JP3084979B2 - Capacitor voltage divider circuit - Google Patents

Capacitor voltage divider circuit

Info

Publication number
JP3084979B2
JP3084979B2 JP04305733A JP30573392A JP3084979B2 JP 3084979 B2 JP3084979 B2 JP 3084979B2 JP 04305733 A JP04305733 A JP 04305733A JP 30573392 A JP30573392 A JP 30573392A JP 3084979 B2 JP3084979 B2 JP 3084979B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
circuit
smoothing capacitor
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04305733A
Other languages
Japanese (ja)
Other versions
JPH06165496A (en
Inventor
泉 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP04305733A priority Critical patent/JP3084979B2/en
Publication of JPH06165496A publication Critical patent/JPH06165496A/en
Application granted granted Critical
Publication of JP3084979B2 publication Critical patent/JP3084979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、複数のコンデンサを
直列に接続して電源に接続した場合の各コンデンサの電
圧を均等にするコンデンサ分圧回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitor voltage dividing circuit for equalizing the voltage of each capacitor when a plurality of capacitors are connected in series and connected to a power supply.

【0002】[0002]

【従来の技術】図4は複数のコンデンサを直列に接続し
て電源に接続した場合の各コンデンサの電圧を均等に分
担させるコンデンサ分圧回路の従来例を示した回路図で
ある。この図4において、交流電源2に接続した整流器
3により、これに入力した交流電力を直流電力に変換し
て出力する。この整流器3は一般にダイオードのブリッ
ジ接続で構成しているが、この整流器3が出力する直流
電圧にはそのままではリップル分が含まれているので、
コンピュータ等の電子装置が負荷8として接続される場
合は、このリップル分が原因で誤動作を生ずる恐れがあ
る。そこで整流器3の直流出力側にコンデンサを接続し
てこのリップル分を吸収・除去するようにしている。
2. Description of the Related Art FIG. 4 is a circuit diagram showing a conventional example of a capacitor voltage dividing circuit for equally sharing the voltage of each capacitor when a plurality of capacitors are connected in series and connected to a power supply. In FIG. 4, the rectifier 3 connected to the AC power supply 2 converts the input AC power into DC power and outputs it. The rectifier 3 is generally configured by a diode bridge connection. However, the DC voltage output from the rectifier 3 contains a ripple component as it is.
When an electronic device such as a computer is connected as the load 8, a malfunction may occur due to the ripple. Therefore, a capacitor is connected to the DC output side of the rectifier 3 to absorb and remove the ripple.

【0003】リップル分を吸収・除去するコンデンサを
平滑コンデンサと称するが、小容量の平滑コンデンサで
はリップル分を殆ど含んでいない平滑な直流電圧は得ら
れないので、整流器3の直流出力側には大容量の平滑コ
ンデンサを接続する必要がある。ところで電解コンデン
サは小形であっても大きな静電容量を備えることが出来
るので、平滑コンデンサとして多用されている。しかし
ながら、電解コンデンサは高い電圧での使用が出来ない
のが欠点である。そこで整流器3の直流出力電圧VD
高い値の場合は、複数の電解コンデンサを直列に接続し
て使用することになる。
[0003] A capacitor that absorbs and removes the ripple component is called a smoothing capacitor. However, a smoothing capacitor having a small capacity cannot provide a smooth DC voltage containing almost no ripple component. It is necessary to connect a smoothing capacitor with a capacity. By the way, since an electrolytic capacitor can have a large capacitance even if it is small, it is widely used as a smoothing capacitor. However, the disadvantage is that electrolytic capacitors cannot be used at high voltages. Therefore, when the DC output voltage V D of the rectifier 3 is a high value, a plurality of electrolytic capacitors are connected in series and used.

【0004】図4の従来例回路では2個の電解コンデン
サ、即ち第1平滑コンデンサ4と第2平滑コンデンサ5
を直列接続して整流器3の直流出力側に接続している
が、この直流出力電圧がVD である。このように複数の
コンデンサを直列接続して使用する場合は各コンデンサ
の静電容量は同じ値にして、それぞれの電圧分担を均等
にさせるのが普通である。よって第1平滑コンデンサ4
と第2平滑コンデンサ5とは、それぞれがVD /2なる
電圧を分担することになるが、これらの平滑コンデンサ
の能力を最大限に発揮させるために、平滑コンデンサ定
格電圧VC は分担電圧VD /2よりも僅かに高い値に選
定する。それ故、何らかの原因で平滑コンデンサの分担
電圧に不均衡を生じて、例えば第1平滑コンデンサ4の
分担電圧が低下すると、この低下分だけ第2平滑コンデ
ンサ5の分担電圧が上昇して平滑コンデンサ定格電圧V
C を越えるような事態になると、この第2平滑コンデン
サ5は過電圧により破損してしまうことになる。
In the conventional circuit shown in FIG. 4, two electrolytic capacitors, that is, a first smoothing capacitor 4 and a second smoothing capacitor 5 are provided.
The While series connection to connected to the DC output side of the rectifier 3, the DC output voltage is V D. When a plurality of capacitors are used in series as described above, the capacitance of each capacitor is usually set to the same value so that the voltage sharing of each capacitor is equalized. Therefore, the first smoothing capacitor 4
And the second smoothing capacitor 5 share a voltage of V D / 2, respectively. In order to maximize the performance of these smoothing capacitors, the smoothing capacitor rated voltage VC is changed to the shared voltage V C. Choose a value slightly higher than D / 2. Therefore, when the voltage shared by the smoothing capacitors is unbalanced for some reason, for example, when the voltage shared by the first smoothing capacitor 4 decreases, the voltage shared by the second smoothing capacitor 5 increases by the reduced amount, and Voltage V
If the situation exceeds C , the second smoothing capacitor 5 will be damaged by overvoltage.

【0005】そこで複数のコンデンサを直列接続して使
用する場合は、各コンデンサに並列に抵抗を接続して、
各コンデンサの分担電圧に不均衡が生じないようにして
いる。図4の従来例回路においては、第1平滑コンデン
サ4には第1分圧抵抗6を並列に接続し、第2平滑コン
デンサ5には第2分圧抵抗7を並列に接続する。ここで
第1平滑コンデンサ4の静電容量と第2平滑コンデンサ
5の静電容量とは同じ値であることから、第1分圧抵抗
6の抵抗値と第2分圧抵抗7の抵抗値とは同じ値にす
る。
In order to use a plurality of capacitors connected in series, a resistor is connected in parallel to each capacitor.
An imbalance does not occur in the shared voltage of each capacitor. In the conventional circuit shown in FIG. 4, a first voltage dividing resistor 6 is connected in parallel to the first smoothing capacitor 4, and a second voltage dividing resistor 7 is connected in parallel to the second smoothing capacitor 5. Here, since the capacitance of the first smoothing capacitor 4 and the capacitance of the second smoothing capacitor 5 have the same value, the resistance of the first voltage dividing resistor 6 and the resistance of the second voltage dividing resistor 7 Have the same value.

【0006】[0006]

【発明が解決しようとする課題】ところで、この平滑コ
ンデンサに並列接続する分圧抵抗の抵抗値が無限大であ
るとすると、これは分圧抵抗を接続しないのと同じこと
であり、直列接続したコンデンサの電圧を均等に維持す
る効果は期待出来ない。即ち第1分圧抵抗6と第2分圧
抵抗7の抵抗値をあまり大きくすることは出来ない。そ
こでこれら第1分圧抵抗6と第2分圧抵抗7との抵抗値
をRとすると、直流電圧はVD であるから、両分圧抵抗
6,7で発生する電力損失Wは下記の数1に示す値とな
る。
Assuming that the resistance value of the voltage-dividing resistor connected in parallel to the smoothing capacitor is infinite, this is the same as not connecting the voltage-dividing resistor. The effect of maintaining the voltage of the capacitor even cannot be expected. That is, the resistance values of the first voltage dividing resistor 6 and the second voltage dividing resistor 7 cannot be made too large. Therefore, assuming that the resistance value of the first voltage dividing resistor 6 and the second voltage dividing resistor 7 is R, the DC voltage is V D , and the power loss W generated by the two voltage dividing resistors 6 and 7 is as follows. The value shown in FIG.

