JP3088070U - Vacuum low-temperature distillation pure water machine - Google Patents

Vacuum low-temperature distillation pure water machine

Info

Publication number
JP3088070U
JP3088070U JP2002000771U JP2002000771U JP3088070U JP 3088070 U JP3088070 U JP 3088070U JP 2002000771 U JP2002000771 U JP 2002000771U JP 2002000771 U JP2002000771 U JP 2002000771U JP 3088070 U JP3088070 U JP 3088070U
Authority
JP
Japan
Prior art keywords
water
reaction chamber
pipe
tube
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002000771U
Other languages
Japanese (ja)
Inventor
沈文▲杜▼
Original Assignee
沈文▲杜▼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈文▲杜▼ filed Critical 沈文▲杜▼
Priority to JP2002000771U priority Critical patent/JP3088070U/en
Application granted granted Critical
Publication of JP3088070U publication Critical patent/JP3088070U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 (修正有) 【課題】 コンプレッサーが自然に生産する
熱力を利用して蒸留する全ての必要熱を与え、且つ水質
も完全に浄化でき、飲用水の標準に達する真空低温蒸留
純水機を提供する。 【解決手段】 真空低温蒸留純水機であって、主
な構成部品は供水タンク1、反応室2、蓄水タンク3、
動力ポンプ4及び冷凍システム5から構成され、動力ポ
ンプの汲引作用を利用し、反応室内を真空状態にするこ
とにより、水を供水タンクから反応室内に導引でき、更
に冷凍システムのコンプレッサーが発する熱力により、
蒸発作用を進行し、水が真空低温蒸留後、凝縮して反応
室の内管底部までに流れ込み、且つ動力ポンプの導流効
果を利用し、純水を上案内管に沿って蓄水タンクまで汲
み上げ保存する真空低温蒸留純水機。
(57) [Summary] (Modified) [Problem] To provide all the necessary heat for distillation using the heat generated by a compressor naturally and to completely purify the water quality, and achieve vacuum cryogenic distillation that reaches the standard for drinking water. Provide a water purifier. SOLUTION: This is a vacuum low-temperature distillation pure water machine, whose main components are a water supply tank 1, a reaction chamber 2, a water storage tank 3,
It is composed of a power pump 4 and a refrigeration system 5, and can draw water from the water supply tank into the reaction chamber by using the pumping action of the power pump to evacuate the reaction chamber. Further, the thermal power generated by the compressor of the refrigeration system By
Evaporation progresses, water condenses after vacuum low-temperature distillation, flows into the bottom of the inner tube of the reaction chamber, and utilizes the conduction effect of the power pump to pump pure water to the water storage tank along the upper guide tube. A vacuum cryogenic distillation pure water machine that pumps up and stores.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the invention belongs]

本考案は真空低温蒸留純水機の構造設計であり、水が真空反応室で冷凍システ ムを利用し、真空低温蒸留を実行できる純水機で、水が蒸発と凝結などのプロセ スを経て、清潔な純水を精製する構造である。 The present invention is a structural design of a vacuum cryogenic distillation pure water machine, in which water uses a refrigeration system in a vacuum reaction chamber to perform vacuum cryogenic distillation, and water undergoes processes such as evaporation and condensation. It is a structure that purifies clean pure water.

【0002】[0002]

【従来の技術】[Prior art]

汎用フィルターの濾過効果不足の原因は、濾過方式はほとんど水をフィルター ・エレメントに通過すれば、その濾水工程が完成すると認定されていることにあ る。しかしながら、こんな簡単な濾水工程ではただ水中の大きい不純物を濾過す るだけで、より小さい不純物は有効に濾過できず、且つ一定時間の使用を経たあ とは、不純物がフィルターに付着し細菌が生まれる恐れがあり、従って、有効に 不純物を除去できず、水質の汚染問題も発生する。 The reason for the lack of filtration effect of general-purpose filters is that the filtration system is certified to complete the filtration process if most of the water passes through the filter element. However, in such a simple draining process, only large impurities in water are filtered, and smaller impurities cannot be effectively filtered.After a certain period of use, the impurities adhere to the filter and bacteria are removed. Therefore, impurities cannot be removed effectively, and water pollution problems occur.

【0003】 現在、「RO逆浸透浄水器」という製品が販売されている。該浄水器には汎用 フィルターの欠点について改良したものであり、三本のフィルター・エレメント で順番に濾水動作を実行する。最初一本目のフィルター・エレメントは最大の不 純物を濾過し、二本目のフィルター・エレメントはより小さい不純物を濾過し、 最後ではセラミック製のフィルター・エレメントで水中に残留の不純物を除去す る。しかし、この方式では、水質について確かに大幅の浄化効果を得るが、フィ ルター・エレメントによる汚染問題は避けられず、且つ水中の有・無機物は濾過 方式で除去することはできない。又、一般使用者はフィルター・エレメントを一 定期間を使用した後、不純物の付着したフィルター・エレメントを取り替えるが 、使用者は長期的にこの費用を負担し、特に前記セラミック製のフィルター・エ レメントは高単価な製品である。この濾過方式を利用したフィルター/浄水器を 使用している消費者は、長期に渡りこの消耗材の費用を支出する。且つ取り替え られたフィルターエレメントは、回収処理が不当であると、環境汚染問題になる ので社会的費用も増加してしまう。使用者が消耗材の費用を負担できるかどうか は関係なく、フィルター/浄水器の濾過品質は一般大衆にとって一番注目する点 である。At present, a product called “RO reverse osmosis water purifier” is on sale. The water purifier is an improvement over the shortcomings of the general-purpose filter, and the filter operation is performed in order by three filter elements. The first filter element filters out the greatest impurities, the second filter element filters out smaller impurities, and finally the ceramic filter element removes residual impurities in the water. However, in this method, although a great purification effect is obtained for the water quality, the problem of contamination by the filter element is inevitable, and the organic and inorganic substances in the water cannot be removed by the filtration method. In addition, the general user replaces the filter element with impurities after using the filter element for a certain period of time, but the user bears this cost in the long term, especially the ceramic filter element. Is a high unit price product. Consumers using filters / water purifiers that use this filtration scheme will spend the cost of this consumable over a long period of time. In addition, if the replacement filter element is not properly recovered, it will cause environmental pollution and increase social costs. Regardless of whether the user can bear the cost of the consumables, the filtration quality of the filter / water purifier is of primary interest to the general public.

【0004】 又、蒸留水製造機という製品が市場に販売されており、その主要は加熱沸騰の 方法を利用し、水を蒸発させてから凝結させ、不純物を水から除去する目的であ る。しかし、高温沸騰後凝結の原理を使用する蒸留法は、電力の消耗が激しく、 更に必ず定期的にステンレス底部の周囲の沈殿物及び汚れを掃除しなければなら ない。一般家庭用の蒸留水製造機では一日の製水速度は12リットル(約8時間 毎に4リットル)、一般浄水機と比べると不経済的な効率であり、更にこの蒸留 方式を採用すると、沸騰中に若干の細菌を殺すだけで、沸点の高い汚染物、例え ば重金属、農薬、マイナス・プラスイオン(例えば硬度を起こす金属イオン)及 び溶解性固体等を蒸留水製造機の内部に保留できるが、沸点が水より低い揮発性 有機物、メチニルトリハロゲン等は蒸留水と一緒に飲用水収集タンク中に流れて しまい、蒸留された純水が汚染され、このタイプの蒸留水製造機が精製した蒸留 水の品質は配慮するべきである。[0004] Further, a product called a distilled water producing machine is sold on the market, and its main purpose is to remove impurities from water by evaporating and then condensing water using a heating and boiling method. However, the distillation method using the principle of coagulation after boiling at a high temperature consumes a large amount of power, and furthermore, it is necessary to regularly clean the deposits and dirt around the stainless steel bottom. The daily water production rate of a general household distilled water production machine is 12 liters (4 liters every 8 hours), which is uneconomical efficiency compared to a general water purification machine. Kills only a few bacteria during boiling and retains high-boiling contaminants, such as heavy metals, pesticides, negative and positive ions (eg, metal ions that cause hardness), and soluble solids, inside the distilled water production machine. However, volatile organic substances with a boiling point lower than water, such as methynyl trihalogen, flow into the drinking water collection tank together with the distilled water, and the distilled pure water is contaminated. The quality of the purified distilled water should be considered.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the invention]

この考案の主要目的は、上記フィルター/浄水機のかかる問題点に鑑み、鋭意 を尽き研究を行い、コンプレッサーで冷熱交換を処理する真空低温蒸留純水機を 設計し、上記の配慮及び欠点を解決することである。真空状態で水が多少の温度 だけで蒸発沸騰に達する原理を利用し、且つ気化後の水分子の大きさは細菌の千 分の一になる原理を利用し、水中の不純物及び細菌、ウィルス等の有・無機物質 を蒸留分離し、該真空低温蒸留純水機はコンプレッサー自体が自然に産生する熱 力を利用するだけで、完全に蒸留する必要熱を提供でき、且つ水質も完全に浄化 でき、飲用水の標準に達する。 The main purpose of this invention is to solve the above-mentioned considerations and drawbacks by designing the vacuum cryogenic distillation pure water machine, which processes the cold heat exchange with the compressor, by conducting intensive research in view of the above problems of the filter / water purifier. It is to be. Utilizing the principle that water evaporates and boils at a slight temperature in a vacuum state, and the principle that the size of water molecules after vaporization becomes one-thousand that of bacteria, impurities in water, bacteria, viruses, etc. The vacuum cryogenic distillation pure water machine can provide the heat required for complete distillation by simply utilizing the heat generated by the compressor itself, and can completely purify the water quality. Reach drinking water standards.

【0006】 本考案のもう一つ目的は、真空低温蒸留純水機の設計を提供することである。 主な構成部品は供水タンク、反応室、蓄水タンク、動力ポンプ及び冷凍システム から構成され、該供水タンクからパイプラインで反応室内まで導通し、蓄水タン クを反応室の上方に配置し、且つ動力ポンプを反応室の下方に配置し、冷凍シス テムを反応室と蓄水タンクの間に設置する。このような配置により、反応室内の 減圧電磁弁がクローズした時、動力ポンプの汲引作用で一方自動排水逆止水弁も クローズし、内部は真空状態になり、水が供水タンクから反応室内に導引され、 浮き玉自動制御進水弁で自動的に水位を制御する。又、冷凍システム中のコンプ レッサーが提供する熱力で蒸発を行い、真空低温蒸留に達成し、且つ反応室の内 管で凝結し、動力ポンプの導流効果を利用し、純水が蓄水タンクまでに汲み上げ られ、この方式により、極めて清潔な飲用水を得ることができる。Another object of the present invention is to provide a vacuum cryogenic distillation water purifier design. The main components consist of a water supply tank, a reaction chamber, a water storage tank, a power pump, and a refrigeration system.The water supply tank is connected to the reaction chamber via a pipeline, and the water storage tank is located above the reaction chamber. In addition, a power pump is arranged below the reaction chamber, and a refrigeration system is installed between the reaction chamber and the water storage tank. With such an arrangement, when the pressure reducing solenoid valve in the reaction chamber is closed, the automatic drain check valve is also closed by the power pump, and the inside is evacuated, and water is introduced from the water supply tank into the reaction chamber. The water level is automatically controlled by a floating ball automatic control launch valve. In addition, evaporation is performed by the thermal power provided by the compressor in the refrigeration system, achieving vacuum low-temperature distillation, and condensing in the inner tube of the reaction chamber, utilizing the conduction effect of the power pump, and storing pure water in the water storage tank. By this method, extremely clean drinking water can be obtained.

【0007】[0007]

【考案を解決するための手段】[Means for solving the invention]

前記課題を目標として、本考案を実現させる方法を説明する。 請求項1は真空低温蒸留純水機であって、主な構成部品は供水タンク、反応室 、蓄水タンク、動力ポンプ及び冷凍システムから構成される。 供水タンクは、反応室内の用水を提供する容器であって、底部に反応室まで導 通するパイプラインを設ける。 反応室は、上カバーと受け座から密閉結構体に構成され、受け座上には内管、 消波管及び進水管を成形し、且つ進水管の上端に浮き玉自動制御進水弁を設け、 内管の上端には上下仕切り板を設置し、上カバーの底部に内管に対応している位 置に上下案内管を設け、更に片方に減圧電磁弁を設置し、該内管の底部に円錐状 の導引管を設け、上案内管の下端出口を導引管の上端に導接し、反応室の内部周 縁に冷凍システムを有する蒸発器を設け、又、廃水タンクに導通するため一方自 動排水逆止水弁を設ける。 蓄水タンクは、反応室の上端に設置し、該底部は反応室内の上下案内管と連結 し、内部には凝縮器を具する。 動力ポンプは、水で主要動力を提供する水ポンプであり、反応室の底に設置し 、動力ポンプの進水口は下案内管と連結し、又、排水口の頂端に圧縮ノズルを設 け、該圧縮ノズルが反応室内の導引管内に延伸させ、更に該排水口の隣に逆止水 弁を設け、該排水口逆止水弁は導流管に連結し、該導流管は反応室の内管及び出 水口逆止水弁の間に導通する。 冷凍システムは、封閉回路を具し、該回路上に順番に設けられているのはコン プレッサー、補助散熱器、蒸発器、膨張弁及び凝縮器と小型補助凝縮管、該蒸発 器は反応室内の底部周縁に設けられ、凝縮器と小型補助凝縮管はそれぞれ蓄水タ ンクと内管の内部に設置される。 前記部品を利用し、動力ポンプの汲引作用にて反応室内を真空状態にすること により、水を供水タンクから反応室内に導引でき、更に冷凍システムのコンプレ ッサーが発する熱力により、蒸発作用を進行し、水が真空低温蒸留後凝縮して反 応室の内管底部までに流れ込み、且つ動力ポンプの導流効果を利用し、純水を上 案内管に沿って蓄水タンクまでに汲み上げ保存することから、清潔な純水が得ら れる真空低温蒸留純水機である。 A description will be given of a method for realizing the present invention with the above object as a goal. Claim 1 is a vacuum cryogenic distillation pure water machine, whose main components are composed of a water supply tank, a reaction chamber, a water storage tank, a power pump and a refrigeration system. The water supply tank is a container for supplying water in the reaction chamber, and a pipeline is provided at the bottom to lead to the reaction chamber. The reaction chamber is composed of an upper cover and a receiving seat in a closed structure. An inner pipe, a wave absorber and a launch pipe are formed on the receiving seat, and a floating ball automatic control launch valve is provided at the upper end of the launch pipe. An upper and lower partition plate is installed at the upper end of the inner pipe, an upper and lower guide pipe is installed at a position corresponding to the inner pipe at the bottom of the upper cover, and a decompression solenoid valve is installed on one side. A conical guide tube is installed at the bottom of the reactor, the lower end outlet of the upper guide tube is connected to the upper end of the guide tube, an evaporator with a refrigeration system is installed around the inner periphery of the reaction chamber, and the tank is connected to the wastewater tank. On the other hand, an automatic drain check valve will be provided. The water storage tank is installed at the upper end of the reaction chamber, and the bottom is connected to the vertical guide pipe in the reaction chamber, and has a condenser inside. The power pump is a water pump that supplies main power with water, is installed at the bottom of the reaction chamber, the launch port of the power pump is connected to the lower guide pipe, and a compression nozzle is installed at the top end of the drain port, The compression nozzle extends into a guide tube in the reaction chamber, and a check valve is provided next to the discharge port. The check valve is connected to the flow guide tube, and the flow guide tube is connected to the reaction chamber. Conducts between the inner pipe and the outlet check valve. The refrigeration system has a closed circuit, in which a compressor, an auxiliary heat spreader, an evaporator, an expansion valve and a condenser and a small auxiliary condenser tube are provided in this order, and the evaporator is located inside the reaction chamber. The condenser and the small auxiliary condenser are installed in the water storage tank and the inner pipe, respectively. By using the above parts, the reaction chamber is evacuated by the pumping action of the power pump, so that water can be guided from the water supply tank into the reaction chamber, and the evaporation action proceeds by the heat generated by the compressor of the refrigeration system. Then, the water condenses after vacuum low-temperature distillation, flows into the bottom of the inner tube of the reaction chamber, and uses the conduction effect of the power pump to pump and store pure water along the upper guide tube to the water storage tank. Therefore, it is a vacuum cryogenic distillation pure water machine that can obtain clean pure water.

【0008】[0008]

【考案の実施の形態】[Embodiment of the invention]

本考案の目的、特徴及び効果を解説するため、下記の具体実施例及び実施図で 、本考案について詳しく説明する。 図1に示した通り、本考案は真空低温蒸留機の設計であり、主要は供水タンク 1、反応室2、蓄水タンク3、動力ポンプ4及び冷凍システム5等部品から構成 される。 供水タンク1は、真空低温蒸留機に供水する水を蓄積する容器であり、該底部 にパイプライン11を設け、反応室2に導接する。 反応室2は、図2及び図3に示した通り、上カバー21と受け座22を利用し て、密閉の中空結構体を構成し、受け座22上には内管221及び進水管23を 備え、パイプライン11に対応する連結位置に進水管23を配置し、更に進水管 23の上方に進水の極限水位を制御するため浮き玉自動制御進水弁24及び反応 室2内の廃水を廃水タンク228までに排出するため一方自動排水逆止水弁22 6を設置する。該内管221の頂端には上下仕切り板223、224を配置し、 上カバー21の底部に内管221の位置に対応する場所に下案内管211及び上 案内管212を設ける、更に凝縮効果を増加するため内部に小型補助凝縮管25 を設け、もう一端には減圧電磁弁213を設ける。上下案内管212,211は 上向きに反応室2の上方にある蓄水タンク3の底部に連結し、下案内管211は 下向きに内管221の内部に経由し、反応室2の下方にある動力ポンプ4と連結 し、又、内管221の底部には円錐状の導引管225が配置され、上案内管21 2の下端部は導引管225の上端部と接続し、反応室2の内部周縁には冷凍シス テム5の蒸発器53を配置している。 蓄水タンク3は、反応室2の上端に設置し、該底部は反応室2内の上下案内管 212、211と連結し、蓄水タンク3の内部には冷凍システム5の凝縮器55 を配置する。 動力ポンプ4は、水で主要動力を提供する水ポンプであり、反応室2の底に設 置され、動力ポンプ4の進水口41は下案内管211と連結し、又、排水口42 の頂端に圧縮ノズル43を設け、該圧縮ノズル43が反応室2内の導引管225 内に延伸し、該圧縮ノズル43の噴出口が導引管225の上方出口の位置に合わ せ、且つ一定の距離を保持し、更に該排水口42の隣に排水口逆止水弁46を設 け、該排水口逆止水弁46は導流管44に連結し、且つ該導流管44に活性炭4 5を設置し、該導流管44は反応室2の内管221及び排水口逆止水弁46の間 に連通する。 冷凍システム5は、封閉回路を具し、該回路上に順番に設けられているのはコ ンプレッサー51、補助散熱器52、蒸発器53、膨張弁54及び凝縮器55と 小型補助凝縮管25、該蒸発器53が反応室2内の底部周縁に設けられ、凝縮器 55は蓄水タンク3の内部に設置し、該小型補助凝縮管25は内管221の内部 に設置する。 In order to explain the purpose, features and effects of the present invention, the present invention will be described in detail with the following specific examples and execution drawings. As shown in FIG. 1, the present invention is a design of a vacuum cryogenic distillation machine, which mainly comprises components such as a water supply tank 1, a reaction chamber 2, a water storage tank 3, a power pump 4, and a refrigeration system 5. The water supply tank 1 is a container for storing water to be supplied to the vacuum cryogenic distillation machine. A pipeline 11 is provided at the bottom of the water supply tank 1 and is connected to the reaction chamber 2. As shown in FIGS. 2 and 3, the reaction chamber 2 forms a closed hollow structure using the upper cover 21 and the receiving seat 22, and the inner pipe 221 and the launch pipe 23 are provided on the receiving seat 22. The launching pipe 23 is disposed at a connection position corresponding to the pipeline 11, and furthermore, the wastewater in the floating ball automatic control launching valve 24 and the reaction chamber 2 is controlled above the launching pipe 23 to control the ultimate water level of the launching water. On the other hand, an automatic drain check valve 226 is installed to discharge to the waste water tank 228. Upper and lower partition plates 223 and 224 are arranged at the top end of the inner tube 221, and a lower guide tube 211 and an upper guide tube 212 are provided at a position corresponding to the position of the inner tube 221 at the bottom of the upper cover 21. To increase the size, a small auxiliary condenser tube 25 is provided inside, and a pressure reducing solenoid valve 213 is provided at the other end. The upper and lower guide tubes 212 and 211 are connected upward to the bottom of the water storage tank 3 above the reaction chamber 2, and the lower guide tube 211 passes downward through the inside of the inner tube 221 and the power below the reaction chamber 2. Connected to the pump 4, a conical guide tube 225 is disposed at the bottom of the inner tube 221, and the lower end of the upper guide tube 212 is connected to the upper end of the guide tube 225. The evaporator 53 of the refrigeration system 5 is arranged on the inner periphery. The water storage tank 3 is installed at the upper end of the reaction chamber 2, and the bottom is connected to the vertical guide pipes 212 and 211 in the reaction chamber 2, and the condenser 55 of the refrigeration system 5 is disposed inside the water storage tank 3. I do. The power pump 4 is a water pump that supplies main power with water, is installed at the bottom of the reaction chamber 2, the launch port 41 of the power pump 4 is connected to the lower guide pipe 211, and the top end of the drain port 42. The compression nozzle 43 is provided in the reaction chamber 2 and extends into the guide tube 225 in the reaction chamber 2. The outlet of the compression nozzle 43 is aligned with the position of the upper outlet of the guide tube 225 and is fixed. The distance is maintained, and a drain check valve 46 is provided adjacent to the drain 42, and the check valve 46 is connected to the flow guide pipe 44, and the activated carbon 4 is connected to the flow guide pipe 44. 5, the flow guide pipe 44 communicates between the inner pipe 221 of the reaction chamber 2 and the drain check valve 46. The refrigeration system 5 includes a closed circuit, and a compressor 51, an auxiliary heat spreader 52, an evaporator 53, an expansion valve 54, a condenser 55, and a small auxiliary condenser tube 25 are provided on the circuit in this order. The evaporator 53 is provided around the bottom of the reaction chamber 2, the condenser 55 is installed inside the water storage tank 3, and the small auxiliary condenser tube 25 is installed inside the inner tube 221.

【0009】[0009]

【実施例】【Example】

前記部品を利用し、図4、5を参照し、それぞれは本考案の圧縮ノズル、導引 管の出口と上案内管の入口の位置構造図及び部分構造拡大図である。図に示した 通りであるが、初めに1000ccから1500ccの蒸留水或いは沸騰後冷や した冷水を蓄水タンク3内に注入する。この時、水が上下案内管212、211 、動力ポンプ4、進水口41、排水口42内に流れ込み、排水口逆止水弁46は 水の重力を受けクローズ状態になり、従って、水は導流管44から反応室2内に 流れない。動力ポンプ4が起動すると、該動力ポンプ4は蓄水タンク3内の水を 下案内管211、進水口41に沿って更に加圧後、排水口42から圧縮ノズル4 3で再圧縮して高速的なジェット水流になり、該圧縮ノズル43では、進水口は 大径口で、排水口は小径口の円錐状の管体で、水が大径口から小径口の方に流れ ると高速水流が発生し、該小径口は導引管225とは適切な隙間を保留し、小径 口から高速水流が噴出したときは、この隙間に通ると低圧区を起こし、周囲の空 気や純水を高速水流内に吸引し、同時に上案内管212に流れ込む。 Referring to FIGS. 4 and 5, using the above components, the structure of the compression nozzle, the outlet of the guide tube and the inlet of the upper guide tube according to the present invention will be described. As shown in the figure, first, 1000 cc to 1500 cc of distilled water or cold water cooled after boiling is poured into the water storage tank 3. At this time, water flows into the upper and lower guide pipes 212 and 211, the power pump 4, the launch port 41, and the drain port 42, and the drain check valve 46 is closed by receiving the gravity of the water. It does not flow into the reaction chamber 2 from the flow tube 44. When the power pump 4 is started, the power pump 4 pressurizes the water in the water storage tank 3 further along the lower guide pipe 211 and the launch port 41, and then recompresses the water from the drain port 42 with the compression nozzle 43 to increase the speed. In the compression nozzle 43, the launching port is a large-diameter port, the drain port is a conical pipe with a small-diameter port, and when water flows from the large-diameter port to the small-diameter port, a high-speed water flow is generated. Occurs, and the small-diameter port retains an appropriate gap with the guiding pipe 225. When a high-speed water stream is ejected from the small-diameter port, a low-pressure zone is generated when passing through this gap, and surrounding air and pure water are removed. It is sucked into the high-speed water flow and flows into the upper guide tube 212 at the same time.

【0010】 上案内管212は、進水口は小径口で、排水口は大径口の円錐状の管体で、高 速水流が上案内管212の小径口から大径口に流れると、水流が減速し再び蓄水 タンク3内に戻る。蓄水タンク3内に戻った空気は蓄水タンク3の上方に設けた カバーの隙間から大気に戻り、水は蓄水タンク3内に保存され、更に動力ポンプ 4の循環用水として使われる。動力ポンプ4が続けて稼動するときは、蓄水タン ク3内の水は動力ポンプ4の加圧により、無限循環に圧縮ノズル43が吸引力を 起こさせる。即ち、圧縮ノズル43と導引管225は密閉区域で、この区域が低 圧を起こし、排水口逆止水弁46を吸い上げ、排水口をオープンする。図6、7 に示した通り、それぞれは本考案の排水口逆止水弁開閉の断面拡大図及び眺め図 である。排水口逆止水弁46と反応室2は導流管44で連通し、反応室2内の空 気や純水は導流管44に吸い取られる。従って、反応室2内の空気は動力ポンプ 4と圧縮ノズル43が起こした強力水流の汲引作用により、上案内管212に経 由して排出する。反応室2内は負圧状態になり、反応室2が負圧状態になると、 一方自動排水逆止水弁226は大気圧力の作用により、逆止水弁の弁カバーは排 水口を押さえ(図8に示した通り)、且つ、該一方自動排水逆止水弁226と排 水口逆止水弁46は弾性材から構成され(図7を参照)、主要は排水口を封じる 弁カバー261及び弁カバー261の周りに設けた逆止水弁本体の弾性連結アー ム262から構成した、連結アーム262、逆止水弁と弁カバー261の間にあ る隙間263は、適切な距離を保持し、これにより弁カバーは緊密に排水口を封 じでき、外部の空気或いは水を反応室2に入れない。[0010] The upper guide pipe 212 has a small-diameter opening at the launching port and a conical pipe with a large-diameter opening at the discharge port. Decelerates and returns to the water storage tank 3 again. The air returned to the water storage tank 3 returns to the atmosphere through a gap in a cover provided above the water storage tank 3, and the water is stored in the water storage tank 3 and further used as circulating water for the power pump 4. When the power pump 4 is continuously operated, the water in the water storage tank 3 causes the compression nozzle 43 to generate suction force in infinite circulation by the pressurization of the power pump 4. That is, the compression nozzle 43 and the guide tube 225 are closed areas, and this area generates a low pressure, sucks the drain check valve 46, and opens the drain. As shown in FIGS. 6 and 7, respectively, are a cross-sectional enlarged view and a perspective view of the opening and closing of the drain check valve of the present invention. The drainage check valve 46 and the reaction chamber 2 communicate with each other through a flow guide pipe 44, and air and pure water in the reaction chamber 2 are sucked into the flow guide pipe 44. Therefore, the air in the reaction chamber 2 is discharged through the upper guide pipe 212 by the pumping action of the strong water flow generated by the power pump 4 and the compression nozzle 43. When the inside of the reaction chamber 2 is in a negative pressure state and the reaction chamber 2 is in a negative pressure state, on the other hand, the automatic drain check valve 226 presses the drain cover by the action of atmospheric pressure and the valve cover of the check water valve presses the drain port (see FIG. 8), and the one-way automatic drain check valve 226 and the drain check valve 46 are made of an elastic material (see FIG. 7), and the valve cover 261 and the valve mainly seal the drain. The connection arm 262, which is formed of the elastic connection arm 262 of the check valve body provided around the cover 261, and the gap 263 between the check valve and the valve cover 261 maintain an appropriate distance, As a result, the valve cover can tightly close the drain port, and does not allow outside air or water to enter the reaction chamber 2.

【0011】 この時の浮き玉自動制御進水弁24は水の浮力を受けていないため、進水口を 閉鎖せず、供水タンク1内の水が圧力を受け、パイプライン11を経由し反応室 2内まで導引され、反応室2内の水位が適当な高度に至ると浮き玉自動制御進水 弁24は水の浮力により、進水口を閉鎖し、反応室2はすぐに密閉状態になる。 動力ポンプ4は継続的に汲引動作を実行することにより、反応室2は真空状態に なる。反応室2内の水は真空状態で冷凍システム5の蒸発器53と接触し、蒸発 器53が発する熱力によって蒸発し、真空低温蒸留現象が発生する。蒸留後の蒸 気は上昇し上下仕切り板223、224の下方に一層水蒸気が集まり、反応室2 内の水が続けて沸騰すると、一部の不純物がお湯の流動によって浮き上げられ、 上昇気流に伴い上昇する。これらの不純物が内管221に直接入るのを減少する ため、内管221の外側の上方部に上下仕切り板223、224を配置し、気流 の上昇ルートがS形になる。これらの不純物が上昇するときは、先に下仕切り板 224に当たり、下仕切り板224の下方には一層水蒸気が集まっているため、 これらの不純物は水蒸気と水玉に凝結し、下仕切り板224に残留或いは落下す る。この時点では、上仕切り板223に至る不純物は更に少なくなり、上仕切り 板223を通し、内管221内に入る不純物はほとんどなく、このとき、水蒸気 は内間221の下案内管211の低温管壁に凝結し、最後に内管221の底部に 集まる。且つ動力ポンプ4が継続稼動中、純水が導流管44に経由し導引管22 5内に汲引され、圧縮ノズル43の強力水流の汲引作用を利用し、上案内管21 2に沿って蓄水タンク3に流れ、この方式により、極めて清潔な飲用水を得られ る。At this time, since the floating ball automatic control launch valve 24 does not receive the buoyancy of water, the launch port is not closed, the water in the water supply tank 1 receives pressure, and the reaction chamber passes through the pipeline 11. When the water level in the reaction chamber 2 reaches an appropriate altitude, the floating ball automatic control launch valve 24 closes the launch port due to the buoyancy of the water, and the reaction chamber 2 is immediately closed. . The power pump 4 continuously performs a pumping operation, so that the reaction chamber 2 is in a vacuum state. The water in the reaction chamber 2 comes into contact with the evaporator 53 of the refrigeration system 5 in a vacuum state, evaporates by the heat generated by the evaporator 53, and a vacuum cryogenic distillation phenomenon occurs. After the distillation, the steam rises and more steam collects below the upper and lower partition plates 223 and 224, and when the water in the reaction chamber 2 continues to boil, some impurities are lifted up by the flow of the hot water, resulting in a rising airflow. It rises with it. In order to reduce the direct entry of these impurities into the inner tube 221, upper and lower partitioning plates 223 and 224 are arranged at the upper part outside the inner tube 221, so that the air flow ascending route becomes S-shaped. When these impurities rise, they hit the lower partition plate 224 first, and since more water vapor is collected below the lower partition plate 224, these impurities condense on the water vapor and polka dots and remain on the lower partition plate 224. Or fall. At this point, the amount of impurities reaching the upper partition plate 223 is further reduced, and almost no impurities pass through the upper partition plate 223 and enter the inner pipe 221. Condenses on the wall and finally collects at the bottom of the inner tube 221. And, while the power pump 4 is in continuous operation, pure water is drawn into the guiding pipe 225 via the flow guiding pipe 44, and utilizes the strong water flow of the compression nozzle 43 to draw along the upper guide pipe 212. The water flows into the water storage tank 3, and extremely clean drinking water can be obtained by this method.

【0012】 又、本考案では反応室2内の全ての反応作用が使用する熱力は冷凍システム5 中のコンプレッサーが提供している、封閉回路に沿って補助散熱器52にまで送 られ、適切な温度まで下げられ、更に熱気を封閉回路の蒸発器53内に導入し、 蒸発器53には適切な熱度を具し、反応室2内の水が受熱により、蒸発作用を起 こし、水蒸気を形成する。これにより、本考案はコンプレッサー51自体が発す る熱力を十分に有効利用し、もう一台の加熱装置の必要なしに蒸留作業を行い、 エネルギー節約の目的に達する。Also, in the present invention, the heat power used by all the reaction functions in the reaction chamber 2 is sent to the auxiliary heat spreader 52 along a closed circuit provided by a compressor in the refrigeration system 5 and is appropriately provided. The temperature is lowered to a lower level, and hot air is introduced into the evaporator 53 in the closed circuit. The evaporator 53 is provided with an appropriate degree of heat, and the water in the reaction chamber 2 receives the heat to cause an evaporative action to form water vapor. I do. As a result, the present invention makes full use of the thermal power generated by the compressor 51 itself, performs the distillation operation without the need for another heating device, and achieves the purpose of energy saving.

【0013】 又、蓄水タンク3内は冷凍システム5の凝縮器55を配置しているので、上案 内管212から蓄水タンク3内に引流した温水は凝縮器55の影響で温度をさげ 、この要因で、動力ポンプ4が低温純水を汲み上げ、下案内管211に通るとき は、下案内管211の管壁も低温状態になり、それにより、内管221中の水蒸 気が該下案内管211の管壁と接触すると、水蒸気が水玉に凝結し内管221の 底部に流れ込む。本考案中では、導流管44に活性炭45を配置する目的は、真 空低温蒸留後得られた純水中の、異臭或いは塩素ガスなどの有機物を濾過し、取 得した純水が極めて清潔な飲用水であるということである。Further, since the condenser 55 of the refrigeration system 5 is disposed in the water storage tank 3, the temperature of the hot water flowing from the inner pipe 212 into the water storage tank 3 is reduced by the influence of the condenser 55. Due to this factor, when the power pump 4 pumps the low-temperature pure water and passes through the lower guide tube 211, the wall of the lower guide tube 211 is also in a low temperature state, whereby the water vapor in the inner tube 221 is reduced. When it comes into contact with the pipe wall of the lower guide pipe 211, the water vapor condenses on polka dots and flows into the bottom of the inner pipe 221. In the present invention, the purpose of arranging the activated carbon 45 in the flow guide tube 44 is to filter organic substances such as off-flavors or chlorine gas in pure water obtained after vacuum low-temperature distillation, and to obtain pure water which is extremely clean. That is, it is a kind of drinking water.

【0014】 又、本考案は一定時間の使用が経った後は、反応室2内の沈殿物を清掃するた め、上カバー21の減圧電磁弁213を起動し、反応室2内の真空状態を解除で き(内外気圧が一致する)、受け座22底部の一方自動排水逆止水弁226が水 の重力を受け、オープンする。反応室2内不純物が残留する廃水を排出し、パイ プライン227を経由し、廃水タンク228までに導流する。廃水排出後、減圧 電磁弁213をスイッチ・オフし、且つ動力ポンプ4を再起動し、反応室2内は 再び真空状態になる。該一方自動排水逆止水弁226は気圧作用により、上方へ 移動して封閉状態を形成し、供水タンク1からパイプライン11で導流する水は 反応室に蓄水できる。After a certain period of use, the present invention activates the depressurizing solenoid valve 213 of the upper cover 21 to clean the sediment in the reaction chamber 2, and the vacuum state in the reaction chamber 2. Can be released (the inside and outside pressures match), and one automatic drain check valve 226 at the bottom of the receiving seat 22 receives the gravity of water and opens. The wastewater containing the impurities remaining in the reaction chamber 2 is discharged and led to a wastewater tank 228 via a pipeline 227. After discharging the wastewater, the pressure reducing solenoid valve 213 is turned off and the power pump 4 is restarted, and the inside of the reaction chamber 2 is again evacuated. On the other hand, the automatic drain check valve 226 moves upward due to the effect of air pressure to form a closed state, and water introduced from the water supply tank 1 through the pipeline 11 can be stored in the reaction chamber.

【0015】 又、前記反応室2の中に、該消波管222の設置する目的は、進水管23の上 方にある浮き玉式自動制御進水弁24の浮き玉241を遮蔽し、反応室2の水が 蒸発器53の蒸発作用に影響され起こった波動が、該浮き玉241に対して大き な影響を与えずに、浮き玉自動制御進水弁24が正確に進水量を制御できるとい うことである。The purpose of installing the wave absorber 222 in the reaction chamber 2 is to shield the floating ball 241 of the floating ball type automatic control launch valve 24 above the launch pipe 23, The wave in which the water in the chamber 2 is affected by the evaporating action of the evaporator 53 does not greatly affect the floating ball 241, and the floating ball automatic control launch valve 24 can accurately control the launch amount. That's what it means.

【0016】[0016]

【考案の効果】[Effect of the invention]

上記述べた通り、本考案は真空低温蒸留純水機の設計であり、独創性を持ち、 且つ進歩性と新規性を有するものである。なお、上述の実施例は本考案の制限範 囲を限定するものではなく、本考案に基づいて細部の改修或いは変更がなされる ものであって、本考案と同じ効果を有するものは、いずれも本考案の請求範囲に 属するものである。 As described above, the present invention is a design of a vacuum cryogenic distillation pure water machine, which has originality, and has inventive step and novelty. The embodiments described above are not intended to limit the scope of limitation of the present invention. Modifications or changes in details are made based on the present invention. It belongs to the claims of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本考案の構成部品の平面レイアウト図
である。
FIG. 1 is a plan layout diagram of components of the present invention.

【図2】図2は、本考案中の反応室と動力ポンプの立体
分解図である。
FIG. 2 is an exploded view of the reaction chamber and the power pump in the present invention.

【図3】図3は、本考案中の反応室の組み立て断面図で
ある。
FIG. 3 is an assembled sectional view of the reaction chamber in the present invention.

【図4】図4は、本考案の圧縮ノズル、導引管出口や上
案内管入口の位置構造図である。
FIG. 4 is a schematic view showing the structure of the compression nozzle, the outlet of the guide tube and the inlet of the upper guide tube according to the present invention;

【図5】図5は、図4の部分構造拡大図である。FIG. 5 is an enlarged view of a partial structure of FIG. 4;

【図6】図6は、本考案の出水口逆止水弁開閉状態断面
拡大図である。
FIG. 6 is an enlarged cross-sectional view of a water outlet check valve opened and closed according to the present invention.

【図7】図7は、本考案の一方自動排水逆止水弁或いは
出水口逆止水弁の眺め図である。
FIG. 7 is a perspective view of the one-way automatic drain check valve or the outlet check valve according to the present invention;

【図8】図8は、本考案の一方自動排水逆止水弁が大気
圧を受ける状態表示図である。
FIG. 8 is a view showing a state in which the one-way automatic drain check valve of the present invention receives the atmospheric pressure.

【符号の説明】[Explanation of symbols]

1 供水タンク 11 パイプライン 2 反応室 21 上カバー 211 下案内管 212 上案内管 213 減圧電磁弁 22 受け座 221 内管 222 消波管 223 上仕切り板 224 下仕切り板 225 導引管 226 一方自動排水逆止水弁 227 パイプライン 228 廃水タンク 23 進水管 24 浮き玉自動制御進水弁 241 浮き玉 25 小型補助凝縮管 261 弁カバー 262 連結アーム 263 隙間 3 蓄水タンク 4 動力ポンプ 41 進水口 42 排水口 43 圧縮ノズル 44 導流管 45 活性炭 46 排水口逆止水弁 5 冷凍システム 51 コンプレッサー 52 補助散熱器 53 蒸発器 54 膨張弁 55 凝縮器 DESCRIPTION OF SYMBOLS 1 Water supply tank 11 Pipeline 2 Reaction chamber 21 Upper cover 211 Lower guide pipe 212 Upper guide pipe 213 Decompression solenoid valve 22 Receiving seat 221 Inner pipe 222 Wave absorber 223 Upper partition 224 Lower partition 225 Guide pipe 226 On the other hand automatic drainage Check valve 227 Pipeline 228 Waste water tank 23 Launch tube 24 Floating ball automatic control launch valve 241 Floating ball 25 Small auxiliary condenser tube 261 Valve cover 262 Connecting arm 263 Gap 3 Water storage tank 4 Power pump 41 Launch port 42 Drain port 43 Compression nozzle 44 Flow guide tube 45 Activated carbon 46 Drain outlet check water valve 5 Refrigeration system 51 Compressor 52 Auxiliary heat spreader 53 Evaporator 54 Expansion valve 55 Condenser

Claims (1)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】 真空低温蒸留純水機であって、主な構成
部品は供水タンク、反応室、蓄水タンク、動力ポンプ及
び冷凍システムから構成され、その中に:供水タンク
は、反応室内の用水を提供する容器であって、底部に反
応室まで導通するパイプラインを設け;反応室は、上カ
バーと受け座から密閉結構体に構成され、受け座上には
内管、消波管及び進水管を成形し、且つ進水管の上端に
浮き玉自動制御進水弁を設け、内管の上端には上下仕切
り板を設置し、上カバーの底部に内管に対応している位
置に上下案内管を設け、更に片方に減圧電磁弁を設置
し、該内管の底部に円錐状の導引管を設け、上案内管の
下端出口を導引管の上端に導接し、反応室の内部周縁に
冷凍システムを有する蒸発器を設け、又、廃水タンクに
導通するため一方自動排水逆止水弁を設け;蓄水タンク
は、反応室の上端に設置し、該底部は反応室内の上下案
内管と連結し、内部には凝縮器を具し;動力ポンプは、
水で主要動力を提供する水ポンプであり、反応室の底に
設置し、動力ポンプの進水口は下案内管と連結し、又、
排水口の頂端に圧縮ノズルを設け、該圧縮ノズルが反応
室内の導引管内に延伸させ、更に該排水口の隣に逆止水
弁を設け、該排水口逆止水弁は導流管に連結し、該導流
管は反応室の内管及び出水口逆止水弁の間に導通し;冷
凍システムは、封閉回路を具し、該回路上に順番にコン
プレッサー、補助散熱器、蒸発器、膨張弁及び凝縮器と
小型補助凝縮管が設けられ、該蒸発器は反応室内の底部
周縁に設けられ、凝縮器と小型補助凝縮管はそれぞれ蓄
水タンクと内管の内部に設置され;前記部品を利用し、
動力ポンプの汲引作用にて反応室内を真空状態にするこ
とにより、水を供水タンクから反応室内に導引でき、更
に冷凍システムのコンプレッサーが発する熱力により、
蒸発作用を進行し、水が真空低温蒸留後凝縮して反応室
の内管底部までに流れ込み、且つ動力ポンプの導流効果
を利用し、純水を上案内管に沿って蓄水タンクまでに汲
み上げ保存することから、清潔な純水が得られる真空低
温蒸留純水機。
1. A vacuum cryogenic distillation pure water machine, wherein the main components include a water supply tank, a reaction chamber, a water storage tank, a power pump, and a refrigeration system, wherein: the water supply tank is provided inside the reaction chamber. A container for supplying water, provided at the bottom with a pipeline leading to the reaction chamber; the reaction chamber is formed in a closed structure from an upper cover and a receiving seat, and an inner pipe, a wave absorber and a The launch pipe is formed, and a floating ball automatic control launch valve is provided at the upper end of the launch pipe, an upper and lower partition plate is installed at the upper end of the inner pipe, and the upper and lower partitions are located at the bottom of the upper cover at positions corresponding to the inner pipe. A guide tube is provided, a pressure reducing solenoid valve is further provided on one side, a conical guide tube is provided at the bottom of the inner tube, a lower end outlet of the upper guide tube is brought into contact with an upper end of the guide tube, and the inside of the reaction chamber is formed. An evaporator with a refrigeration system is provided around the periphery. A water check valve is provided; a water storage tank is installed at an upper end of the reaction chamber, the bottom is connected to a vertical guide pipe in the reaction chamber, and a condenser is provided inside;
A water pump that provides main power with water, installed at the bottom of the reaction chamber, the launch port of the power pump is connected to the lower guide pipe,
A compression nozzle is provided at the top end of the drain port, the compression nozzle extends into the guide pipe in the reaction chamber, and a check valve is provided next to the drain port, and the check valve is connected to the flow pipe. Connected, the diversion tube communicates between the inner tube of the reaction chamber and the outlet check valve; the refrigeration system comprises a closed circuit, in which a compressor, an auxiliary heat spreader, and an evaporator are sequentially provided on the circuit. , An expansion valve and a condenser and a small auxiliary condenser tube are provided, the evaporator is provided at the bottom periphery in the reaction chamber, and the condenser and the small auxiliary condenser tube are respectively installed inside the water storage tank and the inner tube; Using parts,
By drawing a vacuum inside the reaction chamber by the pumping action of the power pump, water can be guided from the water supply tank into the reaction chamber, and further, by the heat generated by the compressor of the refrigeration system,
Evaporation progresses, water condenses after vacuum low-temperature distillation, flows into the bottom of the inner tube of the reaction chamber, and uses the conduction effect of the power pump to pump pure water to the water storage tank along the upper guide tube. A vacuum cryogenic distillation pure water machine that can obtain clean pure water by pumping and storing.
JP2002000771U 2002-02-19 2002-02-19 Vacuum low-temperature distillation pure water machine Expired - Lifetime JP3088070U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000771U JP3088070U (en) 2002-02-19 2002-02-19 Vacuum low-temperature distillation pure water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000771U JP3088070U (en) 2002-02-19 2002-02-19 Vacuum low-temperature distillation pure water machine

Publications (1)

Publication Number Publication Date
JP3088070U true JP3088070U (en) 2002-08-30

Family

ID=43239393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000771U Expired - Lifetime JP3088070U (en) 2002-02-19 2002-02-19 Vacuum low-temperature distillation pure water machine

Country Status (1)

Country Link
JP (1) JP3088070U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230006179A (en) * 2021-07-02 2023-01-10 김춘경 Distilled liquor manufacturing deivce

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230006179A (en) * 2021-07-02 2023-01-10 김춘경 Distilled liquor manufacturing deivce

Similar Documents

Publication Publication Date Title
CN201288071Y (en) Vacuum distillation wastewater treatment device
WO2011085669A1 (en) Low-temperature heat-driven distillation separation apparatus for evaporating aqueous solution under negative pressure and method for obtaining distilled water
CN107522342A (en) A kind of sewage treatment unit
CN109095535A (en) Sewage evaporation enrichment facility and its operating method
CN209635926U (en) Falling film evaporation couples absorption refrigeration high-salt sewage processing equipment
CN102774913B (en) Short-flow composite membrane sewage treatment device
JP3088070U (en) Vacuum low-temperature distillation pure water machine
US6926808B2 (en) Vacuum low-temperature distilled pure water dispenser
CN2839249Y (en) Energy-saving distilled water machine
US20050115878A1 (en) System for desalinating and purifying seawater and devices for the system
CN207739314U (en) A kind of environment-friendly type rainwater purification collection device
CN208204527U (en) A kind of steam trap connection of recyclable steam water
CN107129089B (en) Water purifying equipment
CN108815869A (en) Liquid-purifying device
CN211513454U (en) Integrated evaporator
TW480326B (en) Low temperature vacuum distillation water dispenser that makes use of heat exchange performed by compressor
CN207671846U (en) A kind of sewage treatment unit
CN219907088U (en) High-salt water low-temperature heat pump evaporation concentration system
CN206184013U (en) System for utilize air heat pump low temperature evaporative concentration alcohol waste liquid
CN216668079U (en) Energy-saving full-automatic condensate water recovery device
CN202744356U (en) Short process composite membrane sewage treatment equipment
CN216169952U (en) Single-cycle alcohol recovery concentrator
CN220537527U (en) Waste acid concentration distillation system
CN206814564U (en) A kind of purifier
CN208308615U (en) One kind being used for sewage treatment zero-emission evaporator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 6