JP3088965B2 - Measuring device for changes in water level, etc. - Google Patents
Measuring device for changes in water level, etc.Info
- Publication number
- JP3088965B2 JP3088965B2 JP9667697A JP9667697A JP3088965B2 JP 3088965 B2 JP3088965 B2 JP 3088965B2 JP 9667697 A JP9667697 A JP 9667697A JP 9667697 A JP9667697 A JP 9667697A JP 3088965 B2 JP3088965 B2 JP 3088965B2
- Authority
- JP
- Japan
- Prior art keywords
- reflector
- change
- water level
- water
- snow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Level Indicators Using A Float (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水位等の変化量を
その変化面より離れた位置にて遠隔的に測定するための
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for remotely measuring an amount of change, such as a water level, at a position remote from a changing surface.
【0002】[0002]
【従来の技術】例えば水位の測定ではフロート式水位計
によるのが一般的な方法であったし、また現在でも主水
位計として使用されている例が多い。しかしフロート式
水位計は水頭水位100mで±1cmの精度を得ること
が限界であった。ほかには水晶圧力ゲージを使用した水
位計があるが、これは比重の変化、つまり水温の変化に
よって誤差を生じるという問題を持っている。また超音
波式の水位計も知られているが、測定範囲及び精度に問
題があり、10mを越えると使用することができない。2. Description of the Related Art For example, a float type water level meter is a general method for measuring a water level, and in many cases, it is still used as a main water level meter at present. However, the float type water level gauge was limited to obtaining an accuracy of ± 1 cm at a head level of 100 m. Another type of water gauge uses a quartz pressure gauge, but it has a problem that a change in specific gravity, that is, a change in water temperature causes an error. An ultrasonic type water level meter is also known, but has a problem in the measurement range and accuracy, and cannot be used if it exceeds 10 m.
【0003】[0003]
【発明が解決しようとする課題】本発明は前記の点に着
目してなされたものであり、その課題は例えば水頭水位
100mを±1cmをはるかに越える精度で測定可能と
することである。SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to make it possible to measure, for example, a water level of 100 m with an accuracy far exceeding ± 1 cm.
【0004】[0004]
【課題を解決するための手段】前記課題を解決するた
め、本発明は、レーザービームを反射可能であり、前記
の変化面に置かれてその高さを示すためのものであっ
て、水面下に沈まない反射体と、レーザービームを反射
体に指向し、反射ビームを捕捉して反射体までの距離を
演算するためのレーザー距離計とによって、水位等の変
化量の測定装置を構成するという手段を講じたものであ
る。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is capable of reflecting a laser beam, being placed on the above-mentioned changing surface to indicate its height, It consists of a reflector that does not sink into the water and a laser rangefinder that directs the laser beam to the reflector, captures the reflected beam, and calculates the distance to the reflector. We have taken measures.
【0005】反射体の動きを拘束するために、水面に代
表される変化面に生じ得る運動を除去して上下方向の変
化量を取り出すための取り出し手段の中に反射体を設け
ることができる。上記反射体として、積雪面や砂面に散
布してもそれらの表面の形態を殆んど変えず、雪や砂な
どに潜らない性質を有し、かつ必要な散布密度を得易
い、着色又は無着色の金属箔や、樹脂片、樹脂発泡体、
粉体等の微小片から成るものを使用することができる。[0005] In order to restrain the movement of the reflector, the reflector can be provided in a take-out means for taking out an amount of change in the vertical direction by removing a motion that may occur on a changing surface represented by the water surface. As the reflector, even when sprayed on a snow-covered surface or a sand surface, it hardly changes the form of the surface, has a property of not immersing in snow or sand, and easily obtains a required spray density, coloring or Uncolored metal foil, resin pieces, resin foam,
What consists of minute pieces, such as a powder, can be used.
【0006】[0006]
【発明の実施の形態】本発明に係る変化量の測定装置
は、水位等の変化量を変化面11から離れた位置にて遠
隔的に測定するための装置である。本発明を水位計に適
用する場合、変化面は当然のことながら水面11であ
る。しかし本発明を積雪深計に適用する場合の変化面は
雪面、堆砂計に適用する場合には砂の表面ということに
なる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A change amount measuring apparatus according to the present invention is a device for remotely measuring a change amount such as a water level at a position away from a change surface 11. When the present invention is applied to a water level gauge, the changing surface is naturally the water surface 11. However, when the present invention is applied to a snow depth gauge, the changing surface is a snow surface, and when the present invention is applied to a sedimentometer, it is a sand surface.
【0007】水面に代表される、液面その他の変化面1
1に生じ得る運動を除去して、上下方向の変化量を取り
出すために、取り出し手段10を設けることができる。
変化面11が貯水池などの水面である場合、風雪等、地
震、気圧の変化その他の原因によって生じる、外力の影
響が及ばないように測定環境を整えて変化量だけを取り
出す手段である。故に、それらの影響がないか無視でき
る変化面11に対しては不要な場合がある。Liquid surface or other changing surface 1 represented by water surface
A take-out means 10 can be provided in order to take out the possible movements of the device 1 and take out the amount of vertical change.
When the change surface 11 is a water surface such as a reservoir, this is a means for taking out only a change amount by preparing a measurement environment so as not to be affected by an external force caused by an earthquake, a change in air pressure, or other causes such as wind and snow. Therefore, there is a case where it is unnecessary for the change surface 11 which has no influence or can be ignored.
【0008】前記水面に対する変化量の取り出し手段1
0の例は、連通構造を持った一種の井戸あるいは管であ
る。図1は観測井からなる変化量の取り出し手段10を
示しており、水面下に連通口として側口12を有し、か
つ観測井は大気に開放されているものとする。図2は、
図1よりも細い管が変化量の取り出し手段10である場
合の例を示すが、その管の下端開口13が連通口となっ
ている。図3の例も同様である。Means 1 for taking out the amount of change with respect to the water surface
An example of 0 is a type of well or tube with a communicating structure. FIG. 1 shows a variation extracting means 10 composed of an observation well, which has a side port 12 as a communication port below the water surface and that the observation well is open to the atmosphere. FIG.
An example in which a tube thinner than FIG. 1 is the change amount extracting means 10 is shown, but a lower end opening 13 of the tube is a communication port. The same applies to the example of FIG.
【0009】レーザービームBによる測定を行なう本発
明の装置では、レーザービームBが変化面11を確実に
とらえて反射することができるように、反射体15を変
化面11に置く。この反射体15は、当然のことなが
ら、水面に浮いて変化面11の高さを示すものであるか
ら、測定時には、水面下に沈んではならず、また雪や砂
などに潜ったりするものであってはならない。In the apparatus of the present invention for performing measurement using the laser beam B, the reflector 15 is placed on the changing surface 11 so that the laser beam B can reliably catch and reflect the changing surface 11. Since the reflector 15 naturally floats on the surface of the water and indicates the height of the changing surface 11, it must not sink below the surface of the water at the time of measurement, and must sink into snow or sand. There must not be.
【0010】水位計のための反射体15として最も適し
ているのは水面に浮く浮き形式のものである。浮くこと
でそのまま変化面11の高さを表示するからである。観
測井を取り出し手段10として用いた図1の例では、レ
ーザービームBが指向する位置に反射体15を配置して
おくために、次の構成を取っている。 The most suitable reflector 15 for the water level gauge is of the floating type floating on the water surface. This is because the height of the change surface 11 is displayed as it is by floating. In the example of FIG. 1 in which the observation well is used as the extraction means 10, the following configuration is adopted in order to arrange the reflector 15 at a position where the laser beam B is directed .
【0011】即ち反射体15として水面に浮かぶ微小片
を管内に散布する構成を取る。このための微小片として
は変化面11に浮く着色又は無着色の金属箔や、樹脂
片、樹脂発泡体、粉体等を使用することができる。この
ような微小片からなる反射体15は、水位その他の液面
高の測定のほか、積雪面や砂面に散布してもそれらの表
面の形態を殆んど変えず、かつ必要な散布密度を得易い
ので積雪深計、堆砂計などの反射体15にも向いてい
る。 That is, a configuration is employed in which minute pieces floating on the water surface are dispersed in the tube as the reflector 15. For this purpose, a colored or uncolored metal foil floating on the changing surface 11, a resin piece, a resin foam, a powder, or the like can be used. The reflector 15 made of such a small piece can measure the water level and other liquid levels, and even when sprayed on a snow-covered surface or a sandy surface, does not substantially change the form of the surface, and has a required spray density. Therefore, it is suitable for the reflector 15 such as a snow depth gauge and a sediment gauge.
【0012】反射体15にレーザービームを指向すると
ともに、反射体15からの反射ビームを拾って、反射体
15までの距離を演算するためにレーザー距離計20が
設置される。レーザー距離計20は、送信器からのレー
ザーパルスが目標の反射体20へ向かって走り、検出器
にもどって来るのに必要な時間を精密に測定することに
よって、設置点から反射体15までの距離を測定するこ
とができるものを使用する。図2にその測定方式が略示
されているように、レーザー距離計20の検出器21に
検出されたデータは例えばRS−232Cなどのインタ
ーフェイスへの入出力、信号変換器22による演算処理
の上、水頭水位に変換される。なお、テレメータ用信号
としてBCD信号を出力することができ、またデータ
は、直接パーソナルコンピュータやデータロガ等に入力
できるのでデータ収集を簡単に行なうことができる。A laser distance meter 20 is provided for directing a laser beam to the reflector 15 and picking up the reflected beam from the reflector 15 to calculate the distance to the reflector 15. The laser range finder 20 measures the time required for the laser pulse from the transmitter to travel toward the target reflector 20 and return to the detector by accurately measuring the time required from the installation point to the reflector 15. Use something that can measure distance. As schematically shown in FIG. 2, data detected by the detector 21 of the laser range finder 20 is input / output to / from an interface such as RS-232C, and processed by the signal converter 22. Is converted to the head level. Note that a BCD signal can be output as a telemeter signal, and data can be directly input to a personal computer, a data logger, or the like, so that data can be easily collected.
【0013】以上の例では反射体15をレーザー距離計
20の鉛直下方に設置した例を示したが、傾斜地に設置
することも可能である。得られたデータは垂直変換する
ことで、目標値が得られる。In the above example, the reflector 15 is installed vertically below the laser range finder 20. However, the reflector 15 may be installed on an inclined ground. The obtained data is subjected to vertical conversion to obtain a target value.
【0014】このような構成を有する本発明の装置にお
いて、降水や日照により変化する水面高、即ち水頭水位
を測定するには、変化面11の変動に応じて上下動可能
な反射体15に向かってレーザービームBを発射するだ
けで良い。本装置は観測所内に防塵・防湿構造24を施
して設置されているので、水面からの湿気や塵埃等に侵
されるおそれもない。一例を挙げると、波長670nm
の可視光を使用したIEC規格クラスIIのレーザーに
よる場合、水頭水位100mを±3mmの精度を保持し
て測定することができた。In the apparatus of the present invention having such a configuration, in order to measure the water surface height that changes due to precipitation or sunshine, that is, the water head water level, the reflector 15 that can move up and down according to the change of the change surface 11 is measured. It is only necessary to emit the laser beam B. Since This equipment has been installed by performing a dust and moisture-proof structure 24 to the observation house, your it not also be affected by moisture and dust from the surface of the water. For example, the wavelength is 670 nm.
In the case of using an IEC standard class II laser using visible light, a water head level of 100 m could be measured with an accuracy of ± 3 mm.
【0015】[0015]
【発明の効果】本発明は以上の如く構成されかつ作用す
るものであるから、水面に代表される変化面の変化量を
取り出し手段によって取り出し、その変化面を示すため
に置かれた反射体へレーザービームを指向し、検出器に
得られたデータを演算することによって、従来の限界で
あった水頭水位100mに対して±10mmをはるかに
超える精度で遠隔的測定を可能にするという効果を奏す
る。特に本発明における反射体は雪や砂などに潜らない
性質を有し、水位測定のほか積雪や堆砂量、或いはタン
ク内の貯蔵量、ゲート開度なども好適に測定することが
できる。Since the present invention is constructed and operates as described above, the amount of change of the changing surface typified by the water surface is taken out by the taking out means, and the amount of change is taken to the reflector placed to indicate the changing surface. By directing the laser beam and calculating the data obtained by the detector, it has the effect of enabling remote measurement with an accuracy far exceeding ± 10 mm for the conventional water head level of 100 m. . In particular reflector in the present invention have a property of not dive like snow and sand, other snow and sedimentation of the water level measurement, or storage amount in the tank, such as a gate opening degree can also be suitably determined.
【図1】本発明に係る変化量の測定装置の実施例1を示
す説明図。FIG. 1 is an explanatory view showing Embodiment 1 of a change amount measuring device according to the present invention.
【図2】同じく測定装置の概略を示すブロック図。 FIG. 2 is a block diagram showing an outline of a measuring device.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖山 陽彦 神奈川県横浜市緑区三保町1351番地の1 号 ホレストヒルズ三保5−202 (56)参考文献 特開 平6−347309(JP,A) 特公 平3−13529(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G01F 23/28 G01F 23/40 G01F 23/56 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hirohiko Okiyama No. 1, 1351, Miho-cho, Midori-ku, Yokohama-shi, Kanagawa Prefecture 5-202, Horest Hills Miho Kohei 3-13529 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) G01F 23/28 G01F 23/40 G01F 23/56
Claims (1)
位置にて遠隔的に測定するための装置であって、 レーザービームを反射可能であり、かつ前記の変化面に
置かれてその高さを示すために、積雪面や砂面に散布し
てもそれらの表面の形態を殆んど変えず、また雪や砂な
どに潜らない性質を有し、かつ必要な散布密度を得易
い、着色又は無着色の金属箔や、樹脂片、樹脂発泡体、
粉体等の微小片から成る反射体と、レーザービームを反
射体に指向し、反射ビームを捕捉して反射体までの距離
を演算するためのレーザー距離計とからなることを特徴
とする水位等の変化量の測定装置。1. An apparatus for remotely measuring an amount of change such as a water level at a position remote from a change surface thereof, the device being capable of reflecting a laser beam and being placed on the change surface. Sprinkle on snow or sand to indicate height
However, their surface morphology hardly changes, and snow and sand
Easy to get required spray density
No, colored or uncolored metal foil, resin pieces, resin foam,
Water level, etc. characterized by comprising a reflector consisting of minute pieces such as powder, and a laser range finder for directing the laser beam to the reflector, capturing the reflected beam and calculating the distance to the reflector. For measuring the amount of change in
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9667697A JP3088965B2 (en) | 1997-03-31 | 1997-03-31 | Measuring device for changes in water level, etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9667697A JP3088965B2 (en) | 1997-03-31 | 1997-03-31 | Measuring device for changes in water level, etc. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10281854A JPH10281854A (en) | 1998-10-23 |
JP3088965B2 true JP3088965B2 (en) | 2000-09-18 |
Family
ID=14171409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9667697A Expired - Lifetime JP3088965B2 (en) | 1997-03-31 | 1997-03-31 | Measuring device for changes in water level, etc. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3088965B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10227673B4 (en) * | 2001-06-20 | 2007-04-05 | Hamacher, Renate | level indicator |
KR100994462B1 (en) * | 2008-06-27 | 2010-11-16 | 에스티엑스조선해양 주식회사 | Device for Shifting Water Level Measuring of Ship |
JP2010249790A (en) * | 2009-04-20 | 2010-11-04 | Satoru Kitazawa | Laser-type water gauge |
CN102390502B (en) * | 2011-09-22 | 2014-03-05 | 沪东中华造船(集团)有限公司 | Measuring device for ship draught |
JP5589248B2 (en) * | 2012-01-06 | 2014-09-17 | 有限会社北沢技術事務所 | Laser level gauge |
JP5707627B2 (en) * | 2012-05-11 | 2015-04-30 | 有限会社北沢技術事務所 | Laser level gauge |
CN102778270A (en) * | 2012-08-07 | 2012-11-14 | 刘雁春 | Automatic laser tide gauge |
JP5707629B2 (en) * | 2013-01-07 | 2015-04-30 | 有限会社北沢技術事務所 | Laser level gauge |
RU2627569C1 (en) * | 2016-04-20 | 2017-08-08 | Федеральное государственное бюджетное учреждение "ВЫСОКОГОРНЫЙ ГЕОФИЗИЧЕСКИЙ ИНСТИТУТ" (ФГБУ "ВГИ") | Device for measuring water level in reservoirs |
RU178306U1 (en) * | 2016-10-12 | 2018-03-29 | Альберт Галиуллович Абдуллин | LASER LIQUID LEVEL METER |
CN108593052A (en) * | 2018-03-30 | 2018-09-28 | 武汉理工大学 | A kind of laser water level monitoring early-warning system |
KR102237268B1 (en) * | 2020-01-16 | 2021-04-06 | 김석환 | Detecting system of flow variation |
-
1997
- 1997-03-31 JP JP9667697A patent/JP3088965B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10281854A (en) | 1998-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fairall et al. | Integrated shipboard measurements of the marine boundary layer | |
Wolk et al. | A new free-fall profiler for measuring biophysical microstructure | |
JP3088965B2 (en) | Measuring device for changes in water level, etc. | |
Eresmaa et al. | Mixing height determination by ceilometer | |
Lee et al. | A laser scanner based measurement system for quantification of citrus tree geometric characteristics | |
Rogers et al. | Comparison of raindrop size distributions measured by radar wind profiler and by airplane | |
Klepp | The oceanic shipboard precipitation measurement network for surface validation—OceanRAIN | |
Fochesatto et al. | Evidence of dynamical coupling between the residual layer and the developing convective boundary layer | |
Hwang et al. | Low-frequency mean square slopes and dominant wave spectral properties: Toward tropical cyclone remote sensing | |
Lothon et al. | Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer | |
Frehlich et al. | Estimates of Cn2 from numerical weather prediction model output and comparison with thermosonde data | |
Ma et al. | Field observations of sea spray under tropical cyclone Olwyn | |
JPH05113483A (en) | Method and device for measuring prevailing weather and prevailing weather visibility | |
Drechsel et al. | Three-dimensional wind retrieval: Application of MUSCAT to dual-Doppler lidar | |
Gossard et al. | Profiles of radio refractive index and humidity derived from radar wind profilers and the Global Positioning System | |
Gultepe et al. | A comparison of vertical velocity in cirrus obtained from aircraft and lidar divergence measurements during FIRE | |
Wildmann et al. | Estimation of turbulence parameters from scanning lidars and in-situ instrumentation in the Perdigão 2017 campaign | |
Eresmaa et al. | Mixing height determination by ceilometer | |
Kalogiros et al. | Estimation of ABL parameters using the vertical velocity measurements of an acoustic sounder | |
Stewart | Ocean wave measurement techniques | |
Vogelzang et al. | Mapping of sea bottom topography in a multi sensor approach | |
Vakkayil et al. | Oceanic winds estimated from underwater ambient noise observations in SWADE | |
Hasse | Observations of air sea fluxes | |
Brückel | Disdrometer | |
Starr et al. | Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20080714 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20090714 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20100714 |