【0007】[0007]

【数1】 (Equation 1)

【0008】即ち直流電圧VD が高いほど、或いは分圧
抵抗値Rが小さいほど発生損失Wが大きくなるので、装
置の効率が低下するばかりではなく、分圧抵抗の温度が
上昇したり大形になるなどの不都合も生じる。そこでこ
の発明の目的は、コンデンサ分圧回路で発生する電力損
失を低減し、装置を小形化することにある。
That is, the higher the DC voltage V D or the smaller the dividing resistance value R, the greater the loss W, so that not only the efficiency of the device is reduced but also the temperature of the dividing resistor rises and Inconveniences such as becoming Therefore, an object of the present invention is to reduce power loss generated in a capacitor voltage dividing circuit and to reduce the size of a device.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めにこの発明のコンデンサ分圧回路は、複数のコンデン
サを直列に接続して電源に接続し、これらのコンデンサ
のそれぞれに別個の抵抗を並列接続する構成のコンデン
サ分圧回路において、サージ吸収素子と抵抗との直列接
続回路を前記コンデンサのそれぞれに別個に並列接続す
るものとするが、前記サージ吸収素子に印加される電圧
が前記電源の電圧をコンデンサの直列接続数で割った値
のときにこのサージ吸収素子を流れる電流は小さな値で
あるが、印加される電圧がこれよりも少し高くなれば急
激に大きな電流が流れる特性のサージ吸収素子を選定す
るものとする。
In order to achieve the above object, a capacitor voltage dividing circuit according to the present invention comprises a plurality of capacitors connected in series to a power supply, and a separate resistor is provided for each of these capacitors. In a capacitor voltage dividing circuit configured to be connected in parallel, a series connection circuit of a surge absorbing element and a resistor is separately connected in parallel to each of the capacitors, but a voltage applied to the surge absorbing element is a voltage of the power supply. When the voltage is divided by the number of capacitors connected in series, the current flowing through this surge absorbing element is a small value, but if the applied voltage is slightly higher, a suddenly large current flows, An element shall be selected.

【0010】[0010]

【作用】この発明は、複数のコンデンサを直列に接続し
て電源に接続した場合に、サージ吸収素子と抵抗との直
列接続で構成した回路を前記コンデンサのそれぞれに別
個に並列接続して分圧回路を構成するようにしている。
このような回路構成にすることで、常時はサージ吸収素
子の僅かな漏れ電流のみがこのサージ吸収素子に直列接
続した抵抗に流れるので、この抵抗の発生損失は極く僅
かであり、しかもコンデンサの分担電圧に不均衡を生じ
た場合でもサージ吸収素子の直列抵抗が分担する電圧を
抑制しているので、この直列抵抗に流れる電流は僅かで
あり、発生損失を小さく抑制しながら不平衡電圧を是正
するものである。
According to the present invention, when a plurality of capacitors are connected in series and connected to a power source, a circuit constituted by a series connection of a surge absorbing element and a resistor is separately connected in parallel to each of the capacitors to divide the voltage. A circuit is configured.
With such a circuit configuration, only a small leakage current of the surge absorbing element always flows through the resistor connected in series with the surge absorbing element. Even if an imbalance occurs in the shared voltage, the voltage shared by the series resistance of the surge absorbing element is suppressed, so the current flowing through this series resistance is small, and the unbalanced voltage is corrected while suppressing the loss generated. Is what you do.

【0011】[0011]

【実施例】図1は本発明の第1実施例を表した回路図で
あるが、この図1に図示の交流電源2、整流器3、第1
平滑コンデンサ4、第2平滑コンデンサ5、及び負荷8
の名称・用途・機能は図4で既述の従来例回路の場合と
同じであるから、これらの説明は省略する。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. In FIG. 1, an AC power supply 2, a rectifier 3, and a first
Smoothing capacitor 4, second smoothing capacitor 5, and load 8
Are the same as in the case of the conventional circuit described above with reference to FIG.

【0012】本発明においては、この第1実施例回路に
図示のように、第1サージ吸収素子11と第1抵抗12
との直列接続回路を第1平滑コンデンサ4に並列に接続
し、第2サージ吸収素子13と第2抵抗14との直列接
続回路を第2平滑コンデンサ5に並列に接続する。ここ
で両サージ吸収素子11,13は酸化亜鉛を主体とし
て、これに他の金属酸化物例えば酸化プラセオジム,酸
化コバルト等を添加して焼結したセラミックスで構成す
るものとする。それ故、第1平滑コンデンサ4に定常的
に印加される電圧がVD /2の場合は、第1サージ吸収
素子11の漏れ電流は極く僅かであり、この漏れ電流が
流れる第1抵抗12の発生損失も極く僅かである。
In the present invention, as shown in the circuit of the first embodiment, a first surge absorbing element 11 and a first resistor 12 are provided.
Are connected in parallel to the first smoothing capacitor 4, and a series connection circuit of the second surge absorbing element 13 and the second resistor 14 is connected in parallel to the second smoothing capacitor 5. Here, the surge absorbing elements 11 and 13 are made of ceramics mainly composed of zinc oxide and sintered by adding other metal oxides such as praseodymium oxide and cobalt oxide. Therefore, when the voltage constantly applied to the first smoothing capacitor 4 is V D / 2, the leakage current of the first surge absorbing element 11 is extremely small, and the first resistor 12 through which this leakage current flows Is very small.

【0013】ここで何らかの原因で第1平滑コンデンサ
4と第2平滑コンデンサ5との電圧分担に不平衡を生じ
て、第1平滑コンデンサ4の分担電圧が前述のVD /2
よりも高い値の平滑コンデンサ定格電圧VC まで上昇し
たとすると、第1サージ吸収素子11はVD /2なる電
圧を分担し、第1抵抗12はVC とVD /2との差電圧
を分担することになる。ここで第1サージ吸収素子11
としては前述のVC なる電圧において平滑コンデンサ漏
れ電流IC が流れるものを選定する。
Here, an unbalance occurs in the voltage sharing between the first smoothing capacitor 4 and the second smoothing capacitor 5 for some reason, and the shared voltage of the first smoothing capacitor 4 becomes V D / 2.
Assuming that the voltage rises to the smoothing capacitor rated voltage V C of a higher value, the first surge absorbing element 11 shares the voltage of V D / 2, and the first resistor 12 outputs the voltage difference between V C and V D / 2. Will be shared. Here, the first surge absorbing element 11
Is selected so that the smoothing capacitor leakage current I C flows at the aforementioned voltage V C.

【0014】即ち、第1平滑コンデンサ4の分担電圧が
上昇すると、第1平滑コンデンサ4に並列に接続されて
いるサージ吸収回路に流れる電流がI C まで上昇し、各
平滑コンデンサの分担電圧の不均衡を是正する。各平滑
コンデンサの電圧分担が均衡している通常時は、サージ
吸収回路に印加される電圧はV D /2以下であり、流れ
る電流も僅かであることから第1抵抗12での発生損失
も僅かである。
That is, the shared voltage of the first smoothing capacitor 4 is
When it rises, it is connected in parallel with the first smoothing capacitor 4
Current flowing through the surge absorbing circuit increases to I C
Correct the imbalance of the shared voltage of the smoothing capacitor. Each smooth
Normally, when the voltage sharing of the capacitor is balanced,
The voltage applied to the absorption circuit is V D / 2 or less,
Loss due to the first resistor 12
Is also slight.

【0015】図2は本発明の第2実施例を表したグラフ
であって、図1で図示の第1実施例回路の場合のサージ
吸収素子の特性を表したものであって、横軸は電流,縦
軸は電圧を示している。この図2に図示のように、直流
電圧がVD の場合の平滑コンデンサ1個当たりの分担電
圧はVD /2であり、このときの漏れ電流が1mA程度と
なるような特性のサージ吸収素子を選定する。この漏れ
電流1mAよりも左側が漏れ電流領域であり、これよりも
右側が制限電圧領域であり、平滑コンデンサ定格電圧V
C での電流が前述したI11となる。
FIG. 2 is a graph showing the second embodiment of the present invention, and shows the characteristics of the surge absorbing element in the case of the circuit of the first embodiment shown in FIG. The current and the vertical axis indicate voltage. As shown in FIG. 2, shared voltage per smoothing capacitor when the DC voltage V D is V D / 2, the surge absorbing element characteristics such as leakage current at this time is about 1mA Is selected. The left side of the leakage current 1 mA is a leakage current region, and the right side thereof is a limited voltage region.
Current at C is I 11 described above.

【0016】図3はサージ吸収素子の等価回路をあらわ
した等価回路図であって、キャパシタンス分22と非直
線抵抗分23との並列接続回路に直列インダクタンス分
21と直列抵抗分24とが直列接続した回路構成になっ
ている。
FIG. 3 is an equivalent circuit diagram showing an equivalent circuit of the surge absorbing element. A series connection of a capacitance component 22 and a non-linear resistance component 23 has a series inductance component 21 and a series resistance component 24 connected in series. Circuit configuration.

【0017】[0017]

【発明の効果】この発明によれば、複数のコンデンサを
直列に接続して電源に接続した場合に、サージ吸収素子
と抵抗との直列接続回路をこれら各コンデンサのそれぞ
れに別個に並列接続する。このような回路構成にするこ
とで、各コンデンサが電圧を均等に分担している場合
は、並列回路の抵抗にはサージ吸収素子からの僅かな漏
れ電流が流れるのみであるから、この抵抗の発生損失は
極く僅かである。又電圧分担が不平衡になった場合の高
い電圧を分担するコンデンサに属する並列抵抗に流れる
電流は、数2で示すように小さな値である。従ってコン
デンサの分担電圧を均等にするための分圧回路を構成し
ている抵抗の発生損失を従来よりも大幅に抑制すること
が出来るので、この分圧回路ようの抵抗を小形にして装
置全体を小さくすることが出来るし、発生損失の抑制に
より装置全体の効率を向上出来る効果も合わせて得られ
る。
According to the present invention, when a plurality of capacitors are connected in series and connected to a power supply, a series connection circuit of a surge absorbing element and a resistor is separately connected in parallel to each of these capacitors. With such a circuit configuration, when each capacitor equally shares the voltage, only a small leakage current from the surge absorbing element flows through the resistance of the parallel circuit. The losses are negligible. When the voltage distribution becomes unbalanced, the current flowing through the parallel resistor belonging to the capacitor sharing the high voltage has a small value as shown in Expression 2. Therefore, the loss generated by the resistors constituting the voltage dividing circuit for equalizing the voltage shared by the capacitors can be significantly suppressed compared to the conventional art. It is possible to reduce the size, and also to obtain the effect of improving the efficiency of the entire apparatus by suppressing the generation loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を表したグラフFIG. 2 is a graph showing a second embodiment of the present invention.

【図3】サージ吸収素子の等価回路をあらわした等価回
路図
FIG. 3 is an equivalent circuit diagram showing an equivalent circuit of the surge absorbing element.

【図4】複数のコンデンサを直列に接続して電源に接続
した場合の各コンデンサの電圧を均等に分担させるコン
デンサ分圧回路の従来例を示した回路図
FIG. 4 is a circuit diagram showing a conventional example of a capacitor voltage dividing circuit for equally sharing the voltage of each capacitor when a plurality of capacitors are connected in series and connected to a power supply.

【符号の説明】[Explanation of symbols]

2 交流電源 3 整流器 4 第1平滑コンデンサ 5 第2平滑コンデンサ 6 第1分圧抵抗 7 第2分圧抵抗 11 第1サージ吸収素子 12 第1抵抗 13 第2サージ吸収素子 14 第2抵抗 21 直列インダクタンス分 22 キャパシタンス分 23 非直線抵抗分 24 直列抵抗分 Reference Signs List 2 AC power supply 3 Rectifier 4 First smoothing capacitor 5 Second smoothing capacitor 6 First voltage dividing resistor 7 Second voltage dividing resistor 11 First surge absorbing element 12 First resistor 13 Second surge absorbing element 14 Second resistor 21 Series inductance Min 22 Capacitance 23 Non-linear resistance 24 Series resistance

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】交流電圧を整流して得られる電源に複数の
コンデンサを直列に接続し、サージ吸収素子と抵抗との
直列接続回路を前記コンデンサのそれぞれに別個に並列
接続する構成のコンデンサ分圧回路において、前記サー
ジ吸収素子に印加される電圧が前記電源の電圧をコンデ
ンサの直列接続数で割った値のときにこのサージ吸収素
子を流れる電流は小さな値であるが、印加される電圧が
これよりも少し高くなれば急激に大きな電流が流れる特
性のサージ吸収素子を選定することを特徴とするコンデ
ンサ分圧回路。
A capacitor voltage divider having a configuration in which a plurality of capacitors are connected in series to a power supply obtained by rectifying an AC voltage, and a series connection circuit of a surge absorbing element and a resistor is separately connected in parallel to each of the capacitors. In the circuit, the server
The voltage applied to the absorption element converts the voltage of the power supply.
When the value is divided by the number of series connected
The current flowing through the element is small, but the applied voltage is
If it is slightly higher than this, a suddenly large current will flow.
Voltage divider circuit, characterized by selecting a surge absorbing element with a characteristic.
JP04305733A 1992-11-17 1992-11-17 Capacitor voltage divider circuit Expired - Fee Related JP3084979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04305733A JP3084979B2 (en) 1992-11-17 1992-11-17 Capacitor voltage divider circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04305733A JP3084979B2 (en) 1992-11-17 1992-11-17 Capacitor voltage divider circuit

Publications (2)

Publication Number Publication Date
JPH06165496A JPH06165496A (en) 1994-06-10
JP3084979B2 true JP3084979B2 (en) 2000-09-04

Family

ID=17948698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04305733A Expired - Fee Related JP3084979B2 (en) 1992-11-17 1992-11-17 Capacitor voltage divider circuit

Country Status (1)

Country Link
JP (1) JP3084979B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056221B2 (en) * 2007-07-10 2012-10-24 富士電機株式会社 Soft start circuit and DC-DC converter
CN102474191B (en) * 2009-08-07 2015-01-07 大金工业株式会社 Voltage smoothing circuit
JP5769764B2 (en) * 2013-07-10 2015-08-26 三菱電機株式会社 AC / DC converter, motor drive, compressor drive, air conditioner, heat pump water heater
KR20170111592A (en) 2016-03-29 2017-10-12 엘에스산전 주식회사 Apparatus for voltage balancing for dc link capacitor in inverter
JP7127582B2 (en) * 2019-03-11 2022-08-30 株式会社明電舎 clamp circuit

Also Published As

Publication number Publication date
JPH06165496A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
US10622884B2 (en) Electric circuit arrangement for the input protection circuit of a switching power supply and a switching power supply
CA2575944C (en) Resistor dropper power supply with surge protection
EP2784926A2 (en) Voltage balancing system and method for multilevel converters
RU2347306C2 (en) System of protecting direct current device
US20070236969A1 (en) Aircraft power convertor with improved voltage output characteristics
EP0083717B1 (en) D.c. power supplies
JP3084979B2 (en) Capacitor voltage divider circuit
JP2003339164A (en) Switching power circuit and inverter device
WO2018101081A1 (en) Power supply device, lighting equipment, and method for manufacturing power supply device
US20150270706A1 (en) Over-voltage suppression circuit
US20070133237A1 (en) Power converter
JPS5820552B2 (en) thyristor conversion device
JPH04359674A (en) Dc power supply
JP7108526B2 (en) power converter
JP2766805B2 (en) Power supply smoothing device
CN110971112A (en) Power supply device, electric appliance, and filter circuit
JP2509614B2 (en) Protection circuit
CN110313123B (en) Power supply circuit
JPS63194522A (en) Overvoltage protective circuit of high voltage dc source
JPS585527B2 (en) Hand-painted hand warmer
US2439938A (en) Rectifier system
Yarmack Selenium rectifiers and their design
JPH028555Y2 (en)
JP3294905B2 (en) DC high voltage generator
JPS59202727A (en) Overvoltage preventing device of semiconductor switch

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees