JP3089937B2 - Manufacturing method of foam ceramics - Google Patents

Manufacturing method of foam ceramics

Info

Publication number
JP3089937B2
JP3089937B2 JP06038319A JP3831994A JP3089937B2 JP 3089937 B2 JP3089937 B2 JP 3089937B2 JP 06038319 A JP06038319 A JP 06038319A JP 3831994 A JP3831994 A JP 3831994A JP 3089937 B2 JP3089937 B2 JP 3089937B2
Authority
JP
Japan
Prior art keywords
refractory
raw material
low
specific gravity
bulk specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06038319A
Other languages
Japanese (ja)
Other versions
JPH07247182A (en
Inventor
幸人 村口
誠司 新開
広充 平岩
Original Assignee
株式会社イナックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イナックス filed Critical 株式会社イナックス
Priority to JP06038319A priority Critical patent/JP3089937B2/en
Publication of JPH07247182A publication Critical patent/JPH07247182A/en
Application granted granted Critical
Publication of JP3089937B2 publication Critical patent/JP3089937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は発泡セラミックスの製造
方法に係り、特に、製品寸法のばらつきが少なく、寸法
安定性に優れた発泡セラミックスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing foamed ceramics, and more particularly, to a method for producing foamed ceramics which has little variation in product dimensions and excellent dimensional stability.

【0002】[0002]

【従来の技術】発泡セラミックスは、その軽量性、断熱
性等の優れた特性を利用して、各種建築材料等として広
く利用されている。
2. Description of the Related Art Foamed ceramics are widely used as various building materials and the like by utilizing their excellent properties such as light weight and heat insulation.

【0003】従来、発泡セラミックスは、炭化珪素等の
ガス発生剤を含む発泡性セラミックス原料を成形、焼成
し、この焼成過程でガス発生剤を発泡させて製造されて
いる。
[0003] Conventionally, foamed ceramics are produced by molding and firing a foamable ceramic material containing a gas generating agent such as silicon carbide, and foaming the gas generating agent in the firing process.

【0004】[0004]

【発明が解決しようとする課題】ところで、セラミック
スは焼成により収縮して緻密化するが、発泡セラミック
スの焼成においては、焼成収縮による緻密化と、ガス発
生剤の発泡による膨張の過程とを経ることになるため、
この収縮による寸法変化と膨張による寸法変化という、
相反する2つの寸法変化を受けることにより、得られる
製品の寸法のばらつきが大きいという欠点がある。
By the way, ceramics shrink and become denser by firing. However, firing of foamed ceramics involves a process of densification due to firing shrinkage and expansion due to foaming of a gas generating agent. To become
Dimensional change due to shrinkage and dimensional change due to expansion
There is a disadvantage that the size of the obtained product varies greatly due to the two opposing dimensional changes.

【0005】本発明は上記従来の問題点を解決し、焼成
時の寸法変化が小さく、得られる製品の寸法安定性に優
れた発泡セラミックスの製造方法を提供することを目的
とする。
[0005] It is an object of the present invention to solve the above-mentioned conventional problems and to provide a method for producing a foamed ceramic which has a small dimensional change during firing and is excellent in dimensional stability of a product obtained.

【0006】[0006]

【課題を解決するための手段】本発明の発泡セラミック
スの製造方法は、耐火度の異なる複数の発泡性原料粉末
をそれぞれ造粒し、造粒された粒子を乾式混合した後成
形し、この成形体を焼成する発泡セラミックスの製造方
法であって、耐火度の異なる複数の発泡性原料粉末のう
ち最も耐火度の高い高耐火度発泡性原料と最も耐火度の
低い低耐火度発泡性原料との耐火度の差が50〜200
℃であることを特徴とする。
According to the method for producing foamed ceramics of the present invention, a plurality of foamable raw material powders having different fire resistances are respectively granulated, and the granulated particles are dry-mixed and then molded. How to make foam ceramics for firing the body
A plurality of foamable raw material powders having different fire resistances.
Highest refractory high refractory foaming material and most refractory
Low low fire resistance The difference in fire resistance from the foaming raw material is 50 to 200.
° C.

【0007】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0008】本発明の方法においては、まず、耐火度の
異なる複数の発泡性原料、例えば比較的耐火度の高い高
耐火度発泡性原料と、比較的耐火度の低い低耐火度発泡
性原料粉末を調製し、各々造粒する。
In the method of the present invention, first, a plurality of foaming materials having different fire resistances, for example, a high fire resistance foaming material having a relatively high fire resistance and a low fire resistance foaming material powder having a relatively low fire resistance are used. And granulating each.

【0009】本発明において、高耐火度発泡性原料とし
ては、例えば、下記配合のものを用いることができ、ま
た、低耐火度発泡性原料粉末としては、このような高耐
火度発泡性原料に対して、更にガラスフリット、天然ガ
ラス等の耐火度を低下させる材料を所定の耐火度が得ら
れるような割合で配合した、下記配合のものを用いるこ
とができる。なお、下記配合において、ガス発生剤とし
ては、炭化珪素、窒化珪素等を用いることができる。
In the present invention, as the high refractory foaming raw material, for example, those having the following composition can be used, and as the low refractory foaming raw material powder, such a high refractory foaming raw material can be used. On the other hand, it is possible to use the following composition in which a material that lowers the fire resistance, such as glass frit or natural glass, is further added in such a ratio as to obtain a predetermined fire resistance. In the following composition, as a gas generating agent, silicon carbide, silicon nitride, or the like can be used.

【0010】高耐火度発泡性原料配合(重量部) 長 石 :40〜90 粘 土 :10〜60 ガス発生剤 :0.01〜2低耐火度発泡性原料粉末配合(重量部) ガラスフリット:0〜50 天然ガラス :0〜50 長 石 :40〜90 粘 土 :10〜60 ガス発生剤 :0.01〜2 このような高耐火度発泡性原料及び低耐火度発泡性原料
粉末は、各々造粒する(以下高耐火度発泡性原料より得
られた造粒粒子を「高耐火度造粒物」、低耐火度発泡性
原料粉末より得られた造粒粒子を「低耐火度造粒物」と
称す。)。
High refractory foaming raw material blending (parts by weight) Feldspar: 40 to 90 Clay: 10 to 60 Gas generating agent: 0.01 to 2 Low refractory foaming raw material powder blending (parts by weight) Glass frit: 0-50 Natural glass: 0-50 Feldspar: 40-90 Clay: 10-60 Gas generating agent: 0.01-2 Such high refractory foaming raw material and low refractory foaming raw material powder are respectively Granulate (hereinafter, granulated particles obtained from high refractory foamable raw material are referred to as “high refractory granulated material”, and granulated particles obtained from low refractory foamable raw material powder are referred to as “low refractory granulated material. ").)

【0011】ここで、高耐火度造粒物及び低耐火度造粒
物は、小さ過ぎても大き過ぎても本発明による焼成時の
寸法変化の緩和効果が十分に得られない。高耐火度造粒
物及び低耐火度造粒物の粒径は5mm以下、特に0.1
〜2mmとするのが好ましい。
[0011] Here, the high refractory granules and the low refractory granules cannot sufficiently reduce the dimensional change during firing according to the present invention, even if they are too small or too large. The particle size of the high refractory granules and the low refractory granules is 5 mm or less, especially 0.1 mm.
It is preferable to set it to 2 mm.

【0012】得られた高耐火度造粒物と低耐火度造粒物
は、乾式混合してプレス成形し、次いで焼成する。ここ
で、高耐火度造粒物と低耐火度造粒物との混合割合は、
少なくとも一方の造粒粒子が10重量%以上となるよう
に、即ち、高耐火度造粒物:低耐火度造粒物=10〜9
0:90〜10(重量%)、好ましくは30〜70:7
0〜30(重量%)となるようにするのが好ましい。
The obtained high refractory granules and low refractory granules are dry-mixed, press-formed, and then fired. Here, the mixing ratio of the high refractory granules and the low refractory granules is
At least one of the granulated particles is 10% by weight or more, that is, high refractory granules: low refractory granules = 10 to 9
0:90 to 10 (% by weight), preferably 30 to 70: 7
It is preferable to set it to 0 to 30 (% by weight).

【0013】焼成温度は、用いた高耐火度発泡性原料と
低耐火度発泡性原料粉末の耐火度、その混合割合、目的
とする発泡セラミックスの気孔率等により異なるが、通
常の場合、800〜1300℃の範囲で適宜決定され
る。
The firing temperature varies depending on the fire resistance of the high refractory foaming raw material and the low refractory foaming raw material powder used, the mixing ratio thereof, the porosity of the target foamed ceramic, and the like. It is appropriately determined within the range of 1300 ° C.

【0014】なお、上記説明では、高耐火度発泡性原料
と低耐火度発泡性原料との2種類の発泡性原料粉末を用
いる場合について示したが、本発明においては、耐火度
の異なる3種類以上の発泡性原料粉末を用いても良いこ
とは言うまでもない。この場合においても、各発泡性原
料粉末を少なくとも10重量%混合することが望まし
い。
In the above description, the case of using two types of foaming raw material powders of a high refractory foaming raw material and a low refractory foaming raw material has been described. It goes without saying that the above foamable raw material powder may be used. Also in this case, it is desirable to mix at least 10% by weight of each expandable raw material powder.

【0015】本発明において、高耐火度発泡性原料と低
耐火度発泡性原料との耐火度の差の好適値は、その混合
割合や、用いる発泡性原料粉末の種類数によっても異な
る。即ち、本発明による焼成時の寸法変化の低減効果
は、後述の如く、焼成工程において、低耐火度造粒物に
よる相がまず収縮した後、低耐火度造粒物による相が発
泡により膨張し始めるときに、高耐火度造粒物による相
が収縮し始めて、低耐火度造粒物による相の膨張を高耐
火度造粒物による相の収縮が相殺して全体的な寸法変化
を小さくすることにある。従って、高耐火度発泡性原料
と低耐火度発泡性原料とは、このような相殺効果が十分
に得られるように、その耐火度の差や混合割合を調整す
ることが重要であり、このため、本発明では、最も耐火
度の高い高耐火度発泡性原料と、最も耐火度の低い低耐
火度発泡性原料粉末との耐火度の差50〜200℃
する
In the present invention, the suitable value of the difference in the fire resistance between the high-fired foamable raw material and the low-fired foamable raw material also depends on the mixing ratio and the number of types of the foamable raw material powder used. That is, the effect of reducing the dimensional change during firing according to the present invention, as described below, in the firing step, after the phase due to the low refractory granules first shrink, the phase due to the low refractory granules expands by foaming. At the beginning, the phase due to the high refractory granules starts to shrink, and the expansion of the phase due to the low refractory granules is offset by the contraction of the phase due to the high refractory granules, thereby reducing the overall dimensional change. It is in. Therefore, a high refractoriness foamable ingredient and low refractoriness of foaming material, so that such cancellation effect can be sufficiently obtained, it is important to adjust the difference or the mixing ratio of the refractoriness and thus in the present invention, the highest refractoriness high refractoriness foamable ingredient, and 50 to 200 ° C. the difference between the refractoriness of the lowest refractoriness low refractoriness foaming material powder
I do .

【0016】[0016]

【作用】耐火度の異なる複数の発泡性原料を造粒したも
のを乾式混合して、成形することにより、得られた成形
体は、耐火度の異なる複数の相が分散して混在した状態
となる。
[Function] A plurality of foamable raw materials having different fire resistances are granulated by dry mixing, and the resulting molded article is in a state where a plurality of phases having different fire resistances are dispersed and mixed. Become.

【0017】高耐火度発泡性原料より得られた高耐火度
造粒物で形成される相(以下「高耐火度相」と称す。)
と低耐火度発泡性原料より得られた低耐火度造粒物で形
成される相(以下「低耐火度相」と称す。)とが分散し
て混在した状態の成形体を焼成すると、温度上昇に伴
い、まず、低耐火度相が収縮し始める。更に、焼成温度
が上昇すると、低耐火度相が発泡により膨張し始める
が、このとき、高耐火度相が収縮し始め、その後発泡に
より膨張する。
A phase formed of a high refractory granule obtained from a high refractory foaming raw material (hereinafter referred to as "high refractory phase").
And a phase formed of a low refractory granule obtained from a low refractory foaming raw material (hereinafter referred to as a “low refractory phase”) in a dispersed and mixed state. First, the low refractory phase starts to contract with the rise. Further, when the firing temperature is increased, the low refractory phase starts to expand due to foaming. At this time, the high refractory phase starts to contract and then expands due to foaming.

【0018】このように、低耐火度相の膨張に高耐火度
相の収縮が併行することにより、全体的な寸法変化は低
減され、製品の寸法安定性が向上する。
As described above, since the expansion of the low refractory phase is accompanied by the contraction of the high refractory phase, the overall dimensional change is reduced and the dimensional stability of the product is improved.

【0019】また、焼成過程の最高温度付近における寸
法変化が小さいため、焼成温度を適宜設定することによ
り、容易に所望の嵩比重の製品を得ることができる。
Since the dimensional change near the maximum temperature during the firing process is small, a product having a desired bulk specific gravity can be easily obtained by appropriately setting the firing temperature.

【0020】即ち、焼成過程の最高温度付近において
は、既に低耐火度相の収縮が終了し、また低耐火度相の
膨張も小さいものとなっている。一方、高耐火度相は、
収縮は終了し、膨張過程にあるが、この膨張過程におい
て、低耐火度相による膨張は少なくなり、主に高耐火度
相による膨張のみであるため、全体としての膨張率は小
さい。従って、温度変化に対する嵩比重の変化が小さく
なり、所望の嵩比重の製品が得られるように、容易に焼
成温度を設定することができる。
That is, at around the maximum temperature in the firing process, the contraction of the low refractory phase has already ended, and the expansion of the low refractory phase is small. On the other hand, the high refractory phase
The contraction is completed, and the expansion process is in progress. In this expansion process, the expansion in the low refractory phase is reduced, and the expansion is mainly performed only in the high refractory phase. Therefore, the overall expansion rate is small. Therefore, the change in the bulk specific gravity with respect to the temperature change becomes small, and the firing temperature can be easily set so that a product having a desired bulk specific gravity is obtained.

【0021】[0021]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0022】実施例1 下記配合の高耐火度発泡性原料粉末Iと低耐火度発泡性
原料粉末Iとを用い、各々、粒径0.5〜1.5mmに
造粒した。なお、下記高耐火度発泡性原料粉末Iと低耐
火度発泡性原料粉末Iとの耐火度の差は110℃であ
る。
Example 1 A high refractory foaming raw material powder I and a low refractory foaming raw material powder I having the following composition were granulated to a particle size of 0.5 to 1.5 mm. The difference in the fire resistance between the high-fired foamable raw material powder I and the low-fired foamable raw material powder I is 110 ° C.

【0023】高耐火度発泡性原料粉末配合I(重量%) 長 石 :75 粘 土 :25 SiC :0.08低耐火度発泡性原料粉末配合I(重量%) ガラスフリット:20 天然ガラス :30 長 石 :10 粘 土 :40 SiC :0.12 造粒により得られた高耐火度造粒物Iと低耐火度造粒物
Iとを1:1(重量比)の割合でロッキングミキサーに
て乾式混合し、混合物をプレス成形した。
High refractory foaming raw material powder blend I (% by weight) Feldspar: 75 Clay: 25 SiC: 0.08 Low refractory foaming raw material powder blend I (% by weight) Glass frit: 20 Natural glass: 30 Feldspar: 10 Clay: 40 SiC: 0.12 High refractory granules I and low refractory granules I obtained by granulation were mixed in a rocking mixer at a ratio of 1: 1 (weight ratio). After dry mixing, the mixture was press-molded.

【0024】得られた成形体を焼成したときの焼成温度
と焼結体の嵩比重との関係、及び、焼成温度と焼結体の
収縮率との関係を調べ、結果をそれぞれ図1,2に示し
た。
The relationship between the firing temperature and the bulk specific gravity of the sintered body and the relationship between the firing temperature and the shrinkage ratio of the sintered body when the obtained molded body was fired were examined. It was shown to.

【0025】比較例1,2 実施例1において、高耐火度発泡性原料粉末Iのみ(比
較例1)又は低耐火度発泡性原料粉末Iのみ(比較例
2)を用いたこと以外は同様に行って、得られた成形体
を焼成したときの焼成温度と焼結体の嵩比重との関係、
及び、焼成温度と焼結体の収縮率との関係を調べ、結果
をそれぞれ図1,2に示した。
COMPARATIVE EXAMPLES 1 AND 2 In the same manner as in Example 1, except that only the high refractory foaming raw material powder I (Comparative Example 1) or the low refractory foaming raw material powder I alone (Comparative Example 2) was used. Go, the relationship between the firing temperature and the bulk specific gravity of the sintered body when firing the obtained molded body,
The relationship between the firing temperature and the shrinkage of the sintered body was examined, and the results are shown in FIGS.

【0026】図1,2より次のことが明らかである。The following is clear from FIGS.

【0027】即ち、低耐火度発泡性原料粉末Iのみを用
いた比較例1では早期に大きな収縮が起こり、嵩比重
(又は収縮率)は急激に増大し、その後膨張により嵩比
重(又は収縮率)は急激に減少する。高耐火度発泡性原
料粉末Iのみを用いた比較例2でもこの収縮、膨張の起
こる焼成温度が高いのみで、比較例1と同様大きな嵩比
重(又は収縮率)の変化を示す。
That is, in Comparative Example 1 in which only the low refractory foaming raw material powder I was used, large shrinkage occurred at an early stage, the bulk specific gravity (or shrinkage) increased rapidly, and then the bulk specific gravity (or shrinkage) was increased by expansion. ) Decreases rapidly. Comparative Example 2 using only the high refractory foaming raw material powder I shows a large change in bulk specific gravity (or shrinkage) as in Comparative Example 1 only at a high firing temperature at which the shrinkage and expansion occur.

【0028】これに対して、高耐火度造粒物及び低耐火
度造粒物を乾式混合して用いた実施例1では、収縮過程
の嵩比重(又は収縮率)の変化は、比較例1,2に比べ
て非常に小さい。また、収縮後の膨張過程においても、
嵩比重(又は収縮率)の変化は小さい(即ち、グラフの
傾きが小さい。)。
On the other hand, in Example 1 in which the high refractory granules and the low refractory granules were dry-mixed, the change in the bulk specific gravity (or shrinkage) during the shrinkage process was the same as in Comparative Example 1. , 2 are very small. Also, in the expansion process after contraction,
The change in bulk specific gravity (or shrinkage) is small (that is, the slope of the graph is small).

【0029】このため、膨張過程の所定の嵩比重(又は
収縮率)のところで焼成を終えて、容易に所望の嵩比重
の製品を得ることができる(因みに、膨張過程のグラフ
の傾きも大きい比較例1,2では、所定の嵩比重のとこ
ろで焼成を終えることが難しく、所望の嵩比重の製品を
得ることが容易ではない。)。
For this reason, calcination is completed at a predetermined bulk specific gravity (or shrinkage ratio) in the expansion process, and a product having a desired bulk specific gravity can be easily obtained. In Examples 1 and 2, it is difficult to finish firing at a predetermined bulk specific gravity, and it is not easy to obtain a product having a desired bulk specific gravity.)

【0030】また、実施例1では収縮→膨張の総寸法変
化が比較例1に比べて著しく小さいことから、製品寸法
のばらつきを小さくすることができる。
Further, in Example 1, since the total dimensional change from contraction to expansion is significantly smaller than that in Comparative Example 1, variation in product dimensions can be reduced.

【0031】即ち、例えば、嵩比重1.25の製品を得
る場合、比較例1,2では、それぞれ図1のD1 ,D2
の嵩比重変化に相当する大きな寸法変化があるが、実施
例1では、D3 の嵩比重変化に相当する小さい寸法変化
しか起こらない。
That is, for example, when obtaining a product having a bulk specific gravity of 1.25, in Comparative Examples 1 and 2, D 1 and D 2 in FIG.
Although there is a large dimensional change corresponding to the bulk specific gravity change of Example 3 , only a small dimensional change corresponding to the bulk specific gravity change of D3 occurs in Example 1.

【0032】比較例3 実施例1において、高耐火度発泡性原料粉末I及び低耐
火度発泡性原料粉末Iをそのまま乾式混合したこと以外
は同様にして焼成を行った。その結果、1200℃で焼
成して嵩比重1.25の製品を得るときの嵩比重の変化
(最大嵩比重と最小嵩比重との差)は、実施例1では約
0.65(図1のD3 に相当)であったのに対して、本
比較例では約1.10と大きく、高耐火度発泡性原料粉
末I及び低耐火度発泡性原料粉末Iを単に乾式混合した
のみでは、本発明の効果は得られないことが確認され
た。
Comparative Example 3 The firing was performed in the same manner as in Example 1 except that the high refractory foaming raw material powder I and the low refractory foaming raw material powder I were dry-mixed as they were. As a result, the change in the bulk specific gravity (difference between the maximum bulk specific gravity and the minimum bulk specific gravity) when firing at 1200 ° C. to obtain a product having a bulk specific gravity of 1.25 is about 0.65 in Example 1 (see FIG. 1). whereas was equivalent) to D 3, only in this comparative example as large as about 1.10, and simply dry mixing the high refractoriness of foaming material powder I and low refractoriness of foaming material powder I is present It was confirmed that the effects of the invention could not be obtained.

【0033】実施例2 高耐火度発泡性原料粉末II及び低耐火度発泡性原料粉末
IIとして下記配合のものを用い、各々、粒径0.5〜
1.5mmに造粒したものを、高耐火度造粒物II:低耐
火度造粒物II=1:1(重量比)で乾式混合し、プレス
成形した。なお、下記高耐火度発泡性原料IIと低耐火度
発泡性原料粉末IIとの耐火度の差は160℃である。
Example 2 High refractory foaming raw material powder II and low refractory foaming raw material powder
Using the following formulation as II, each particle size 0.5 ~
The granules having a size of 1.5 mm were dry-mixed with a high refractory granule II: low refractory granule II = 1: 1 (weight ratio) and press-molded. The difference in the fire resistance between the high-fired foamable raw material II and the low-fired foamable raw material powder II is 160 ° C.

【0034】高耐火度発泡性原料配合II(重量%) 長 石:50 粘 土:49.85 SiC:0.15低耐火度発泡性原料粉末配合II(重量%) 天然ガラス:50 長 石 :20 粘 土 :29.85 SiC :0.15 得られた成形体を1250℃で焼成して嵩比重1.25
の製品を得るときの焼成過程の嵩比重の変化(最大嵩比
重と最小嵩比重との差)を求め、結果を表1に示した。
High refractory foaming raw material blend II (wt%) feldspar: 50 clay Clay: 49.85 SiC: 0.15 Low refractory foaming raw material powder blend II (wt%) Natural glass: 50 feldspar: 20 clay: 29.85 SiC: 0.15 The obtained molded body was fired at 1250 ° C. and the bulk specific gravity was 1.25.
The change in the bulk specific gravity (difference between the maximum bulk specific gravity and the minimum bulk specific gravity) in the firing step when the product was obtained was obtained. The results are shown in Table 1.

【0035】実施例3〜6,比較例4〜6 表1に示す高耐火度発泡性原料粉末,低耐火度発泡性原
料粉末を表1に示す配合で用い、実施例1又は比較例1
〜3と同様にして成形を行って、得られた成形体を表1
に示す温度で焼成して表1に示す嵩比重の製品を得ると
きの、焼成過程の嵩比重の変化(最大嵩比重と最小嵩比
重との差)を求め、結果を表1に示した。
Examples 3 to 6, Comparative Examples 4 to 6 The high refractory foaming raw material powders and low refractory foaming raw material powders shown in Table 1 were used in the formulations shown in Table 1, and were used in Example 1 or Comparative Example 1.
The molding was performed in the same manner as in Examples 1 to 3 and
When the product having the bulk specific gravity shown in Table 1 was obtained by firing at the temperature shown in Table 1, the change in the bulk specific gravity during the firing process (the difference between the maximum bulk specific gravity and the minimum bulk specific gravity) was determined. The results are shown in Table 1.

【0036】なお、表1には、実施例1,比較例1〜3
において、表1に示す温度で焼成して嵩比重1.25の
製品を得る場合の結果も示してある。
Table 1 shows Examples 1 and Comparative Examples 1 to 3.
In Table 1, the results obtained in the case of firing at the temperature shown in Table 1 to obtain a product having a bulk specific gravity of 1.25 are also shown.

【0037】[0037]

【表1】 [Table 1]

【0038】表1より、本発明の方法によれば、製品の
寸法安定性が大幅に向上することが明らかである。
From Table 1, it is clear that the method of the present invention greatly improves the dimensional stability of the product.

【0039】[0039]

【発明の効果】以上詳述した通り、本発明の発泡セラミ
ックスの製造方法によれば、焼成時の収縮、発泡膨張に
よる寸法変化が低減され、寸法のばらつきが小さく、製
品の寸法安定性が大幅に改善されると共に、所望の嵩比
重の製品を容易かつ確実に得ることが可能とされる。
As described in detail above, according to the method for producing foamed ceramics of the present invention, dimensional change due to shrinkage and expansion during firing is reduced, dimensional variation is small, and dimensional stability of the product is large. And a product having a desired bulk specific gravity can be easily and reliably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1,比較例1,2における焼成温度と嵩
比重との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between firing temperature and bulk specific gravity in Example 1, Comparative Examples 1 and 2.

【図2】実施例1,比較例1,2における焼成温度と収
縮率との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a firing temperature and a shrinkage ratio in Example 1, Comparative Examples 1 and 2.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−60714(JP,A) 特開 平2−192478(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 38/00 - 38/02 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-48-60714 (JP, A) JP-A-2-192478 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 38/00-38/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 耐火度の異なる複数の発泡性原料粉末を
それぞれ造粒し、造粒された粒子を乾式混合した後成形
し、この成形体を焼成する発泡セラミックスの製造方法
であって、 耐火度の異なる複数の発泡性原料粉末のうち最も耐火度
の高い高耐火度発泡性原料と最も耐火度の低い低耐火度
発泡性原料との耐火度の差が50〜200℃であること
を特徴とする発泡セラミックスの製造方法。
1. A method for producing a foamed ceramic, comprising: granulating a plurality of foamable raw material powders having different degrees of fire resistance; dry-mixing the granulated particles; forming the mixture; and firing the formed body; The difference in fire resistance between the most refractory high refractory foamable raw material and the lowest refractory low refractory foamable raw material among a plurality of foamable raw material powders having different degrees is 50 to 200 ° C. Method for producing foamed ceramics.
【請求項2】 造粒された粒子の粒径が5mm以下であ
ることを特徴とする請求項1に記載の発泡セラミックス
の製造方法。
2. The method according to claim 1, wherein the particle size of the granulated particles is 5 mm or less.
JP06038319A 1994-03-09 1994-03-09 Manufacturing method of foam ceramics Expired - Fee Related JP3089937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06038319A JP3089937B2 (en) 1994-03-09 1994-03-09 Manufacturing method of foam ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06038319A JP3089937B2 (en) 1994-03-09 1994-03-09 Manufacturing method of foam ceramics

Publications (2)

Publication Number Publication Date
JPH07247182A JPH07247182A (en) 1995-09-26
JP3089937B2 true JP3089937B2 (en) 2000-09-18

Family

ID=12521973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06038319A Expired - Fee Related JP3089937B2 (en) 1994-03-09 1994-03-09 Manufacturing method of foam ceramics

Country Status (1)

Country Link
JP (1) JP3089937B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101786A (en) * 2009-12-22 2011-06-22 株式会社伊奈 Raw material for lightweight foam face brick, lightweight foam face brick and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07247182A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
JP2002517375A5 (en)
JPH0380749B2 (en)
JP3089937B2 (en) Manufacturing method of foam ceramics
JP2001302369A (en) Body for porcelain tile and method for manufacturing the same and porcelain tile
JP3250455B2 (en) Manufacturing method of foam ceramics
JP3254878B2 (en) High strength porcelain and its manufacturing method
JP3612770B2 (en) Manufacturing method of ceramic foam
JPH06144951A (en) Ceramic foam and production thereof
JP3541215B2 (en) Porcelain low water permeability lightweight pottery.
JPH06166579A (en) Production of lightweight cellular building material produced by using coal ash as main raw material
JPS59213669A (en) Manufacture of zircon-zirconia refrctories
JP3479160B2 (en) Aluminum nitride granules and method for producing the same
JP2800134B2 (en) Manufacturing method of porous ceramics
JPS6310110B2 (en)
JPH05310459A (en) Hydraulic composite material and production of high-strength concrete using the same
JP2959402B2 (en) High strength porcelain
JPS6353130B2 (en)
JPH0971482A (en) Slurry for forming porous ceramics and production of porous ceramics using the same
JPH0226863A (en) Cordierite-based ceramic and production thereof
JPH075349B2 (en) Method for manufacturing ceramic sintered products using anti-fire stone
JP3790800B6 (en) Cement aquaculture
JPH1112056A (en) Production of foaming ceramic material, foaming ceramic material and production of formed ceramic material
JP2005015269A (en) Method of manufacturing foamable porous member
JPH11310482A (en) Production of porous ceramic sintered compact and composition for molding porous ceramic
JP2565380B2 (en) Method of manufacturing porous porcelain

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees