JP2565380B2 - Method of manufacturing porous porcelain - Google Patents

Method of manufacturing porous porcelain

Info

Publication number
JP2565380B2
JP2565380B2 JP63215830A JP21583088A JP2565380B2 JP 2565380 B2 JP2565380 B2 JP 2565380B2 JP 63215830 A JP63215830 A JP 63215830A JP 21583088 A JP21583088 A JP 21583088A JP 2565380 B2 JP2565380 B2 JP 2565380B2
Authority
JP
Japan
Prior art keywords
granules
average particle
ceramic powder
ceramic
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63215830A
Other languages
Japanese (ja)
Other versions
JPH0264076A (en
Inventor
汀 安藤
隆史 加藤
秀保 青木
康之 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63215830A priority Critical patent/JP2565380B2/en
Publication of JPH0264076A publication Critical patent/JPH0264076A/en
Application granted granted Critical
Publication of JP2565380B2 publication Critical patent/JP2565380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、食品工業、化学工業、医療、環境保全事業
等のフイルタあるいはエアレータ等に広く使用される多
孔質磁器に関する。
TECHNICAL FIELD The present invention relates to a porous porcelain widely used for filters, aerators and the like in the food industry, chemical industry, medical care, environmental conservation business and the like.

「従来技術」 この種の多孔質磁器は、火炎熔融法によって製造され
た粗いアルミナ等セラミック粒子を焼結したものが広く
知られているが、上記の粗いセラミック粒子は高い熔融
温度によって製造されるため、これを用いた成形品の焼
成には極めて高温を必要とする欠点があった。
"Prior Art" This type of porous porcelain is widely known to be obtained by sintering ceramic particles such as coarse alumina produced by a flame melting method, but the above-mentioned coarse ceramic particles are produced at a high melting temperature. Therefore, there is a drawback that extremely high temperature is required for firing a molded product using this.

本出願人は先に、平均粒径1μm以下のセラミック粉
末を出発原料とし、噴霧乾燥等によって平均粒径5μm
以上の顆粒に造粒し、これを1000℃以上で仮焼、半焼結
状態とした後、有機質成形助剤を加えて成形し、上記の
仮焼温度よりも400℃以上高い温度で焼結することによ
って上記の欠点を解消し、比較的低温の焼成によって機
械的強度が高く、優れた多孔体が得られることを見出
し、これを提案(特願昭63−57177号)した。
The applicant has previously used ceramic powder having an average particle size of 1 μm or less as a starting material, and has an average particle size of 5 μm by spray drying or the like.
After granulating the above granules, calcining them at 1000 ° C or higher, making them semi-sintered, molding them with an organic molding aid, and sintering at a temperature 400 ° C or higher higher than the above-mentioned calcination temperature This has solved the above-mentioned drawbacks and found that an excellent porous material having a high mechanical strength can be obtained by firing at a relatively low temperature, and proposed this (Japanese Patent Application No. 63-57177).

「発明が解決しようとする問題点」 このようにして製作した多孔質磁器は、従来の上記火
災熔融法によって製造した粗いアルミナ粒子等を使用し
て得た多孔質磁器に比して機械的強度を高めると共に、
気孔率、気孔径をも増大するが、その仮焼温度は顆粒と
しての機械的強度を満足させる必要があるため高温が要
求され、この高温の仮焼は一方において顆粒の焼結活性
を低下させることになるので両特性を同時に満足させる
には仮焼温度に対する厳格な管理が必要となり、量産性
の面で難が残されていた。
“Problems to be solved by the invention” The porous porcelain manufactured in this manner has a higher mechanical strength than the porous porcelain obtained by using the coarse alumina particles produced by the above-mentioned fire melting method. Along with
Although the porosity and the pore diameter are also increased, the calcination temperature is required to be high because it needs to satisfy the mechanical strength of the granules, and this high temperature calcination reduces the sintering activity of the granules on the one hand. Therefore, in order to satisfy both characteristics at the same time, it is necessary to strictly control the calcination temperature, which leaves a problem in terms of mass productivity.

「問題点を解決するための手段」 本発明は、平均粒径0.1〜1μmのセラミック粉末
に、平均粒径0.01μm以下のセラミックの微細粒子から
なるコロイドあるいは可溶物質を配合して得た懸濁液を
噴霧乾燥等によって表面が上記のコロイドあるいは可溶
物質で被覆されたセラミック粉末からなる顆粒を造粒
し、仮焼によって機械強度を付与した後、所望の形状に
成形し、ついで焼成することを特徴とする。
"Means for Solving Problems" The present invention provides a suspension obtained by blending a ceramic powder having an average particle diameter of 0.1 to 1 µm with a colloid or a soluble substance composed of fine ceramic particles having an average particle diameter of 0.01 µm or less. Granules made of ceramic powder whose surface is coated with the above colloid or soluble substance are granulated by spray-drying the suspension, and after mechanical strength is given by calcination, the granules are molded into a desired shape and then fired. It is characterized by

「作用」 上記の懸濁液を噴霧乾燥等によって造粒するとき、主
体のセラミック粉末よりも微細な粒子からなるコロイド
もしくは可溶物質はその高い流動性によって液の流れに
伴なわれて懸濁液滴の表面に移動するので造粒された顆
粒は、多数の主体のセラミック粉末の外周表面に多量の
微細粒子によって被覆された形状を呈し、このように表
面に微細粒子が集積した顆粒は、低い仮焼温度によって
混練等の原料調製、成形操作等に耐える強度が得られ、
成形後の本焼成に際しても残存する焼結活性によって比
較的低温の焼成によって高い顆粒間結合が得られる。
"Operation" When granulating the above suspension by spray drying, etc., the colloid or soluble substance consisting of finer particles than the main ceramic powder is suspended due to its high fluidity due to its liquidity. The granules granulated because they move to the surface of the liquid droplets have a shape in which a large number of fine particles are coated on the outer peripheral surface of a large number of ceramic powders. With a low calcination temperature, strength that can withstand raw material preparation such as kneading and molding operations is obtained.
A high intergranular bond can be obtained by firing at a relatively low temperature due to the remaining sintering activity during the main firing after molding.

ここで、主体となるセラミック粉末の平均粒径を0.1
〜1μmに特定した理由は、0.1μmに満たないときは
造粒時においてこれらの周囲を被覆するセラミックの微
細粒子の集積現象が起き難く、逆に1μmを超えれば満
足すべき焼結性が得難いからである。一方、該セラミッ
ク粉末に配されるセラミック微細粒子の平均粒径が0.01
μm以上の場合は上記の集積現象に難を生ずるので、該
粒子はなるべく微細が好ましいが原料価格が上昇するの
で、要求される諸特性に応じ、0.01μm以下において決
定される。
Here, the average particle size of the main ceramic powder is 0.1
The reason for specifying to 1 μm is that if it is less than 0.1 μm, the accumulation phenomenon of fine particles of the ceramic that coats these surroundings is unlikely to occur during granulation, and conversely if it exceeds 1 μm, it is difficult to obtain satisfactory sinterability. Because. On the other hand, the average particle size of the ceramic fine particles distributed in the ceramic powder is 0.01
When the particle size is more than μm, the above-mentioned accumulation phenomenon becomes difficult. Therefore, it is preferable that the particles are as fine as possible, but the raw material price rises. Therefore, the particle size is determined to be 0.01 μm or less in accordance with the required characteristics.

次に、主体となるセラミック粉末に対する微細粒子の
配合量は、該粒子の重量として3%に満たないときは充
分な効果が得難く、増量に従って効果を増大するが30%
付近において略々飽和状態を呈すること及び原料価格が
高くなるので上記の範囲内が好ましい。
Next, when the amount of fine particles mixed with the main ceramic powder is less than 3% by weight, it is difficult to obtain a sufficient effect.
The above range is preferable because the material is almost saturated in the vicinity and the raw material price becomes high.

「実施例」 平均粒径0.2μmで純度99.99%のアルミナ粉末(市販
品)3Kg、平均粒径0.005μmで濃度10%のアルミナゾル
(市販品)3Kg、ポリビニルアルコール30g及び水300gを
内容積5のアルミナ磁器製ボールミルに入れ、24時間
混合して懸濁液を得た。
"Example" 3 kg of alumina powder (commercial item) with an average particle size of 0.2 µm and a purity of 99.99%, 3 kg of alumina sol (commercial item) with an average particle size of 0.005 µm and a concentration of 10%, polyvinyl alcohol 30 g and water 300 g in an internal volume of 5 The mixture was placed in an alumina porcelain ball mill and mixed for 24 hours to obtain a suspension.

この懸濁液を12,000rpmの回転ディスク式噴霧乾燥機
を用いてガス温度160℃の条件で平均粒径20μmの顆粒
を造粒した。
This suspension was granulated into granules having an average particle size of 20 μm under the condition of a gas temperature of 160 ° C. using a rotary disk type spray dryer of 12,000 rpm.

次に造粒した顆粒を900℃,1000℃及び1100℃にて各1
時間の仮焼を行なった処仮焼温度が900℃では顆粒とし
ての強度が不足し、1000℃において満足すべき成型加工
強度が得られたので、この1000℃で仮焼した顆粒1Kgに
対してメチルセルロース50g及び水150gを加えて30分間
混練し、外径20mm、内径18mm、長さ600mmの管状体を押
出成形し、電気炉にて各種の温度(1時間保持)で焼成
した。本発明による多孔質管各5個の気孔率,気孔径及
び径方向に垂直な荷重による圧壊強度の平均値を第1表
に示す。同表には出発原料としてアルミナゾルを使用せ
ず、かつ該アルミナゾルの水分を補償するため水を3Kg
に増量した他は本例と同一条件で上記の特願昭63−5717
7号の要件を満たして製作した管状体を比較例として示
した。
Next, granulate the granules at 900 ℃, 1000 ℃ and 1100 ℃ each 1
When the calcination temperature was 900 ℃, the strength of the granules was insufficient, and at 1000 ℃, satisfactory molding strength was obtained, so for 1 Kg of the granules calcinated at 1000 ℃ Methyl cellulose (50 g) and water (150 g) were added and kneaded for 30 minutes to extrude a tubular body having an outer diameter of 20 mm, an inner diameter of 18 mm and a length of 600 mm, and baked in an electric furnace at various temperatures (holding for 1 hour). Table 1 shows the average values of the porosity, the pore diameter, and the crush strength due to a load perpendicular to the radial direction for each of the five porous tubes according to the present invention. In the table, alumina sol is not used as a starting material, and 3 Kg of water is used to compensate the moisture of the alumina sol.
Under the same conditions as in this example except that the amount was increased to
A tubular body manufactured by satisfying the requirements of No. 7 is shown as a comparative example.

「発明の効果」 第1表によって明らかにされるように本発明品は比較
例に比し、気孔率においては殆んど差異がないにも拘ら
ず、気孔径の小さいことは、微小な焼結顆粒によって格
段と高い機械的強度と表面の平滑性につながり、特に表
面の平滑性は焼結顆粒の表面が微細な粒子の焼結による
効果も付加されるので、流体摩擦の低減の効果を高め
る。
"Effects of the Invention" As is clear from Table 1, the product of the present invention has almost no difference in porosity as compared with the comparative example, but the small pore size means that the fine burning is small. The binding granules lead to much higher mechanical strength and smoothness of the surface. In particular, the smoothness of the surface adds the effect of sintering fine particles of the surface of the sintered granules, thus reducing the fluid friction. Increase.

なお、実施例は噴霧乾燥造粒について述べたが、顆粒
の造粒はこれらに限らず、平均粒径0.1〜1μmのセラ
ミック粉末を分散させた水系のスラリーWを、平均粒径
0.01μm以下のセラミックの微細粒子に親油性処理を施
し、水を乳化する乳化剤と共に水と相溶性のない有機溶
剤中に分散させた油系のスラリーO中に注ぎ込み該油系
スラリーO中に上記水系のスラリーWを粒子状に分散さ
せてエマルジョン化した特公昭63−19470号に開示され
たW/Oエマルジョンを、冷凍乾燥して得た顆粒を使用す
ることができる。
Although the examples have been described with respect to spray-drying granulation, granulation of granules is not limited to these, and an aqueous slurry W in which ceramic powder having an average particle size of 0.1 to 1 μm is dispersed is used.
Ceramic fine particles of 0.01 μm or less are subjected to a lipophilic treatment and poured into an oil-based slurry O dispersed in an organic solvent that is incompatible with water together with an emulsifier that emulsifies water. Granules obtained by freeze-drying the W / O emulsion disclosed in Japanese Examined Patent Publication No. Sho 63-19470 prepared by dispersing an aqueous slurry W in the form of particles can be used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水嶋 康之 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (56)参考文献 特開 昭62−278175(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuyuki Mizushima 14-18 Takatsuji-cho, Mizuho-ku, Nagoya, Aichi Japan Special Ceramics Co., Ltd. (56) Reference JP-A-62-278175 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均粒径0.1〜1μmのセラミック粉末
に、平均粒径0.01μm以下のセラミックの微細粒子から
なるコロイドあるいは可溶物質を配合して得た懸濁液を
噴霧乾燥等によって表面が上記のコロイドあるいは可溶
物質で被覆されたセラミック粉末からなる顆粒を造粒
し、仮焼によって機械強度を付与した後、所望の形状に
成形し、ついで焼成することを特徴とする多孔質磁器の
製造方法。
1. A suspension obtained by blending a ceramic powder having an average particle diameter of 0.1 to 1 μm with a colloid or a soluble substance composed of fine ceramic particles having an average particle diameter of 0.01 μm or less is sprayed to form a suspension. Granules consisting of ceramic powder coated with the above colloid or soluble substance are granulated, imparted with mechanical strength by calcination, shaped into a desired shape, and then fired. Production method.
JP63215830A 1988-08-30 1988-08-30 Method of manufacturing porous porcelain Expired - Fee Related JP2565380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63215830A JP2565380B2 (en) 1988-08-30 1988-08-30 Method of manufacturing porous porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63215830A JP2565380B2 (en) 1988-08-30 1988-08-30 Method of manufacturing porous porcelain

Publications (2)

Publication Number Publication Date
JPH0264076A JPH0264076A (en) 1990-03-05
JP2565380B2 true JP2565380B2 (en) 1996-12-18

Family

ID=16678969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63215830A Expired - Fee Related JP2565380B2 (en) 1988-08-30 1988-08-30 Method of manufacturing porous porcelain

Country Status (1)

Country Link
JP (1) JP2565380B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278175A (en) * 1986-05-27 1987-12-03 三菱重工業株式会社 Manufacture of porous ceramics

Also Published As

Publication number Publication date
JPH0264076A (en) 1990-03-05

Similar Documents

Publication Publication Date Title
JP5495545B2 (en) Porous ceramic member, method for producing the same, and filter
CN109173748A (en) A kind of preparation method of coal ash ceramic film
JPH04100505A (en) Preparation of ceramic filter
JP2000503294A (en) Spherical ceramic molded body, its production method and use
JPH0380749B2 (en)
JP2565380B2 (en) Method of manufacturing porous porcelain
KR970011315B1 (en) Ceramic powders and preparation thereof
JPH04187578A (en) Production of sintered compact of porous silicon carbide
JPH10194743A (en) Zirconia-alumina granule and its production
JP3665083B2 (en) Method for producing ceramic powder slurry and ceramic granule
SU1090678A1 (en) Batch for making ceramic products
JP2851100B2 (en) Method for producing low-density silicon carbide porous body
JPS6018081B2 (en) Improved conductive composite ceramics
JPH01230486A (en) Production of porous ceramics
JPH0640955B2 (en) An improved monolithic catalyst support incorporating a mixture of alumina and silica as a high surface area catalyst support material.
JPS6353130B2 (en)
JP3089937B2 (en) Manufacturing method of foam ceramics
JPS63225571A (en) Method of preparing ceramic raw material for extrusion molding
JPH05309252A (en) Production of spherical granule having high sphericity
JP2878567B2 (en) Refractory brick molding method
JP3444361B2 (en) Method for producing porous ceramic product
CN118217960A (en) Forming method of alumina carrier
JP2000128523A (en) Method for forming zeolite
JP2599620B2 (en) Method for peptizing perovskite-type lead oxide slurry
JPH03232779A (en) Production of porous silicon carbide sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees