country Status (1)

Country Link
JP (1) JP3092204B2 (en)

Also Published As

Publication number Publication date
JPH04340776A (en) 1992-11-27

Similar Documents

Publication Publication Date Title
US5219826A (en) Superconducting junctions and method of making same
EP0046648A1 (en) Method of making Josephson junction devices
JPH0582845A (en) High tc microbridge superconductor device using sns junction between stepped edges
EP0325765B1 (en) Josephson device having a josephson junction structure suitable for an oxide superconductor
US5318951A (en) Method for fabricating oxide superconducting coatings
JP3092204B2 (en) Superconducting element manufacturing method
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
RU2133525C1 (en) Superconducting quantum interference transmitter and process of its manufacture
US5480859A (en) Bi-Sr-Ca-Cu-O superconductor junction through a Bi-Sr-Cu-O barrier layer
JP2539584B2 (en) Superconducting quantum interference device
JP2647985B2 (en) Josephson element
KR0139734B1 (en) The fabrication method of josephson junction device
JP2909455B1 (en) Superconducting element
JPH02194569A (en) Manufacture of oxide superconductive thin film and superconductive element
JP2656853B2 (en) Superconducting element and fabrication method
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JPH02184087A (en) Superconducting weakly-coupled element
JPH0194681A (en) Superconductive coupling device
JPH03110879A (en) Production of josephson junction element
JPH02264486A (en) Superconductive film weakly coupled element
JPH0249481A (en) Oxide josephson junction device
JPH08321639A (en) Superconduction junction and formation of superconduction junction
JPH03295282A (en) Superconducting element
JPH04155875A (en) Superconductive element and manufacture thereof
JPH01283885A (en) Josephson element and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees