JP3088236B2 - Oxide permanent magnet and manufacturing method thereof - Google Patents

Oxide permanent magnet and manufacturing method thereof

Info

Publication number
JP3088236B2
JP3088236B2 JP06065745A JP6574594A JP3088236B2 JP 3088236 B2 JP3088236 B2 JP 3088236B2 JP 06065745 A JP06065745 A JP 06065745A JP 6574594 A JP6574594 A JP 6574594A JP 3088236 B2 JP3088236 B2 JP 3088236B2
Authority
JP
Japan
Prior art keywords
permanent magnet
particle size
oxide permanent
oxide
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06065745A
Other languages
Japanese (ja)
Other versions
JPH07249510A (en
Inventor
健 下村
康任 國方
孝彦 笠原
淳二 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP06065745A priority Critical patent/JP3088236B2/en
Publication of JPH07249510A publication Critical patent/JPH07249510A/en
Application granted granted Critical
Publication of JP3088236B2 publication Critical patent/JP3088236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マグネトプランバイト
型の酸化物永久磁石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoplumbite type oxide permanent magnet and a method of manufacturing the same.

【0002】[0002]

【従来の技術】SrフェライトやBaフェライトの焼結
磁石に代表されるマグネトプランバイト型の酸化物永久
磁石は、高い磁気特性を得るためには、フェライト磁石
焼結体を構成する結晶粒子(グレイン粒子)の粒径が単
磁区臨界径以下であり、粒径が微細でかつ均一であるこ
とが重要である。単磁区臨界径は、これらのフェライト
磁石では1μm 程度とされている。
2. Description of the Related Art In order to obtain high magnetic characteristics, magnetoplumbite-type oxide permanent magnets represented by sintered magnets of Sr ferrite and Ba ferrite are required to obtain crystal grains (grains) constituting a sintered ferrite magnet. It is important that the particle size is smaller than the critical diameter of a single magnetic domain, and that the particle size is fine and uniform. The critical diameter of a single magnetic domain is about 1 μm for these ferrite magnets.

【0003】従来、フェライト磁石焼結体を構成する結
晶粒子の粒径を単磁区臨界径以下とし、微細でかつ均一
とするために、種々の方法が試みられている。例えば原
料の酸化鉄の平均粒径と粒度分布の標準偏差とを制御
(特開平1−147809号公報)したり、仮焼時に添
加物を添加(特公平4−14484号公報)したり、仮
焼温度等による仮焼粉結晶粒子の微細および均質化(特
公昭59−10564号公報)を行ったりする等があ
る。これらは、用いる仮焼粉の結晶粒子を微細かつ均質
にすることで、フェライト磁石のグレインの粒径を単磁
区臨界径以下とし、微細でかつ均一なものとして高い磁
気特性を得ようとしている。また、前記特開平1−14
7809号公報では、前記原料酸化鉄の平均粒径と粒度
分布の標準偏差を規制した上で、さらにこの仮焼粉を微
粉砕して得られた磁場中成型に用いる微粉末の平均粒径
および粒度分布の標準偏差をも規制している。さらに、
特開平4−320009号公報では、Srフェライト焼
結磁石の製造に際し、仮焼粉を微粉砕して得られた微粉
末を分級し、平均粒径や粒度分布等を調整することが提
案されている。この提案の方法によれば、特にBr(残
留磁束密度)の向上したフェライト焼結磁石が得られ
る。
Conventionally, various methods have been tried to make the grain size of crystal grains constituting a ferrite magnet sintered body smaller than the critical diameter of a single magnetic domain, and to make it fine and uniform. For example, the average particle size of iron oxide as a raw material and the standard deviation of the particle size distribution are controlled (Japanese Patent Application Laid-Open No. 1-147809), additives are added during calcination (Japanese Patent Publication No. 4-14484), And fineness and homogenization of the calcined powder crystal particles by the baking temperature or the like (Japanese Patent Publication No. 59-10564). In these methods, the crystal particles of the calcined powder to be used are made fine and homogenous to reduce the grain diameter of the grains of the ferrite magnet to a critical diameter of a single magnetic domain or less, and to obtain high magnetic properties as fine and uniform. Further, Japanese Patent Application Laid-Open No.
No. 7809, the average particle size of the raw material iron oxide and the standard deviation of the particle size distribution are regulated, and further, the average particle size and the average particle size of the fine powder used for molding in a magnetic field obtained by pulverizing the calcined powder are described. It also regulates the standard deviation of the particle size distribution. further,
Japanese Patent Application Laid-Open No. 4-320009 proposes that, in the production of a sintered Sr ferrite magnet, fine powder obtained by finely pulverizing calcined powder is classified to adjust the average particle size, particle size distribution, and the like. I have. According to the proposed method, a ferrite sintered magnet with particularly improved Br (residual magnetic flux density) can be obtained.

【0004】仮焼体の結晶粒子を微細かつ均質にするこ
とは重要であるが、得られた仮焼体の粉砕に際し、焼結
により得られる焼結体のグレインの粒径を単磁区臨界径
以下とするために、従来の粉砕方法で平均粒径を例えば
約0.8μm 以下としても、得られる粒子の粒度分布は
広く、この粉末を用いて得られた焼結磁石のグレインの
粒径が均一となりにくい。このため、より一層すぐれた
磁気特性をもつ磁石を得ることは困難であった。また、
前記特開平1−147809号公報や特開平4−320
009号公報に提案されている方法を用い、仮焼粉を微
粉砕して得られた微粉末の粒径分布を調整すると、グレ
インの粒径がより均一で、高い磁気特性をもつ焼結磁石
が得られる。しかし、これらの提案の方法では分級工程
を必要とするため、コストの上昇をまねく。仮焼粉を微
粉砕する際には、通常、湿式粉砕法を用い、さらに成型
工程においても通常湿式成型法を用いる。分級は、通
常、乾式で行なうため、分級前に微粉末の乾燥工程を必
要とし、さらに成型工程において、新たに溶媒を添加す
る必要が生じ、工業生産では製造工程が増えて製品のコ
ストが上昇してしまうことになる。このため、コストを
上昇させることなく、得られるグレインの粒径が均一
で、すぐれた磁気特性をもつフェライト焼結磁石が望ま
れている。
[0004] It is important to make the crystal grains of the calcined body fine and uniform. However, when the calcined body obtained is pulverized, the grain size of the grain of the sintered body obtained by sintering is determined by the critical diameter of a single magnetic domain. Even if the average particle size is reduced to, for example, about 0.8 μm or less by the conventional pulverization method, the particle size distribution of the obtained particles is wide, and the particle size of the grains of the sintered magnet obtained using this powder is reduced. Difficult to be uniform. For this reason, it has been difficult to obtain a magnet having more excellent magnetic properties. Also,
JP-A-1-147809 and JP-A-4-320
By adjusting the particle size distribution of the fine powder obtained by finely pulverizing the calcined powder using the method proposed in Japanese Patent Publication No. 009, a sintered magnet having a more uniform grain size and high magnetic properties Is obtained. However, these proposed methods require a classification step, which leads to an increase in cost. When the calcined powder is finely pulverized, a wet pulverization method is usually used, and a wet molding method is also used in the molding step. Classification is usually performed in a dry process, so a fine powder drying step is required before classification, and a new solvent needs to be added in the molding process.In industrial production, the number of manufacturing processes increases and product costs increase. Will be done. For this reason, there is a demand for a ferrite sintered magnet having a uniform grain size and excellent magnetic properties without increasing the cost.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、製造
工程増を招くことなく、製造が容易で、グレイン粒径の
分布が均一で、すぐれた磁気特性を有するマグネトプラ
ンバイト型の酸化物永久磁石およびその製造方法を提供
することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoplumbite type oxide which is easy to manufacture, has a uniform grain size distribution, and has excellent magnetic properties without increasing the number of manufacturing steps. An object of the present invention is to provide a permanent magnet and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】このような目的は、下記
(1)〜(6)の本発明により達成される。 (1)マグネトプランバイト型の酸化物永久磁石であっ
て、容易磁化方向に平行な面を鏡面加工し、サーマルエ
ッチングを行なって、その表面を走査型電子顕微鏡で観
察したとき、グレインの円相当径の体積平均粒径が0.
7〜1.0μmであり、この円相当径の体積分布から求
めたロジン・ラムラープロットの均等数が3.1以上で
あり、かつ角型比が95.5%以上である酸化物永久磁
石。 (2)前記酸化物永久磁石を、一般式MO・nFe
(MはSrおよび/またはBaである)で表わすと
き、5.80≦n≦6.40である上記(1)の酸化物
永久磁石。 (3)さらにSiOを0.1〜0.70wt%、Ca
Oを0.05〜1.0wt%それぞれ含有し、CaO/
SiOのモル比が0.9〜2.0である上記(1)ま
たは(2)の酸化物永久磁石。 (4)試料混合物を仮焼し、この仮焼体を粗粉砕し、次
に微粉砕し、この微粉末を用いて磁場中成型を行ない、
得られた成型体を焼結して酸化物永久磁石を製造するに
際し、前記仮焼体を、体積平均粒径が4μm以下で、か
つ10μm以上の粒子が20vol%以下となるように
粗粉砕して上記(1)〜(3)のいずれかの酸化物永久
磁石を得る酸化物永久磁石の製造方法。 (5)前記仮焼温度が1200〜1330℃である上記
(4)の酸化物永久磁石の製造方法。 (6)前記微粉砕前後に、粉末に対して粒度分布調整の
ための分級を行わない上記(4)または(5)の酸化物
永久磁石の製造方法。
This and other objects are achieved by the present invention which is defined below as (1) to (6). (1) A magnetoplumbite-type oxide permanent magnet that has a surface parallel to the direction of easy magnetization mirror-processed, is subjected to thermal etching, and its surface is observed with a scanning electron microscope. The volume average particle diameter of the diameter is 0.
An oxide permanent magnet having an average number of 7 to 1.0 μm, a rosin-Rammler plot obtained from the volume distribution of the circle equivalent diameter of 3.1 or more, and a squareness ratio of 95.5% or more. . (2) The oxide permanent magnet is represented by the general formula MO · nFe 2 O
3. The oxide permanent magnet according to the above (1), wherein 5.80 ≦ n ≦ 6.40 when M is Sr and / or Ba. (3) Further, 0.1 to 0.70 wt% of SiO 2 and Ca
O each containing 0.05 to 1.0 wt%, and CaO /
The oxide permanent magnet according to the above (1) or (2), wherein the molar ratio of SiO 2 is 0.9 to 2.0. (4) The sample mixture is calcined, the calcined body is coarsely pulverized, then finely pulverized, and molded in a magnetic field using the fine powder.
In producing the oxide permanent magnet by sintering the obtained molded body, the calcined body is roughly pulverized so that the volume average particle diameter is 4 μm or less and the particles having a volume average particle diameter of 10 μm or more become 20 vol% or less. A method for producing an oxide permanent magnet according to any one of (1) to (3). (5) The method for producing an oxide permanent magnet according to (4), wherein the calcination temperature is 1200 to 1330 ° C. (6) The method for producing an oxide permanent magnet according to (4) or (5), wherein the powder is not subjected to classification for adjusting the particle size distribution before and after the pulverization.

【0007】[0007]

【作用および効果】本発明のマグネトプランバイト型の
酸化物永久磁石は、グレインの体積平均粒径が0.7〜
1.0μm、すなわち単磁区臨界径以下である。また、
グレインの円相当径と、この円相当径から求めた体積分
布とを用いてロジン・ラムラープロットを行なうと、得
られる均等数すなわち傾きが3.1以上という高い値で
あり、グレイン粒径の分布はかつて無い高い均一性をも
つ。また、角型比も95.5%以上という高い値であ
る。このため、Br(残留磁束密度)とHcJ(保磁
力)とから算出した磁気ポテンシャルが高いすぐれた磁
気特性を有する酸化物永久磁石となる。
Function and Effect The magnetoplumbite-type oxide permanent magnet of the present invention has a grain volume average particle diameter of 0.7 to 0.7.
1.0 μm, that is, less than the critical diameter of a single magnetic domain. Also,
When a rosin-Rammler plot is performed using the grain equivalent diameter of the grain and the volume distribution calculated from the circle equivalent diameter, the obtained uniform number, that is, the slope is a high value of 3.1 or more, and the grain size The distribution has unprecedented high uniformity. Also, the squareness ratio is a high value of 95.5% or more. Therefore, the oxide permanent magnet has excellent magnetic properties with a high magnetic potential calculated from Br (residual magnetic flux density) and HcJ (coercive force).

【0008】本発明の酸化物永久磁石の製造方法は、仮
焼体を粉砕する際、体積平均粒径を4μm 以下とし、さ
らに10μm 以上の粒子が20vol%以下となるように粗
粉砕する。ついでこれを微粉砕して磁場中成型をおこな
い、焼結して酸化物永久磁石とする。この製造方法によ
る粗粉砕粉末は、これまで適当とされていた粗粉砕工程
で得られた粗粉砕粉末の体積平均粒径より細かく、しか
も10μm 以上の粒子の割合も低い。
In the method for producing an oxide permanent magnet according to the present invention, when the calcined body is pulverized, the calcined body is coarsely pulverized so that the volume average particle diameter is 4 μm or less, and the particles of 10 μm or more are 20 vol% or less. Next, this is pulverized, molded in a magnetic field, and sintered to obtain an oxide permanent magnet. The coarsely pulverized powder obtained by this production method is finer than the volume average particle diameter of the coarsely pulverized powder obtained in the coarse pulverization step which has been considered suitable so far, and has a low proportion of particles having a particle size of 10 μm or more.

【0009】なお、粗粉砕により得られた粉末の体積平
均粒径や粒度分布を前記範囲とするために分級工程を別
に設けてもよいが、好ましくは組成と製造条件を本発明
の好ましい範囲内とした仮焼体を用い、粗粉砕により本
発明の範囲の体積平均粒径と粒度分布とする方法によれ
ば、特に分級工程を設けることなく、高い磁気特性を有
する酸化物永久磁石を得ることができ、分級工程を設け
ることで製造コストが上昇することがない。
A classification step may be separately provided to keep the volume average particle size and the particle size distribution of the powder obtained by the coarse pulverization within the above-mentioned ranges, but preferably the composition and the production conditions are within the preferable ranges of the present invention. According to the method of making the volume average particle size and the particle size distribution in the range of the present invention by coarse pulverization using a calcined body obtained as described above, it is possible to obtain an oxide permanent magnet having high magnetic properties without particularly providing a classification step. And the production cost does not increase by providing the classification step.

【0010】[0010]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
[Specific Configuration] Hereinafter, a specific configuration of the present invention will be described in detail.

【0011】本発明の酸化物永久磁石はマグネトプラン
バイト型の酸化物永久磁石である。この酸化物永久磁石
の容易磁化方向(C軸)に平行な面を常法にしたがって
ポリッシングして鏡面加工し、サーマルエッチングを行
なう。サーマルエッチングは、グレインを若干成長させ
て粒界をより明確にさせる目的で、通常1070℃で2
0分間行う。得られた表面を走査型電子顕微鏡(SE
M)で観察し、認められるグレインの面積からグレイン
の円相当径を求める。この円相当径から求めた体積平均
粒径は0.7μm〜1.0μm、好ましくは0.7μm
〜0.9μmである。グレインの体積平均粒径は、より
詳しくは、グレインの粒界を多角形近似し、画像処理に
より円相当径を求め、この円相当径から求めた体積分布
の50vol%粒径とすることで求める。この体積平均
粒径を前記範囲とすることで、グレインが単磁区臨界径
以下となり、保磁力(HcJ)が大きな磁石が得られ
る。体積平均粒径が前記範囲を超えると、グレインの大
きさが単磁区臨界径を超えるものが多くなり、HcJが
低下する。
The oxide permanent magnet of the present invention is a magnetoplumbite-type oxide permanent magnet. A surface parallel to the easy magnetization direction (C axis) of the oxide permanent magnet is polished and mirror-polished according to a conventional method, and thermal etching is performed. The thermal etching is usually performed at 1070 ° C. for 2 minutes so as to slightly grow the grains to make the grain boundaries more clear.
Perform for 0 minutes. The obtained surface was scanned with a scanning electron microscope (SE).
Observed in M), and the equivalent circle diameter of the grain is determined from the recognized grain area. The volume average particle diameter determined from the equivalent circle diameter is 0.7 μm to 1.0 μm, preferably 0.7 μm.
0.90.9 μm. More specifically, the volume average particle diameter of the grain is determined by approximating the grain boundary of the grain with a polygon, obtaining an equivalent circle diameter by image processing, and setting the volume distribution to 50 vol% particle diameter obtained from the equivalent circle diameter. . By setting the volume average particle size in the above range, the grain becomes smaller than the critical diameter of a single magnetic domain, and a magnet having a large coercive force (HcJ) can be obtained. When the volume average particle diameter exceeds the above range, the number of grains whose grain size exceeds the critical diameter of a single magnetic domain increases, and the HcJ decreases.

【0012】また、前記グレインの円相当径の分布より
グレインの体積分布のヒストグラムを求め、このヒスト
グラムから後述する方法で求めたロジン・ラムラープロ
ットの均等数を算出すると、均等数は3.1以上、好ま
しくは3.3以上、より好ましくは3.5以上である。
ロジン・ラムラー式は、粒度分布の表示に用いられ、こ
の式の均等数が大きいほどグレインの粒度分布が狭いこ
とを示す。均等数が前記以上となることにより、グレイ
ンの粒度分布が狭く、均一であり、角型比が95.5%
以上、特に95.5% 〜98% の磁気特性をもつすぐれ
た磁石となる。均等数が前記未満では、グレインの粒度
分布が広く、角型比等の磁気特性が低下したものとな
る。なお、本発明によれば、均等数の上限は通常4程度
である。
Further, a histogram of the grain volume distribution is obtained from the distribution of the grain equivalent diameters of the grains, and the uniform number of the rosin-Rammler plot obtained by the method described later is calculated from the histogram. Above, preferably 3.3 or more, more preferably 3.5 or more.
The Rosin-Rammler equation is used to display the particle size distribution, and a larger number of equal numbers in this equation indicates that the grain size distribution is narrower. When the uniform number is equal to or more than the above, the grain size distribution of the grains is narrow and uniform, and the squareness ratio is 95.5%.
As described above, an excellent magnet having a magnetic characteristic of 95.5% to 98% is obtained. When the uniform number is less than the above, the grain size distribution is wide and the magnetic properties such as the squareness ratio are deteriorated. According to the present invention, the upper limit of the equal number is usually about four.

【0013】ロジン・ラムラープロットの均等数は、以
下のようにして求めることができる。
The equivalent number of Rosin-Rammler plots can be determined as follows.

【0014】グレインの円相当径から求めた体積分布の
ヒストグラムをもつ混合粉末を仮定し、この混合粉末を
ふるいにかけたとき、Rをふるい上体積(%)、Dp
円相当径、bおよびnを定数として、ロジン・ラムラー
(Rosin-Rammler )式を示すと、 R=100・exp(−bDp n) である。この式のb=1/De nとおくと、 R=100・exp{−(Dp /Den } となる(Rosin-Rammler-Bennetの式)。ここでDe は、
粒度特性数(absolute size constant)、nは均等数
(distribution constant )である。
Assuming a mixed powder having a histogram of the volume distribution determined from the equivalent circle diameter of the grains, when this mixed powder is sieved, R is the volume above the sieve (%), Dp is the equivalent circle diameter, b and the n as a constant, a rosin-Rammler When indicating the (rosin-Rammler) equation, R = 100 · exp (-bD p n). Putting a b = 1 / D e n in the equation, R = 100 · exp - a {(D p / D e) n} ( equation Rosin-Rammler-Bennet). Where De is
The particle size characteristic number (absolute size constant), n is a uniform number (distribution constant).

【0015】上記Rosin-Rammler-Bennetの式を変形する
と、 ln{ln(100/R)}=n・lnDp +C が得られる。したがって、lnDp に対し、ln{ln
(100/R)}をプロットすれば直線になり、この直
線の勾配からnが求められる。なお、本明細書におい
て、nの算出に用いるプロットは、直線性の相関係数が
99.5% 以上となる範囲とする。
By transforming the above Rosin-Rammler-Bennet equation, ln {ln (100 / R)} = n · lnD p + C is obtained. Therefore, for lnD p , ln {ln
When (100 / R)} is plotted, a straight line is obtained, and n is obtained from the gradient of the straight line. In the present specification, the plot used for calculating n is in a range where the linearity correlation coefficient is 99.5% or more.

【0016】また、本明細書において角型比は、磁気特
性を示すJ(磁化)−H(磁界)曲線と縦軸(J)と横
軸(H)とが第二象限に占める面積をSとすると、 角型比(%)={S/(Br×HcJ)}×100 として求めたものである。
In the present specification, the squareness ratio is defined as the area occupied by the J (magnetization) -H (magnetic field) curve showing the magnetic characteristics, the vertical axis (J) and the horizontal axis (H) in the second quadrant. Then, the squareness ratio (%) = {S / (Br × HcJ)} × 100.

【0017】本発明のマグネトプランバイト型の酸化物
永久磁石を、一般式MO・nFe23 (Mは、好まし
くは、Srおよび/またはBaである)で表わすとき、
5.8≦n≦6.4が好ましく、より好ましくは5.8
≦n≦6.2である。
When the magnetoplumbite-type oxide permanent magnet of the present invention is represented by the general formula MO.nFe 2 O 3 (M is preferably Sr and / or Ba),
5.8 ≦ n ≦ 6.4 is preferred, and more preferably 5.8
≦ n ≦ 6.2.

【0018】nが前記範囲より小さすぎる組成では、仮
焼時に結晶粒が大きく成長しやすくなり、HcJが低下し
やすくなる。一方、前記範囲より大きすぎるとフェライ
ト化反応が不十分になりやすく、過剰のFe23 が残
留してくるためにBrが劣化しやすくなってしまう。
If the composition is such that n is smaller than the above range, the crystal grains tend to grow large during calcination, and HcJ tends to decrease. On the other hand, if it is larger than the above range, the ferrite formation reaction tends to be insufficient, and excessive Fe 2 O 3 remains, so that Br tends to deteriorate.

【0019】さらに、本発明の酸化物永久磁石には、焼
成時に液相成分として焼結反応を促進し、あるいは焼結
体を高密度化する効果を有するSiO2 およびCaOを
含有することが好ましい。それぞれの含有量としては、
SiO2 が、0.1〜0.7wt% 、より好ましくは0.
3〜0.7wt% であり、特に0.4〜0.6wt% である
ことが好ましく、CaOが0.05〜1.0wt% 、より
好ましくは0.4〜1.0wt% であり、特に0.5〜
0.9wt% であることが好ましく、これらCaO/Si
2 のモル比が0.9〜2.0、より好ましくは1.1
〜1.8、であり、特に1.2〜1.7であることが好
ましい。このような範囲とすることで、BrやHcJが高
く、磁気ポテンシャルがより高い酸化物永久磁石となり
やすい。
Further, the oxide permanent magnet of the present invention preferably contains SiO 2 and CaO as a liquid phase component at the time of firing, which has the effect of accelerating the sintering reaction or increasing the density of the sintered body. . As each content,
SiO 2 is, 0.1~0.7wt%, more preferably 0.
3 to 0.7 wt%, particularly preferably 0.4 to 0.6 wt%, and CaO is 0.05 to 1.0 wt%, more preferably 0.4 to 1.0 wt%, 0.5 ~
0.9% by weight, and these CaO / Si
The molar ratio of O 2 is 0.9 to 2.0, more preferably 1.1.
To 1.8, and particularly preferably 1.2 to 1.7. Within such a range, an oxide permanent magnet having a high Br and HcJ and a higher magnetic potential is likely to be obtained.

【0020】SiO2 が、前記範囲より少なすぎると焼
結体のグレインが粗大化しやすく、HcJが低下しやすく
なる。また、多すぎると焼結体の密度が低下しやすくな
り、Brが劣化してくる。CaOが、前記範囲より少な
すぎると焼結体の密度が低下しやすくなり、Brが劣化
してくる。また、多すぎると焼結体のグレインが粗大化
しやすく、HcJが低下しやすくなる。これらCaO/S
iO2 のモル比が前記範囲より高すぎたり低すぎたりす
ると、磁気ポテンシャルが低下しやすくなってしまう。
If the content of SiO 2 is less than the above range, the grains of the sintered body are likely to be coarse and HcJ is likely to be reduced. On the other hand, if the content is too large, the density of the sintered body tends to decrease, and Br deteriorates. If the content of CaO is less than the above range, the density of the sintered body tends to decrease, and Br deteriorates. On the other hand, if the content is too large, the grains of the sintered body are likely to be coarse, and HcJ is likely to be reduced. These CaO / S
If the molar ratio of iO 2 is too high or too low, the magnetic potential tends to decrease.

【0021】なお、磁気ポテンシャルは、HcJとBrと
のバランスを示し、総合的な磁気特性を判断する指標と
なるもので、以下の定義に従うものである。
The magnetic potential indicates the balance between HcJ and Br, and is an index for judging the overall magnetic characteristics, and follows the following definition.

【0022】磁気ポテンシャル=HcJ(実測値)+[B
r(実測値)−4000]×3
Magnetic potential = HcJ (actual value) + [B
r (actual value) -4000] × 3

【0023】このように定義したのは、以下の理由によ
る。
The definition is made for the following reason.

【0024】BrとHcJとの関係は、通常のある範囲で
は、若干の製造条件の変更により、一定の比率でBrを
α下げたときHcJをβ上げたり、反対に、Brをα上げ
てHcJをβ下げることが容易である。そして、このβ/
αの比率は約3である。
The relationship between Br and HcJ is such that, in a certain normal range, HcJ is increased by β when Br is decreased by α at a certain ratio, or conversely, by increasing α by increasing α by a slight change in manufacturing conditions. Is easily reduced by β. And this β /
The ratio of α is about 3.

【0025】材料の本質的ポテンシャルを一元的に表現
するために、Br=4000G としたとき、実際とのB
rのデータのズレ分に係数3を乗じて、実際のHcJを補
正して表現したものである。すなわち、Br=4000
G での換算HcJ(Oe)を指標とする。
In order to unify the intrinsic potential of the material, when Br = 4000 G, the actual B
The actual HcJ is corrected and expressed by multiplying the deviation of the r data by a coefficient 3. That is, Br = 4000
The converted HcJ (Oe) in G is used as an index.

【0026】さらに、本発明の酸化物永久磁石には、仮
焼時や焼結時に粒子の成長を適正に制御する作用をもつ
Al23 、Cr23 等あるいは用いる原料や用いる
装置等に由来するMnO、ZnOおよびCuO等が総計
5wt% 程度以下の範囲で含まれていてもよい。
Further, the oxide permanent magnet of the present invention includes Al 2 O 3 , Cr 2 O 3, etc., which has an action of appropriately controlling the growth of particles during calcination or sintering, or the raw materials to be used or the equipment to be used. MnO, ZnO, CuO, and the like derived from the same may be contained in a range of about 5 wt% or less in total.

【0027】次に、本発明の酸化物永久磁石の製造方法
について説明する。
Next, a method for producing the oxide permanent magnet of the present invention will be described.

【0028】本発明の酸化物永久磁石は、焼結により酸
化鉄とSrOおよび/またはBaOとなる成分とを含む
混合物を仮焼し、得られた仮焼体を粗粉砕し、次に微粉
砕し、微粉砕して得られた微粉末を用いて磁場中成型を
行ない、得られた成型体を焼結することにより製造す
る。
The oxide permanent magnet of the present invention is obtained by calcining a mixture containing iron oxide and a component to be SrO and / or BaO by sintering, coarsely pulverizing the obtained calcined body, and then finely pulverizing the calcined body. Then, molding is performed in a magnetic field using the fine powder obtained by pulverization, and the obtained molded body is manufactured by sintering.

【0029】用いる原料には特に制限はないが、通常
は、酸化物または焼結により酸化物となる粉末を混合し
て用いる。Fe、Si、Sr、Ba、Ca、Alおよび
Cr等の元素を含む原料粉末は、通常、酸化物や炭酸塩
を用いるが、その他、水酸化物、硝酸塩、塩化物等を用
いることもできる。原料として粉末を用いる場合、用い
る粉末の平均粒径は、0.5〜3.0μm 程度であるこ
とが好ましい。
The raw material used is not particularly limited, but is usually mixed with an oxide or a powder which becomes an oxide by sintering. As the raw material powder containing elements such as Fe, Si, Sr, Ba, Ca, Al and Cr, an oxide or a carbonate is usually used, but a hydroxide, a nitrate, a chloride or the like can also be used. When powder is used as a raw material, the average particle size of the powder used is preferably about 0.5 to 3.0 μm.

【0030】仮焼の混合物としては、前記焼結により酸
化鉄とSrOおよび/またはBaOとなる成分との他
に、さらに仮焼時に焼結を促進させたり、粒子の成長を
制御する目的でSiおよびCa、さらに、必要に応じて
Al、Cr等の元素を含む化合物を添加することが好ま
しい。このような添加物の添加量は、化学量論組成の酸
化物に換算して合計で0.1〜5.0wt% 程度とすれば
よい。
The calcined mixture includes, in addition to the iron oxide and the components that become SrO and / or BaO by the above-mentioned sintering, in addition to Si for the purpose of promoting sintering during calcination and controlling the growth of particles. And Ca, and further, if necessary, a compound containing an element such as Al or Cr is preferably added. The total amount of such additives may be about 0.1 to 5.0 wt% in terms of oxides having a stoichiometric composition.

【0031】このような成分を含む原料を秤量して混合
するが、混合方法としては、湿式法あるいは乾式法のど
ちらでもよく、ボールミル、アトライター、ミキサー等
を用い、原料が十分に混合するように、20分〜2時間
程度行えばよい。
The raw materials containing such components are weighed and mixed. The mixing method may be either a wet method or a dry method. A ball mill, an attritor, a mixer or the like is used to mix the raw materials sufficiently. It may be performed for about 20 minutes to 2 hours.

【0032】本発明における仮焼温度は、好ましくは1
200〜1330℃、より好ましくは1210〜132
0℃であり、特に好ましいのは1220〜1310℃で
ある。このような温度で仮焼することで、仮焼時の結晶
粒子を好ましく制御でき、かつ十分にフェライト化させ
ることができる。仮焼温度が低すぎるとフェライト化反
応が十分に進行せず、さらに結晶粒子の粒径が小さくな
りすぎる傾向があり、後の微粉砕により、2次粒子が残
留しやすくなってしまい、配向性や角型比が劣化しやす
くなる。また、仮焼温度が高すぎると粗大結晶粒子が多
くなりやすく、HcJが劣化してしまう。仮焼はバッチ式
や連続式等、どのような方法で行ってもよいが、量産に
際しては、例えば連続式ロータリーキルンを用いること
ができる。また、仮焼時間は、例えばバッチ式では、仮
焼温度により異なるが、好ましくは30分〜5時間、よ
り好ましくは1〜3時間とすればよい。また、連続式の
場合は、仮焼温度や単位時間あたりの流量により異なる
ので、バッチ式で前記の範囲と同等になるような流量を
実験的に求めればよい。仮焼時間とは、所定の仮焼温度
の保持時間をさす。
The calcination temperature in the present invention is preferably 1
200 to 1330 ° C, more preferably 1210 to 132
The temperature is 0 ° C, and particularly preferred is 1220 to 1310 ° C. By calcining at such a temperature, the crystal grains at the time of calcining can be favorably controlled and can be sufficiently ferritized. If the calcination temperature is too low, the ferrite-forming reaction does not proceed sufficiently, and the grain size of the crystal particles tends to be too small. And the squareness ratio easily deteriorates. On the other hand, if the calcination temperature is too high, the number of coarse crystal grains tends to increase, and HcJ deteriorates. The calcination may be performed by any method such as a batch method and a continuous method, but for mass production, for example, a continuous rotary kiln can be used. The calcining time varies depending on the calcining temperature in a batch method, for example, but is preferably 30 minutes to 5 hours, more preferably 1 to 3 hours. In the case of the continuous method, the flow rate varies depending on the calcining temperature and the flow rate per unit time. Therefore, a flow rate that is equivalent to the above range in the batch method may be experimentally obtained. The term “calcination time” refers to the time during which a predetermined calcination temperature is maintained.

【0033】次に、得られた仮焼体に対して粉砕を行な
う。粉砕は、乾式粉砕法であっても湿式粉砕法であって
もよいが、通常、粗粉砕を乾式粉砕法にて行ない、得ら
れた粗粉砕粉末に対して行なう微粉砕を湿式粉砕法によ
り行なうことが好ましい。以下、粗粉砕を乾式粉砕法に
より行ない、微粉砕を湿式粉砕法で行なう例を説明する
が、これらの粉砕方法については特に限定されない。
Next, the obtained calcined body is pulverized. The pulverization may be a dry pulverization method or a wet pulverization method, but usually, coarse pulverization is performed by a dry pulverization method, and fine pulverization performed on the obtained coarsely pulverized powder is performed by a wet pulverization method. Is preferred. Hereinafter, an example in which coarse pulverization is performed by a dry pulverization method and fine pulverization is performed by a wet pulverization method will be described, but these pulverization methods are not particularly limited.

【0034】粗粉砕はバッチ式であっても、連続式であ
ってもよく、振動ミル、ローラーミル、アトマイザー、
スーパーミクロンミル等を用いて行えばよい。通常は乾
式粉砕法を用いる。また、仮焼体が大きい塊を形成して
いる場合は、必要に応じてジョウクラッシャーなどを用
いて解砕した後に、上記方法で行えばよい。
The coarse pulverization may be a batch type or a continuous type, and may be performed by using a vibrating mill, a roller mill, an atomizer,
It may be performed using a supermicron mill or the like. Usually, a dry grinding method is used. When the calcined body forms a large lump, the calcined body may be pulverized using a jaw crusher or the like, if necessary, and then the above method may be used.

【0035】本発明の製造方法では、この粗粉砕を、仮
焼体の体積平均粒径が4μm 以下、好ましくは1〜4μ
m 、より好ましくは1.5〜3.5μm で、かつ10μ
m 以上の粒子が20vol%以下、好ましくは10vol%以下
となるようにおこなう。なお、10μm 以上の粒径をも
つ粒子は、できる限り少ないことが好ましいことから、
特に好ましいのは、10μm 以上の粒子を実質的に含有
しないことである。粗粉砕により、このような範囲の体
積平均粒径と粒度分布とすることで本発明の効果が発揮
される。なお、このような粒度分布とするために、別に
分級工程を設けてもよいが、収率の低下や工程の繁雑化
等により、コスト上昇の原因となるために好ましくな
い。
In the production method of the present invention, this coarse pulverization is carried out when the calcined body has a volume average particle size of 4 μm or less, preferably 1 to 4 μm.
m, more preferably 1.5 to 3.5 μm, and 10 μm
The treatment is performed so that the number of particles of m or more is 20 vol% or less, preferably 10 vol% or less. Since particles having a particle diameter of 10 μm or more are preferably as small as possible,
It is particularly preferable that particles containing particles of 10 μm or more are not substantially contained. The effect of the present invention is exerted by setting the volume average particle size and the particle size distribution in such ranges by coarse pulverization. In order to obtain such a particle size distribution, a separate classification step may be provided, but it is not preferable because a decrease in yield or complication of the step causes an increase in cost.

【0036】仮焼体の粗粉砕粉末の粒径分布はレーザー
回折・散乱法により求めることができ、本明細書におい
て、仮焼体の粗粉砕粉末の体積平均粒径とは、レーザー
回折・散乱法により求めた50vol%粒径を示す。なお、
前記10μm 以上の粒子を実質的に含有しないとは、そ
の含有量が上記の測定法の検出限界以下である場合をい
う。
The particle size distribution of the coarsely ground powder of the calcined body can be obtained by a laser diffraction / scattering method. In this specification, the volume average particle diameter of the coarsely ground powder of the calcined body is defined as the laser diffraction / scattering It shows the 50 vol% particle size determined by the method. In addition,
The phrase "substantially not containing particles having a size of 10 µm or more" means that the content is not more than the detection limit of the above-mentioned measurement method.

【0037】粗粉砕により得られた仮焼体粉末中に、体
積平均粒径が前記範囲を超えたり、10μm 以上の粒径
をもつ粒子が前記範囲を超えて残留していると、後述す
る微粉砕後に2次粒子が多く残留してしまう。このため
配向性が悪化し、Brが劣化してしまう。
If the calcined body powder obtained by the coarse pulverization has a volume average particle size exceeding the above range or particles having a particle size of 10 μm or more remaining outside the above range, the fine particles will be described later. Many secondary particles remain after pulverization. For this reason, the orientation deteriorates, and Br deteriorates.

【0038】次に、粗粉砕して得られた、このような範
囲の体積平均粒径と粒度分布とをもつ仮焼体粉末を微粉
砕する。微粉砕は、アトライターやボールミル等を用い
て行なうが、乾式粉砕法と比べて1μm 以下まで粉砕す
ることが容易なことから、通常、湿式粉砕法を用いるこ
とが好ましい。湿式粉砕法に用いるスラリーの溶媒とし
ては、どのようなものであってもよく、水あるいは各種
有機溶剤等、常温で液体の溶媒を用いればよいが、扱い
やすさや価格等の点で、通常は水が用いられる。スラリ
ー中の溶媒の添加量は、好ましくは40〜90wt% 、よ
り好ましくは50〜80wt% とすればよい。
Next, the calcined powder having a volume average particle diameter and a particle size distribution in such ranges obtained by coarse pulverization is finely pulverized. The fine pulverization is performed using an attritor, a ball mill, or the like, but it is usually preferable to use a wet pulverization method because it is easier to pulverize to 1 μm or less than a dry pulverization method. The solvent for the slurry used in the wet grinding method may be any solvent, such as water or various organic solvents, and may be a solvent that is liquid at room temperature. Water is used. The amount of the solvent added to the slurry is preferably 40 to 90% by weight, more preferably 50 to 80% by weight.

【0039】微粉砕は、湿式粉砕により、BET法によ
る比表面積(SBET )が好ましくは6〜13m2/g、より
好ましくは8〜12m2/g、特に好ましくは9〜11m2/g
となるように行なう。なお、このような微粉末の粒度を
平均粒径で表わすと、0.6〜1.0μm 程度である。
この微粉砕により、仮焼体は単磁区臨界径以下の微粉末
となり、HcJが高く、2次粒子が少なく、配向性が良好
な微粉末が得られる。SBET が小さすぎるとHcJが劣化
しやすくなり、2次粒子が多くなりすぎて配向性、角型
性等が劣化しやすくなる。また、大きすぎても、配向性
が劣化しやすくなり、また、後述する配向工程で、湿式
で磁場中成型を行なう際、スラリーからの溶媒の抜けが
悪くなりやすく、成型性が劣化することがある。
The fine pulverization is carried out by wet pulverization, and the specific surface area (SBET) by the BET method is preferably 6 to 13 m 2 / g, more preferably 8 to 12 m 2 / g, particularly preferably 9 to 11 m 2 / g.
And so on. The average particle size of such fine powder is about 0.6 to 1.0 μm.
By this fine pulverization, the calcined body becomes a fine powder having a diameter smaller than the critical diameter of a single magnetic domain, and a fine powder having a high HcJ, a small number of secondary particles and a good orientation can be obtained. If the SBET is too small, HcJ tends to deteriorate, and the secondary particles become too large, and the orientation, squareness, etc., tend to deteriorate. Also, if it is too large, the orientation tends to deteriorate, and in the orientation step described later, when performing molding in a magnetic field by a wet method, the solvent is easily removed from the slurry, which tends to deteriorate the moldability. is there.

【0040】なお、仮焼体の粉砕に際し、後の焼結時に
焼結を促進させたり、グレインの成長を制御したりする
目的でCaCO3 、SiO2 を焼結後に好ましい含有量
の範囲となるように添加することが好ましい。これらの
成分は、前述したように、一部を仮焼前に添加してもよ
い。この場合、仮焼前の添加量は、含有量全量の70wt
% 以下程度とする。添加は、粗粉砕前であっても、粗粉
砕後であってもよく、微粉砕するスラリーに添加されて
いればよい。また、CaCO3 、SiO2 以外に、必要
に応じて、前述した仮焼前に添加してもよい成分を同様
に添加してもよい。
In crushing the calcined body, CaCO 3 and SiO 2 have a preferable content range after sintering for the purpose of promoting sintering at the time of subsequent sintering and controlling the growth of grains. It is preferable to add them. These components may be partially added before calcination as described above. In this case, the amount added before calcination is 70 wt.
% Or less. The addition may be before or after the coarse pulverization, and may be performed as long as it is added to the slurry to be finely pulverized. Further, in addition to CaCO 3 and SiO 2 , the above-mentioned components which may be added before the calcination may be similarly added as necessary.

【0041】このようにして得られた仮焼体の微粉末に
対し、粒度分布を調整するために、前記特開平1−14
7809号公報や特開平4−320009号公報では分
級工程を設けている。しかし、本発明の製造方法では、
粗粉砕により前記の範囲の体積平均粒径と粒度分布とを
もつ粉末にするため、特に分級工程を設けることなくす
ぐれた磁気特性をもつ酸化物永久磁石が得られる。
In order to adjust the particle size distribution of the fine powder of the calcined body obtained as described above, see JP-A-1-14 / 1990.
In Japanese Patent Application Laid-Open No. 7809 and Japanese Patent Application Laid-Open No. 4-320009, a classification step is provided. However, in the production method of the present invention,
Since the powder having the volume average particle size and the particle size distribution in the above ranges is obtained by coarse pulverization, an oxide permanent magnet having excellent magnetic properties can be obtained without providing a classification step.

【0042】成型は磁界中で加圧下で行なうことが好ま
しい。磁界は5〜15kOe 程度、圧力は0.1〜0.6
Ton/cm2 程度とすればよい。成型は湿式成型法により行
なうことが好ましく、前記仮焼体の微粉末を含むスラリ
ーを用い、常法にしたがい、例えばスラリー中の溶媒を
加圧脱水し、吸引除去しながら行えばよい。
The molding is preferably performed under pressure in a magnetic field. Magnetic field is about 5 to 15 kOe, pressure is 0.1 to 0.6
It may be about Ton / cm 2 . The molding is preferably performed by a wet molding method, and a slurry containing the fine powder of the calcined body is used, and the solvent in the slurry may be subjected to pressure dehydration and suction removal according to a conventional method.

【0043】その後、この成型体を、大気中1150〜
1250℃、特に1200〜1250℃の温度で、30
分〜3時間程度焼成することで本発明の酸化物永久磁石
が得られる。
Thereafter, the molded body was placed in air at 1150 to
At a temperature of 1250 ° C., in particular 1200-1250 ° C., 30
The oxide permanent magnet of the present invention can be obtained by firing for about minutes to 3 hours.

【0044】このようにして得られた酸化物永久磁石
は、Brが、Srフェライト焼結磁石では3700〜4
400G 、特に3850〜4400G 、Baフェライト
焼結磁石では、3800〜4300G 特に4000〜4
300G 、HcJが、Srフェライト焼結磁石では300
0〜5200Oe、特に3300〜5000Oe、Baフェ
ライト焼結磁石では、2200〜3500Oe、特に22
00〜3100Oe、磁気ポテンシャルが、Srフェライ
ト焼結磁石では4000〜4800Oe、特に4500〜
4800Oe、Baフェライト焼結磁石では、2400〜
3100Oe、特に2800〜3100Oeとなる。このよ
うな酸化物永久磁石は、電装用モータ、家電用モータ等
に用いられる。
In the oxide permanent magnet thus obtained, Br was 3700 to 4% for the Sr ferrite sintered magnet.
400G, especially 3850-4400G, for a Ba ferrite sintered magnet, 3800-4300G, especially 4000-4
300G, HcJ is 300 for Sr ferrite sintered magnet
0-5200 Oe, especially 3300-5000 Oe, and 2300-3500 Oe, especially 22
00-3100 Oe, the magnetic potential is 4000-4800 Oe in the case of Sr ferrite sintered magnet, especially 4500
4800 Oe, Ba ferrite sintered magnet, 2400
It becomes 3100 Oe, especially 2800-3100 Oe. Such an oxide permanent magnet is used for a motor for electrical equipment, a motor for home appliances, and the like.

【0045】[0045]

【実施例】以下、本発明をSrフェライト焼結磁石を製
造する実施例によって具体的に説明する。Baフェライ
ト焼結磁石でも同様である。
EXAMPLES The present invention will be specifically described below with reference to examples of manufacturing a sintered Sr ferrite magnet. The same applies to Ba ferrite sintered magnets.

【0046】実施例1 酸化鉄Fe23 (平均粒径1μm )、炭酸ストロンチ
ウムSrCO3 およびAl23 を原料として準備し
た。Fe23 /SrOのモル比が6.00のフェライ
ト磁石となるように、さらにAl23 を1.2wt% と
なるように配合して連続式ロータリーキルンを用いて1
260℃で仮焼を行ない、仮焼体を得た。なお、実験的
に求めた結果では、前記ロータリーキルンによる仮焼処
理は、バッチ炉を用いた場合の1230℃で2時間処理
に相当する。
Example 1 Iron oxide Fe 2 O 3 (average particle size 1 μm), strontium carbonate SrCO 3 and Al 2 O 3 were prepared as raw materials. A ferrite magnet having a molar ratio of Fe 2 O 3 / SrO of 6.00, Al 2 O 3 was further compounded to be 1.2 wt%, and 1 wt.
Calcination was performed at 260 ° C. to obtain a calcined body. According to the results obtained experimentally, the calcining treatment by the rotary kiln corresponds to the treatment at 1230 ° C. for 2 hours when using a batch furnace.

【0047】得られた仮焼体を、振動ミル(バッチ式)
を用いて乾式粉砕法により粗粉砕を行ない、粉砕時間を
かえて3種の試料を得た。表1にこの体積平均粒径およ
び粒度分布の測定結果を示す。
The obtained calcined body is subjected to a vibration mill (batch type).
Was subjected to coarse pulverization by a dry pulverization method, and three kinds of samples were obtained by changing the pulverization time. Table 1 shows the measurement results of the volume average particle size and the particle size distribution.

【0048】[0048]

【表1】 [Table 1]

【0049】また、図1に、この3種の試料の粒径と累
積頻度との関係を表わすグラフを示す。
FIG. 1 is a graph showing the relationship between the particle size of these three types of samples and the cumulative frequency.

【0050】得られた試料1〜3を用い、それぞれにS
iO2 を0.52wt% 、CaCO3を、CaOに換算し
て0.95wt% となるように添加し、さらに水をスラリ
ー中の66wt% となるように添加して、アトライターを
用いて湿式粉砕法により微粉砕を行なった。
Using the obtained samples 1 to 3,
0.52 wt% of iO 2 and 0.95 wt% of CaCO 3 in terms of CaO are added, and water is added so as to be 66 wt% of the slurry. Fine pulverization was performed by a pulverization method.

【0051】それぞれの試料を、表2に示すSBET とな
るように微粉砕し、10kOe の磁場中、成型圧0.56
Ton/cm2 で湿式成型を行ない、直径30mm、高さ14mm
の成型体を得た。この成型体を大気中で1226℃1時
間焼結し、表2に示す試料番号1−1〜3−5の焼結体
のそれぞれの試料を得た。なお、試料番号1−1〜1−
5は表1に示す試料1を用いて微粉砕して得られた試料
を示し、試料番号2−1〜2−5および試料番号3−1
〜3−5は、同様に試料2および3を用いて微粉砕して
得られた試料を示す。これらの焼結体のBrおよびHcJ
を測定した。それぞれの試料のSBET 、得られた結果お
よび算出した磁気ポテンシャルを表2にまとめて示す。
Each sample was finely pulverized so that the SBET shown in Table 2 was obtained, and a molding pressure of 0.56 was applied in a magnetic field of 10 kOe.
Wet molding with Ton / cm 2 , diameter 30mm, height 14mm
Was obtained. This molded body was sintered at 1,226 ° C. for 1 hour in the atmosphere to obtain samples of sintered bodies of Sample Nos. 1-1 to 3-5 shown in Table 2. In addition, sample numbers 1-1 to 1-
5 is a sample obtained by finely pulverizing the sample 1 shown in Table 1, and includes sample numbers 2-1 to 2-5 and sample number 3-1.
3−3-5 indicate samples obtained by similarly pulverizing samples 2 and 3. Br and HcJ of these sintered bodies
Was measured. Table 2 summarizes the SBET of each sample, the results obtained, and the calculated magnetic potential.

【0052】比較例1 酸化鉄Fe23 (平均粒径1μm )、炭酸ストロンチ
ウムSrCO3 を原料とし、Fe23 /SrOのモル
比が5.74のフェライト磁石となるように配合して実
施例1と同様に1340℃で仮焼を行ない、本発明の好
ましい範囲を外れる組成(以下、従来材組成)をもつ仮
焼体を得た。なお、実験的に求めた結果では、この仮焼
処理は、バッチ炉を用いた場合の1300℃で2時間処
理に相当する。
Comparative Example 1 Iron oxide Fe 2 O 3 (average particle size: 1 μm) and strontium carbonate SrCO 3 were used as raw materials and blended to form a ferrite magnet having a molar ratio of Fe 2 O 3 / SrO of 5.74. Calcination was performed at 1340 ° C. in the same manner as in Example 1 to obtain a calcined body having a composition outside the preferred range of the present invention (hereinafter, a conventional material composition). In addition, according to the results obtained experimentally, this calcination treatment corresponds to a treatment at 1300 ° C. for 2 hours when a batch furnace is used.

【0053】得られた従来材組成の仮焼体を用い、従来
と同様の条件、すなわち振動ミルを用いて乾式粉砕法に
より17分粗粉砕を行ない、体積平均粒径が12μm 、
10μm 以上の粒子の含有比率が55vol%の試料4を得
た。
Using the obtained calcined body of the conventional material composition, coarse pulverization was performed for 17 minutes by the dry pulverization method using a vibrating mill under the same conditions as in the past, and the volume average particle size was 12 μm.
Sample 4 having a content ratio of particles of 10 μm or more of 55 vol% was obtained.

【0054】得られた試料4を用い、SiO2 を0.5
1wt% 、CaCO3 を、CaOに換算して0.43wt%
、Al23 を0.50wt% となるように添加し、実
施例1と同様にして微粉砕、成型、焼結を行ない、直径
30mm、高さ14mmの成型体を得た。この成型体を大気
中で1226℃1時間焼結し、試料番号4−1〜4−5
を得た。得られた焼結体のBrおよびHcJを測定した。
それぞれの試料のSBET、得られた結果および算出した
磁気ポテンシャルを表2にまとめて示す。
Using the obtained sample 4, 0.5% of SiO 2 was added.
1 wt%, CaCO 3 is converted to CaO, 0.43 wt%
, Al 2 O 3 was added to a concentration of 0.50 wt%, and pulverization, molding and sintering were performed in the same manner as in Example 1 to obtain a molded body having a diameter of 30 mm and a height of 14 mm. This molded body was sintered at 1226 ° C. for 1 hour in the atmosphere, and sample numbers 4-1 to 4-5 were obtained.
I got Br and HcJ of the obtained sintered body were measured.
Table 2 summarizes the SBET of each sample, the results obtained, and the calculated magnetic potential.

【0055】[0055]

【表2】 [Table 2]

【0056】表2より、比較例1の従来材組成をもち、
従来法により得られた材料に対して、本発明の方法によ
り製造し、本発明の好ましい範囲内の組成をもつ材料
は、Brを劣化させることなく、HcJを向上させること
がわかる。また、好ましい範囲内の組成をもつ材料を用
いても、体積平均粒径および粒度分布が本発明の製造方
法の範囲から外れた条件では、SBET がほぼ同等の試料
で比較すると、明らかにBrが低下してしまい、高い磁
気特性が得られないことがわかる。
As shown in Table 2, the composition of Comparative Example 1 has the conventional material composition.
It can be seen that a material produced by the method of the present invention with respect to the material obtained by the conventional method and having a composition within the preferred range of the present invention improves HcJ without deteriorating Br. Further, even when a material having a composition within the preferred range is used, when the volume average particle diameter and the particle size distribution are out of the range of the production method of the present invention, when the samples having substantially the same SBET are compared, Br is clearly higher. It can be seen that the magnetic properties are lowered and high magnetic properties cannot be obtained.

【0057】比較例2 比較例1で得た仮焼体を用い、実施例1と同様に粗粉砕
を行ない、粉砕時間を実施例1と同様として3種の試料
を得た。図2に、この3種の試料の粒径と累積頻度との
関係を表わすグラフを示す。
Comparative Example 2 The calcined body obtained in Comparative Example 1 was roughly pulverized in the same manner as in Example 1, and three types of samples were obtained with the same pulverization time as in Example 1. FIG. 2 is a graph showing the relationship between the particle size of these three samples and the cumulative frequency.

【0058】図1および図2から、従来材組成をもつ仮
焼体と比較して、本発明の好ましい範囲内の仮焼体が、
粗粉砕により細かく、より均一な仮焼粉末を容易に得ら
れることがわかる。
From FIG. 1 and FIG. 2, the calcined body within the preferred range of the present invention is compared with the calcined body having the conventional material composition.
It can be seen that fine and more uniform calcined powder can be easily obtained by coarse pulverization.

【0059】実施例2 酸化鉄Fe23 (平均粒径1μm )、炭酸ストロンチ
ウムSrCO3 、SiO2 およびCaCO3 を原料とし
て準備した。Fe23 /SrOのモル比が6.20の
フェライト磁石となるように、さらにSiO2 を0.1
5wt% 、CaCO3 を、CaOに換算して0.07wt%
となるように配合して連続式ロータリーキルンを用いて
1300℃で仮焼を行ない、仮焼体を得た。なお、実験
的に求めた結果では、前記ロータリーキルンによる仮焼
処理は、バッチ炉を用いた場合の1260℃で2時間処
理に相当する。
Example 2 Iron oxide Fe 2 O 3 (average particle size 1 μm), strontium carbonate SrCO 3 , SiO 2 and CaCO 3 were prepared as raw materials. Further, SiO 2 is added in an amount of 0.1 to obtain a ferrite magnet having a molar ratio of Fe 2 O 3 / SrO of 6.20.
5 wt%, CaCO 3 is converted to CaO to 0.07 wt%
And calcined at 1300 ° C. using a continuous rotary kiln to obtain a calcined body. According to the results obtained experimentally, the calcining treatment by the rotary kiln corresponds to the treatment at 1260 ° C. for 2 hours when using a batch furnace.

【0060】得られた仮焼体をローラーミルを用いて乾
式粉砕法により粗粉砕を行ない、体積平均粒径が6.0
μm で、10μm 以上の粒子の含有比率が40vol%の試
料5を得た。試料5を、振動ミルを用いてさらに粗粉砕
し、体積平均粒径が3.5μm で、10μm 以上の粒子
の含有比率が15vol%の試料6を得た。
The obtained calcined body is roughly pulverized by a dry pulverization method using a roller mill, and has a volume average particle size of 6.0.
A sample 5 having a particle size of 10 vol. The sample 5 was further coarsely pulverized using a vibration mill to obtain a sample 6 having a volume average particle size of 3.5 μm and a content ratio of particles of 10 μm or more of 15 vol%.

【0061】得られたそれぞれの試料に対し、さらにS
iO2 を焼結後の含有量が0.52wt% となるように、
CaCO3 を、CaOに換算して焼結後の含有量が0.
66wt% となるようにそれぞれ添加して実施例1と同様
にして微粉砕して比表面積9.5m2/gの微粉末を得、実
施例1と同様にしてそれぞれの焼結体を得た。この焼結
体の磁気特性を測定したところ、試料6は試料5よりB
rが40G 向上し、HcJは同等であり、磁気ポテンシャ
ルに換算して120Oeの磁気特性向上が認められた。
Each of the obtained samples was further subjected to S
In order that the content after sintering of iO 2 becomes 0.52 wt%,
CaCO 3 is converted into CaO, and the content after sintering is 0.1.
Each of the powders was added so as to be 66 wt% and pulverized in the same manner as in Example 1 to obtain a fine powder having a specific surface area of 9.5 m 2 / g. . When the magnetic properties of this sintered body were measured, Sample 6
r was improved by 40 G, HcJ was equivalent, and an improvement in magnetic properties of 120 Oe in terms of magnetic potential was observed.

【0062】実施例3 実施例1で得た仮焼体を用い、振動ミルを用いて粗粉砕
し、体積平均粒径3.2μm 、10μm 以上の粒子の含
有比率が10vol%の試料7を得た。この試料に対し、S
iO2 を0.52wt% 、CaCO3 を、CaOに換算し
て0.73wt%となるようにそれぞれ添加して実施例1
と同様にして微粉砕して表3に示す比表面積の微粉末を
得た。
Example 3 The calcined body obtained in Example 1 was roughly pulverized using a vibration mill to obtain a sample 7 having a volume average particle size of 3.2 μm and a content ratio of particles of 10 μm or more of 10 vol%. Was. For this sample, S
iO 2 to 0.52wt%, implement CaCO 3, was added respectively so that the 0.73Wt% in terms of CaO Example 1
In the same manner as described above, fine powder having a specific surface area shown in Table 3 was obtained.

【0063】これらを実施例1と同様に磁場中成型、焼
結して表3に示す焼結体試料を得た。これらの焼結体試
料のBrおよびHcJを測定した。それぞれの試料のSBE
T 、得られた結果および算出した磁気ポテンシャルを表
3にまとめて示す。
These were molded and sintered in a magnetic field in the same manner as in Example 1 to obtain sintered samples shown in Table 3. Br and HcJ of these sintered samples were measured. SBE of each sample
Table 3 summarizes T, the results obtained, and the calculated magnetic potential.

【0064】比較例3 比較例1で用いた粗粉砕粉末(試料4)を分級し、体積
平均粒径が2.2μmで、10μm 以上の粒子を実質的
に含有しない試料8を得た。この試料に対し、SiO2
を0.62wt% 、CaCO3 を、CaOに換算して0.
47wt% 、Al23 を0.60wt% となるようにそれ
ぞれ添加し、実施例1と同様にして微粉砕して表3に示
す比表面積の微粉末を得た。
Comparative Example 3 The coarsely pulverized powder (sample 4) used in Comparative Example 1 was classified to obtain a sample 8 having a volume average particle size of 2.2 μm and substantially no particles of 10 μm or more. For this sample, SiO 2
Is 0.62 wt%, and CaCO 3 is converted to CaO by 0.1.
47 wt% and Al 2 O 3 were added to give 0.60 wt%, respectively, and pulverized in the same manner as in Example 1 to obtain fine powder having a specific surface area shown in Table 3.

【0065】これらを実施例1と同様に磁場中成型、焼
結して表3に示す焼結体試料を得た。これらの焼結体試
料のBrおよびHcJを測定した。それぞれの試料のSBE
T 、得られた結果および算出した磁気ポテンシャルを表
3にまとめて示す。
These were molded and sintered in a magnetic field in the same manner as in Example 1 to obtain sintered samples shown in Table 3. Br and HcJ of these sintered samples were measured. SBE of each sample
Table 3 summarizes T, the results obtained, and the calculated magnetic potential.

【0066】[0066]

【表3】 [Table 3]

【0067】表3より、組成が好ましい範囲で、本発明
の製造方法によるものは、従来材組成をもち、従来と同
様の条件で粗粉砕したものを分級したものと比較して、
磁気ポテンシャルが高いことがわかる。
As shown in Table 3, when the composition is in a preferable range, the composition according to the production method of the present invention has a conventional material composition and is compared with a material obtained by classifying coarsely pulverized material under the same conditions as the conventional material.
It can be seen that the magnetic potential is high.

【0068】実施例4 試料番号4−3、試料番号7−3および試料番号8−3
を用い、この3種の試料について、角型比をもとめ、さ
らにC軸に平行な面を常法にしたがってポリッシングし
て鏡面加工し、サーマルエッチングを行なってその表面
をSEMで観察し、グレイン粒子の多角型近似から求め
た面積から円相当径を求めた。さらに、前記グレインの
円相当径の分布よりグレインの体積分布を算出し、この
円相当径と体積分布よりロジン・ラムラープロットを行
ない、均等数を求めた。
Example 4 Sample No. 4-3, Sample No. 7-3 and Sample No. 8-3
For these three types of samples, the squareness ratio was determined, and the surface parallel to the C-axis was polished and mirror-polished according to a conventional method, thermal etching was performed, and the surface was observed with a SEM. The circle equivalent diameter was determined from the area determined from the polygonal approximation. Further, the volume distribution of the grains was calculated from the distribution of the equivalent circle diameter of the grains, and a rosin-Rammler plot was performed from the equivalent circle diameter and the volume distribution to obtain an even number.

【0069】円相当径から求めた体積平均粒径、均等数
および角型比の結果を表4に示す。なお、nの算出に用
いた各プロットの直線性の相関係数は、いずれも99.
5%以上の範囲である。
Table 4 shows the results of the volume average particle diameter, the uniform number, and the squareness ratio determined from the equivalent circle diameter. The linearity correlation coefficient of each plot used for the calculation of n was 99.
The range is 5% or more.

【0070】[0070]

【表4】 [Table 4]

【0071】表4より、組成、仮焼温度、微粉砕前の粉
末の体積平均粒径および粒度分布を本発明の範囲とした
試料番号7−3は、均等数が高い値であり、グレインの
粒度分布が狭い範囲にあることを示し、95.5%以上
のすぐれた角形比を持つ。
As shown in Table 4, Sample No. 7-3 in which the composition, the calcination temperature, the volume average particle size and the particle size distribution of the powder before pulverization were within the scope of the present invention had a high even number, and the grain number was high. This indicates that the particle size distribution is in a narrow range, and has an excellent squareness ratio of 95.5% or more.

【0072】実施例5 実施例3で示した試料7(粗粉砕後の体積平均粒径3.
2μm 、10μm 以上の粒子の含有比率が10vol%)を
用い、この試料に対し、SiO2 とCaCO3(CaO
換算で表示)とを表5に示す量添加して実施例1と同様
にしてSBET が11.0m2/gとなるように微粉砕し、こ
れを実施例1と同様に磁場中成型、焼結して表5に示す
焼結体試料を得た。これらの焼結体試料のBrおよびH
cJを測定した。添加したCaO/SiO2 のモル比、磁
気特性測定結果および算出した磁気ポテンシャルを表5
にまとめて示す。
Example 5 Sample 7 shown in Example 3 (volume average particle size after coarse pulverization was 3.
2 μm, the content ratio of particles of 10 μm or more is 10 vol%), and SiO 2 and CaCO 3 (CaO 3
(Expressed in terms of conversion)), and pulverized in the same manner as in Example 1 so that the SBET becomes 11.0 m 2 / g. In this way, sintered body samples shown in Table 5 were obtained. Br and H of these sintered body samples
cJ was measured. Table 5 shows the molar ratio of the added CaO / SiO 2, the measurement results of the magnetic properties, and the calculated magnetic potentials.
Are shown together.

【0073】[0073]

【表5】 [Table 5]

【0074】表5より、SiO2 とCaOの含有量およ
びCaO/SiO2 のモル比が本発明の好ましい範囲内
で、磁気ポテンシャルが4500Oe以上となり、特にす
ぐれた磁気特性を示すことが明らかである。
From Table 5, it is apparent that the magnetic potential is 4500 Oe or more and particularly excellent magnetic properties when the content of SiO 2 and CaO and the molar ratio of CaO / SiO 2 are within the preferable ranges of the present invention. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好ましい範囲内の組成をもつ仮焼体の
粗粉砕時間と、得られた粉末の粒径と累積頻度との関係
を表わすグラフ。
FIG. 1 is a graph showing the relationship between the coarse pulverization time of a calcined body having a composition within a preferred range of the present invention, the particle size of the obtained powder, and the cumulative frequency.

【図2】従来材組成をもつ仮焼体の粗粉砕時間と、得ら
れた粉末の粒径と累積頻度との関係を表わすグラフ。
FIG. 2 is a graph showing the relationship between the coarse pulverization time of a calcined body having a conventional material composition, the particle size of the obtained powder, and the cumulative frequency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠原 孝彦 東京都中央区日本橋一丁目13番1号 テ ィーディーケイ株式会社内 (72)発明者 中野 淳二 東京都中央区日本橋一丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 平4−38807(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takahiko Kasahara, 1-13-1 Nihonbashi, Chuo-ku, Tokyo Inside TDK Corporation (72) Inventor Junji Nakano 1-13-1, Nihonbashi, Chuo-ku, Tokyo (56) References JP-A-4-38807 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マグネトプランバイト型の酸化物永久磁
石であって、 容易磁化方向に平行な面を鏡面加工し、サーマルエッチ
ングを行なって、その表面を走査型電子顕微鏡で観察し
たとき、グレインの円相当径の体積平均粒径が0.7〜
1.0μmであり、この円相当径の体積分布から求めた
ロジン・ラムラープロットの均等数が3.1以上であ
り、かつ角型比が95.5%以上である酸化物永久磁
石。
1. A magnetoplumbite-type oxide permanent magnet, wherein a surface parallel to the direction of easy magnetization is mirror-polished, subjected to thermal etching, and the surface thereof is observed with a scanning electron microscope. Volume average particle diameter of equivalent circle diameter is 0.7 ~
An oxide permanent magnet having an average number of 1.0 μm, a rosin-Rammler plot obtained from the volume distribution of the circle equivalent diameter of 3.1 or more, and a squareness ratio of 95.5% or more.
【請求項2】 前記酸化物永久磁石を、一般式MO・n
Fe23 (MはSrおよび/またはBaである)で表
わすとき、5.80≦n≦6.40である請求項1の酸
化物永久磁石。
2. The oxide permanent magnet is represented by a general formula MO · n
When expressed by Fe 2 O 3 (M is Sr and / or Ba), oxide permanent magnet according to claim 1 which is 5.80 ≦ n ≦ 6.40.
【請求項3】 さらにSiO2 を0.1〜0.70wt%
、CaOを0.05〜1.0wt% それぞれ含有し、C
aO/SiO2 のモル比が0.9〜2.0である請求項
1または2の酸化物永久磁石。
3. The composition according to claim 1, wherein said SiO 2 is 0.1 to 0.70 wt%.
, CaO each containing 0.05 to 1.0 wt%,
aO-/ claim 1 or 2 oxide permanent magnet molar ratio of SiO 2 is 0.9 to 2.0.
【請求項4】 試料混合物を仮焼し、この仮焼体を粗粉
砕し、次に微粉砕し、この微粉末を用いて磁場中成型を
行ない、得られた成型体を焼結して酸化物永久磁石を製
造するに際し、 前記仮焼体を、体積平均粒径が4μm 以下で、かつ10
μm 以上の粒子が20vol%以下となるように粗粉砕して
請求項1〜3のいずれかの酸化物永久磁石を得る酸化物
永久磁石の製造方法。
4. A sample mixture is calcined, the calcined body is roughly pulverized, then finely pulverized, and the fine powder is molded in a magnetic field, and the obtained molded body is sintered and oxidized. When producing a permanent magnet, the calcined body is prepared by mixing the calcined body with a volume average particle size of 4 μm or less, and
A method for producing an oxide permanent magnet according to any one of claims 1 to 3, wherein the oxide permanent magnet is coarsely pulverized so that particles having a particle size of at least 20 µm are at most 20 vol%.
【請求項5】 前記仮焼温度が1200〜1330℃で
ある請求項4の酸化物永久磁石の製造方法。
5. The method for producing an oxide permanent magnet according to claim 4, wherein the calcination temperature is 1200 to 1330 ° C.
【請求項6】 前記微粉砕前後に、粉末に対して粒度分
布調整のための分級を行わない請求項4または5の酸化
物永久磁石の製造方法。
6. The method for producing an oxide permanent magnet according to claim 4, wherein before and after the pulverization, the powder is not subjected to classification for adjusting the particle size distribution.
JP06065745A 1994-03-09 1994-03-09 Oxide permanent magnet and manufacturing method thereof Expired - Fee Related JP3088236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06065745A JP3088236B2 (en) 1994-03-09 1994-03-09 Oxide permanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06065745A JP3088236B2 (en) 1994-03-09 1994-03-09 Oxide permanent magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07249510A JPH07249510A (en) 1995-09-26
JP3088236B2 true JP3088236B2 (en) 2000-09-18

Family

ID=13295869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06065745A Expired - Fee Related JP3088236B2 (en) 1994-03-09 1994-03-09 Oxide permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3088236B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3485485B2 (en) 1998-12-28 2004-01-13 住友特殊金属株式会社 Powder pressing device, punch and powder pressing method
JP4730534B2 (en) * 2005-10-27 2011-07-20 Tdk株式会社 Ferrite sintered magnet
CN103779028A (en) * 2013-11-05 2014-05-07 南京梅山冶金发展有限公司 Permanent magnetic ferrite magnetic powder for large-axis-diameter-ratio magnet ring and manufacturing method
WO2020179377A1 (en) * 2019-03-06 2020-09-10 Jfeスチール株式会社 Iron-based powder for powder magnetic core, and powder magnetic core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438807A (en) * 1990-06-05 1992-02-10 Kawasaki Steel Corp Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force

Also Published As

Publication number Publication date
JPH07249510A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
KR101347851B1 (en) Oxide magnetic material
JP6596828B2 (en) Ferrite sintered magnet and motor including the same
WO1999034376A1 (en) Ferrite magnet and process for producing the same
JPH10149910A (en) Ferrite magnet and its manufacturing method
JP6596829B2 (en) Ferrite sintered magnet and motor including the same
JP2008270792A (en) Manufacturing method of ferrite sintered magnet
CN112562950B (en) Ferrite sintered magnet
JP3088236B2 (en) Oxide permanent magnet and manufacturing method thereof
CN113470912A (en) Ferrite sintered magnet and rotating electrical machine
CN111747737A (en) Ferrite sintered magnet and rotary electric device provided with same
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JP7367582B2 (en) ferrite sintered magnet
JP7367581B2 (en) ferrite sintered magnet
JP4599752B2 (en) Method for producing sintered ferrite magnet
JP5218716B2 (en) Ferrite magnetic material
KR102430475B1 (en) Method for preparing ferrite sintered magnet and ferrite sintered magnet
JP2708160B2 (en) Ferrite manufacturing method
JP2002353020A (en) Oxide magnetic material
JP2908631B2 (en) Manufacturing method of ferrite magnet
JPH11307331A (en) Ferrite magnet
JPH0653020A (en) Oxide permanent magnet
JPH0664934B2 (en) High frequency dielectric porcelain
JP2007191374A (en) Method for producing ferrite magnetic material
JPH0831627A (en) Hexagonal ba ferrite sintered magnet, manufacture thereof, and polar anisotropic ring magnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees