JP3084460U - Heat exchanger for refrigeration or air conditioning equipment - Google Patents

Heat exchanger for refrigeration or air conditioning equipment

Info

Publication number
JP3084460U
JP3084460U JP2001005800U JP2001005800U JP3084460U JP 3084460 U JP3084460 U JP 3084460U JP 2001005800 U JP2001005800 U JP 2001005800U JP 2001005800 U JP2001005800 U JP 2001005800U JP 3084460 U JP3084460 U JP 3084460U
Authority
JP
Japan
Prior art keywords
water
heat exchanger
refrigerant
heat
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001005800U
Other languages
Japanese (ja)
Inventor
和信 呉
Original Assignee
和信 呉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和信 呉 filed Critical 和信 呉
Priority to JP2001005800U priority Critical patent/JP3084460U/en
Application granted granted Critical
Publication of JP3084460U publication Critical patent/JP3084460U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】 【課題】冷却効率が高く、エネルギの消耗をも抑えた冷
凍或いは空調用熱交換器を提供する。 【解決手段】縦向きに配列された放熱フィン110組間
に、複数の管を並列させて連結する方式による冷媒放熱
管120を横向きで穿設した熱交換器10と、並びに該
フィン110の上下両側を延伸させて更に放熱面積を増
加し、また給水システム20においては垂水箱210を
設けて無圧力状態で水流をフィン上に提供するように
し、貯水箱220で水を収集させた後、水管232を利
用することによって再び水が該垂水箱210中に導入さ
れるようにし、これを繰り返すと共に蒸発した分の水が
外部より自動に補充されるようにする。
(57) [Problem] To provide a refrigeration or air conditioning heat exchanger having high cooling efficiency and low energy consumption. A heat exchanger (10) having a plurality of tubes arranged in parallel and connected in a horizontal direction between a pair of radiating fins (110) arranged in a vertical direction, and a heat exchanger (10) vertically piercing the fins (110). After extending both sides to further increase the heat radiation area, the water supply system 20 is provided with a dripping box 210 to provide a water flow on the fins under no pressure, and water is collected in the water storage box 220. By utilizing the water 232, the water is again introduced into the dripping box 210, and this is repeated, and the evaporated water is automatically replenished from the outside.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the invention belongs]

本考案は冷凍或いは空調設備用の熱交換器に係り、特に冷凍或いは空調設備の 作動効率を高める半空冷半水冷式の凝縮器(コンデンサー)構造を具有するもの に関わる。 The present invention relates to a heat exchanger for refrigeration or air-conditioning equipment, and more particularly to a heat exchanger having a half-air-cooled half-water-cooled condenser (condenser) structure for improving the operation efficiency of refrigeration or air-conditioning equipment.

【0002】[0002]

【従来の技術】[Prior art]

空調或いは冷凍設備中には、主に蒸発器内において外部より導入した空気と、 液体冷媒とで熱交換を行うものである。この種の気体冷媒による方法では、凝縮 器(コンデンサー)中の圧縮機で先に冷却を経て圧縮されて高密度となった気体 を、更に凝縮器で冷却して液体冷媒とし、これを絶えず繰り返す方式となってい る。冷却工程全体で消費される電力は凝縮器本体より来るものであり、凝縮器の 冷却放熱効率は高められて冷媒の温度は大幅に下げられることになる。即ち、圧 縮機をシステム中で運転させるに当たって、最低限の臨界圧力で凝縮を行うこと により、容易に優れた冷凍効果が提供されるものであり、またそれによって圧縮 機のモータ出力は、エネルギ節約の目的も同時に達成している。 In air conditioning or refrigeration equipment, heat exchange is mainly performed between air introduced from outside in the evaporator and liquid refrigerant. In this type of gas refrigerant method, the gas that has been compressed and cooled to a high density by the compressor in the condenser is further cooled by the condenser into a liquid refrigerant, and this is repeated constantly. It is a method. The electric power consumed in the entire cooling process comes from the condenser body, and the cooling heat radiation efficiency of the condenser is increased, and the temperature of the refrigerant is greatly reduced. In other words, when the compressor is operated in the system, by condensing at the minimum critical pressure, an excellent refrigeration effect is easily provided, and the motor output of the compressor is thereby reduced by the energy. The goal of saving is also achieved at the same time.

【0003】 また公知構造のフィン式凝縮器による冷凍或いは空調設備においては、図1に 示すように、凝縮器にフィンが並列しており、これは冷媒管から横向きに穿入し て密集した構造を成しているものであり、一本の冷媒管が迂回して並列し、一貫 して最後部にまで至っており、圧縮機により高圧気体に圧縮された冷媒は、各列 の冷媒管に導入されて上方から下方にスムーズに冷却されて行き、冷却の過程に おいてはファンモータによってファンが回転し、外部の空気を導入して凝縮器内 部冷媒管間の空気通路を予冷し、空気と冷媒管及びフィンに対して熱交換を行い 、凝縮器の冷媒液化により放出された熱量が迅速に奪われるようになっている。In a refrigeration or air-conditioning system using a fin-type condenser having a known structure, as shown in FIG. 1, fins are arranged in parallel with the condenser, and the fins are laterally penetrated from a refrigerant pipe and densely arranged. One refrigerant pipe is bypassed and paralleled around the pipe, consistently reaching the end, and the refrigerant compressed into high-pressure gas by the compressor is introduced into each row of refrigerant pipes. In the cooling process, the fan is rotated by a fan motor to introduce external air to pre-cool the air passage between the refrigerant tubes inside the condenser, Heat is exchanged with the refrigerant pipe and the fins, and the amount of heat released by the refrigerant liquefaction of the condenser is quickly taken away.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the invention]

しかし上述のような公知構造の凝縮器には以下のような欠点がある。例えば単 一の管によって一貫して最後部にまで至るものであり、また高圧気体の冷媒が上 方より注入される方式を採用していることより、冷媒が放熱管の後段(約1/6或 いは1/4)に至ったとき、既に殆ど液化した液体冷媒に対して冷却効果が発揮で きないばかりか、管が長過ぎることによって管壁との粘性抵抗による損失が増加 してしまうこと、また管の湾曲個所が多すぎることによっても同様に粘性抵抗に よる損失が累積増加してしまう。 また空気の対流を利用するのみの冷却効果を期待することでは、外気温が高く 、冷媒圧力が高くなると、冷却温度も上昇して放熱効果が比較的低下することよ り、伝熱面積と風量の増加は必須となり、体積が比較的大きく、騒音も大きく、 当然消耗するエネルギも多くなってしまう。 そこで冷却効率が高く、エネルギの損失をも抑えた本考案の冷凍或いは空調用 熱交換器を提供する。 However, the above-described condenser having the known structure has the following disadvantages. For example, a single pipe consistently reaches the rear end, and since a high-pressure gaseous refrigerant is injected from the top, the refrigerant flows downstream of the radiator pipe (about 1/6 When it reaches 1/4), not only is it not possible to exert a cooling effect on the liquid refrigerant that has already been almost liquefied, but also the loss due to viscous resistance with the pipe wall increases because the pipe is too long. Also, if the tube has too many bends, the loss due to viscous drag will also increase. Expecting the cooling effect only by using the convection of air is that if the outside air temperature is high and the refrigerant pressure is high, the cooling temperature will rise and the heat radiation effect will relatively decrease, so that the heat transfer area and air flow It is essential to increase the volume, the volume is relatively large, the noise is loud, and naturally the energy consumed increases. Therefore, the present invention provides a heat exchanger for refrigeration or air conditioning, which has high cooling efficiency and suppresses energy loss.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

フィン式熱交換器及び給水システムを採用する。該フィン式熱交換器は放熱フ ィン組を縦向きに配列し、該放熱フィン組間には横向きに冷媒放熱管を穿設して おり、該冷媒放熱管は複数の管を並列させて連結する方式により、冷媒放熱管間 及び放熱フィン間に空気の通路を形成する。 該給水システムにおいては、該放熱フィン片と冷媒放熱管上に水流を提供して 熱交換を行って冷媒の液化を促進させ、吸熱して蒸発した冷却水が更にファンに よって生じる気流で迅速に奪い取られるようにする。 更に該フィン片の上下両側にはそれぞれ外向きに延伸することで、該冷媒放熱 区以外にも二つの放熱区を設置し、放熱面積を増加して冷却効果をここでも上げ るようにする。 Adopt fin type heat exchanger and water supply system. In the fin type heat exchanger, a group of radiating fins is vertically arranged, and a refrigerant radiating tube is bored horizontally between the radiating fin pairs. An air passage is formed between the refrigerant radiating tubes and between the radiating fins by the connecting method. In the water supply system, a water flow is provided on the radiating fin pieces and the refrigerant radiating pipe to perform heat exchange to promote liquefaction of the refrigerant, and the heat absorbed and evaporated cooling water is further rapidly generated by the airflow generated by the fan. To be robbed. Further, by extending outwardly on each of the upper and lower sides of the fin piece, two heat radiating sections are provided in addition to the refrigerant heat radiating section, so that the heat radiating area is increased so that the cooling effect is also improved.

【0006】[0006]

【考案実施の形態】[Embodiment]

図2に示すように、本考案は主に熱交換器10が圧縮機40により高圧冷媒で 液化した冷媒が圧入されるのを受け、また給水システムを利用して液化する更に 機能を高め、ファンモータ32によってファン34を連動させることにより、該 熱交換器10の空気通路に気流を作る。即ち熱交換で冷媒の熱量と、熱交換を経 て蒸発する蒸気を同時に奪い去る効果が提供される。 As shown in FIG. 2, the present invention mainly enhances the function of the heat exchanger 10 to receive the refrigerant liquefied by the high pressure refrigerant by the compressor 40 and to liquefy using the water supply system. An air flow is created in the air passage of the heat exchanger 10 by interlocking the fan 34 with the motor 32. That is, an effect of simultaneously removing the amount of heat of the refrigerant in the heat exchange and the vapor evaporated through the heat exchange is provided.

【0007】 図3に示すように、熱交換器10はフィン式の設計になっており、冷媒管12 2を縦向きで配列されたフィン110間に穿入して密集した構造を成している。 また該フィン110の上下各両側には外側に延伸して冷媒放熱区以外の場所で二 つの放熱区230,240が設計されており、放熱面積を増加させて冷却効果を 高めている。該冷媒管122は横向きに穿入する方式で各層の冷媒放熱管120 (図3参照)に設置されている。各層の冷媒放熱管120の入り口は並列方式で 冷媒導入管124と相互に連結されており、圧縮機40により圧入される高圧高 温の冷媒を下方より該導入管124に導入し、各層の冷媒管にまで至らせる。よ って複数の管中の冷媒が同時に冷却され、単位時間内の冷却量が増す、即ち圧力 を上げなくとも冷却速度が加速してエネルギが節約されるようになる。As shown in FIG. 3, the heat exchanger 10 has a fin type design, and a refrigerant tube 122 is inserted between fins 110 arranged in a vertical direction to form a dense structure. I have. Further, two radiating sections 230 and 240 are designed to extend outward on both upper and lower sides of the fin 110 at locations other than the refrigerant radiating section, thereby increasing a radiating area to enhance a cooling effect. The refrigerant pipes 122 are installed in the refrigerant radiating pipes 120 (see FIG. 3) of each layer in such a manner as to penetrate horizontally. The inlet of the refrigerant radiating pipe 120 of each layer is mutually connected to the refrigerant introducing pipe 124 in a parallel manner, and the high-pressure and high-temperature refrigerant press-fitted by the compressor 40 is introduced into the introducing pipe 124 from below, and the refrigerant of each layer is introduced. To the tube. Therefore, the refrigerant in the plurality of tubes is cooled at the same time, and the amount of cooling per unit time is increased, that is, the cooling rate is accelerated without increasing the pressure and energy is saved.

【0008】 図4に示すように、冷媒管の列数は状況と必要に応じて変化させられるが、実 施例においては三列の冷媒管を例としており、列の数が少ないことより適当で且 つ充分な長さで冷媒の液化が進行する。該上下両冷媒管122が連結された後、 横向きで隣接する冷媒管122同士が連結され、よって三回転している状態を呈 した各層の冷媒放熱管120が完成する。また列の数が増加する場合など、必要 に応じて直接横向きに各列の同層の冷媒管を穿入してもよい。As shown in FIG. 4, the number of rows of refrigerant pipes can be changed according to the situation and need. In the embodiment, three rows of refrigerant pipes are used as an example. The liquefaction of the refrigerant proceeds with a sufficient length. After the upper and lower refrigerant pipes 122 are connected, the refrigerant pipes 122 adjacent to each other in the horizontal direction are connected to each other, so that the refrigerant radiating pipes 120 of each layer exhibiting three rotations are completed. Further, when the number of rows increases, for example, refrigerant pipes of the same layer in each row may be directly penetrated as needed.

【0009】 また図2に示すように、該熱交換器10の冷却効率を更に上げるべく、他に給 水システム20が設けられている。 図3、5に示すように、該給水システム20は垂水箱210,貯水箱220を 有し、フィン110上段には第一放熱区230が,また下段には第二放熱区24 0が設けられている。該垂水箱210は先ず冷却水を該熱交換器10中に垂らし た残りの冷却水に外部から引き入れ、消耗した水量を補充する機構としている。 こうして熱交換によって余った冷却水は、該第二放熱区240で先ず温度を下 げ、また、該垂水箱210に導入した冷却水を更に該第一放熱区230で予冷す る。こうすることで従来の冷却水が冷媒の熱量を吸収せず貯留したまま温度が上 昇することがなくなり、冷却及び放熱効果をより安定したものにする。As shown in FIG. 2, another water supply system 20 is provided to further increase the cooling efficiency of the heat exchanger 10. As shown in FIGS. 3 and 5, the water supply system 20 has a dripping box 210 and a water storage box 220, and a first heat radiating section 230 is provided at an upper stage of the fin 110, and a second heat radiating section 240 is provided at a lower stage thereof. ing. The dripping box 210 has a mechanism for drawing in the cooling water from the outside to the remaining cooling water dripped into the heat exchanger 10 and replenishing the consumed water amount. In this way, the cooling water surplus due to the heat exchange is first cooled in the second radiating section 240, and the cooling water introduced into the dripping box 210 is further pre-cooled in the first radiating section 230. By doing so, the conventional cooling water does not absorb the heat of the refrigerant and does not rise in temperature while being stored, thereby making the cooling and heat radiation effects more stable.

【0010】 該垂水箱210は該フィン式熱交換器10の上端に位置し、冷却水を上方から 下方へ流入させるようにしており、冷却の過程ではファンモータ32によってフ ァン34が連動し、外部の空気を該熱交換器10内部空気通路に導入し、こうす ることで空気が熱交換を行って蒸発した水分を奪い取るようにする。 また該圧縮機40の圧入する冷媒は下方より上方の方向で、各層の冷媒放熱管 120の分布管に進入する。パスカルの原理により、摩擦力の無い状況下では各 層入り口の冷媒圧力P1=P2=…=Pnとなる。しかし管壁には摩擦力が存在 するため、実際にはP1>P2>…>Pnとなり、差異は大きくないが、エネル ギ節約の面より考慮すると非常に重要なポイントとなっている。 また該垂水箱210の冷却水は上方から下方に向かって流れるため、当然上列 の冷却水の温度は下列のそれよりやや低くなり、温度が低いほど液化に必要な臨 界圧が低くなり、また温度はやや高ければ、臨界圧もやや高まることになる。つ まり冷媒が分布管に進入する方向は下方より上方である設計であるのは、冷却水 が上方から下方に垂れるのに合った冷却方法であり、各組の並列する放熱管の冷 媒は同様の冷却効果を得られ、圧力を上げなくても後先を分ずに同時冷却が行え るようになっている。The dripping box 210 is located at the upper end of the fin type heat exchanger 10 and allows cooling water to flow downward from above. In the cooling process, the fan 34 is interlocked with the fan motor 32. Then, outside air is introduced into the air passage inside the heat exchanger 10 so that the air exchanges heat and removes evaporated water. The refrigerant to be press-fitted by the compressor 40 enters the distribution pipes of the refrigerant radiating pipes 120 in each layer in a direction higher than below. Due to the principle of Pascal, the refrigerant pressure at the entrance of each layer is P1 = P2 =. However, since there is frictional force on the pipe wall, P1> P2 >> ... Pn in practice, and the difference is not large, but this is a very important point in consideration of energy saving. In addition, since the cooling water of the dripping box 210 flows downward from above, the temperature of the cooling water in the upper row naturally becomes slightly lower than that in the lower row, and the lower the temperature, the lower the critical pressure required for liquefaction, If the temperature is slightly higher, the critical pressure will be slightly higher. In other words, the design in which the direction in which the refrigerant enters the distribution tube is above the bottom is a cooling method suitable for the cooling water to hang down from above, and the cooling medium in each set of parallel radiator tubes is The same cooling effect can be obtained, and simultaneous cooling can be performed without knowing the back end without increasing the pressure.

【0011】 該垂水箱210内部設計は図6に示すように、底面より複数の排水孔212が 穿設されており、また中には隔離層水孔216を有する隔離層214が設けられ ており、該隔離層水孔216と底面水孔212とは相互の孔の位置が違えられて いる。こうすることで導入される水圧を下げており、フィン110及び冷媒管1 22上に緩やかに水滴が垂れるようになっている。水が該フィン110の最上端 に至った際、近距離から完全に圧力が無い、或いは非常に小さな圧力の状態で水 滴が落ち、水は該フィン110上で重力が表面摩擦力に勝るときのみスムーズに 流れ、水分が該フィン110上に留まる時間が長くなり、よって風が吹き付ける 時間が充分なものとなり、常温で充分に蒸発が進行し、よって更に効率的にフィ ン及び冷媒管の熱量が吸収されるようになる。実際の状況に応じて隔離層214 の数量が増加した場合、該各隔離層214の水孔216は相互に違えられて配置 されているため、よって導入される水の圧力及び衝撃は更に低いものとなる。As shown in FIG. 6, a plurality of drain holes 212 are formed in the bottom of the water draining box 210, and an isolation layer 214 having an isolation layer water hole 216 is provided therein. The positions of the water holes 216 and the bottom water holes 212 are different from each other. In this way, the pressure of the introduced water is reduced, and the water droplets slowly drip on the fins 110 and the refrigerant pipes 122. When the water reaches the uppermost end of the fin 110, a drop of water drops from a short distance with no pressure or a very small pressure, and the water drops on the fin 110 when gravity exceeds the surface friction force. Only the water flows smoothly, and the time for which the water stays on the fins 110 is prolonged, so that the time for blowing the wind becomes sufficient, and the evaporation proceeds sufficiently at room temperature, so that the heat of the fins and the refrigerant pipes is more efficiently obtained. Will be absorbed. If the number of the isolation layers 214 is increased according to the actual situation, the water holes 216 of each of the isolation layers 214 are arranged differently from each other, so that the pressure and impact of the introduced water are lower. Becomes

【0012】 またもう一つの実施例では、フィン110間の距離は13枚/インチとなってお り、水滴は同時に2枚のフィン110と接触してスムーズに垂れることになり、 こうすることで水滴は両側のフィン110に対して熱交換を行うことになり、こ こでも更に高冷却効果を提供するようになっている。 図5に示すように、該第一,第二放熱区230,240は長さを増長したフィ ン110の上下段により構成される。該第一放熱区230はフィン110の上段 部にて該フィン110を貫通する水管232を有し、この構造を利用し、冷却水 の温度が下げられる目的を達成するべく、該フィン110と熱交換を進行させる のと同時にファン34の気流によって熱量を奪うようにしている。各水管232 は第一放熱区230を貫通する方式により、図に示すような並列方式、或いは一 本の管による串型方式となっている。 また第二放熱区240はフィンの長さを増長し、下段部を保留することによっ て形成されており、その間には金属管232が設置されており、同様にファンに よって外部の空気との熱交換を進行し、残った水で僅かではあるが冷却を行う。In another embodiment, the distance between the fins 110 is 13 fins / inch, and the water droplets come into contact with the two fins 110 at the same time and hang down smoothly. The water droplets exchange heat with the fins 110 on both sides, and provide a higher cooling effect here as well. As shown in FIG. 5, the first and second heat radiation zones 230 and 240 are constituted by upper and lower stages of the fin 110 whose length is increased. The first heat radiating section 230 has a water pipe 232 that penetrates the fin 110 at an upper part of the fin 110, and by using this structure, the fin 110 and the fin 110 are heated to achieve the purpose of lowering the temperature of the cooling water. At the same time as the exchange is advanced, the heat flow is taken by the airflow of the fan 34. Each water pipe 232 is of a parallel type as shown in the figure or a skewer type of one pipe, depending on the type penetrating the first heat radiation section 230. The second heat dissipation zone 240 is formed by increasing the length of the fins and retaining the lower portion, and a metal tube 232 is provided between the fins. Similarly, the fan is connected to outside air by a fan. Heat exchange is performed, and cooling is performed with the remaining water, albeit slightly.

【0013】 冷却の始めの段階において、余りの水が更に貯水箱220内に導入されるが、 その導入方式は貯水箱220で直接底部に接続される、或いは実施例中のように 集水盆222を利用して水を収集させた後、該貯水箱220中に導入されるよう にし、該貯水箱220の一端はまた進水管221と連結されており、外部より引 水して水量を補充するようにしている。またこの貯水箱220はポンプ226を 利用し、水を該第一放熱区230中に導入している。 該貯水箱220内には液面測定スイッチ224が設けられており、これは浮子 (フロート)スイッチにより、液面の高さを検出して測定するものであり、また 水温測定器228が設置されている。 先ず該貯水箱220の冷却水はフィン式熱交換器10中で蒸発して減少するた め、水位が該液面測定スイッチ224によって下限の値が測定されると、スイッ チが起動して進水動作を開始し、該液面測定スイッチ224が一定の設定値に至 るまで水が補われるようになっている。こうして液面が一定の設定値に至ったら 、該ポンプ226が起動して該貯水箱220の冷却水を該第一放熱区230にま で抽出する。その他該水温測定器228によって水温値を測定することでは、熱 交換器10の冷却程度を知ることができ、水温が一定の値に達すると、該ポンプ の動作がストップする。In the initial stage of cooling, excess water is further introduced into the reservoir 220, which is connected directly to the bottom by the reservoir 220 or, as in the embodiment, the catchment basin. After the water is collected using the water 222, the water is introduced into the water storage box 220, and one end of the water storage box 220 is connected to the launching pipe 221, and the water is replenished from the outside to replenish the water amount. I am trying to do it. The water storage box 220 uses a pump 226 to introduce water into the first heat radiation area 230. A liquid level measuring switch 224 is provided in the water storage box 220. The liquid level measuring switch 224 is used to detect and measure the liquid level by a float switch. A water temperature measuring device 228 is provided. ing. First, since the cooling water in the water storage box 220 evaporates and decreases in the fin type heat exchanger 10, when the lower limit of the water level is measured by the liquid level measurement switch 224, the switch is activated and proceeds. Water operation is started, and water is supplemented until the liquid level measurement switch 224 reaches a certain set value. When the liquid level reaches a certain set value in this way, the pump 226 is activated and the cooling water in the water storage box 220 is extracted to the first heat radiating section 230. In addition, by measuring the water temperature value with the water temperature measuring device 228, the degree of cooling of the heat exchanger 10 can be known, and when the water temperature reaches a certain value, the operation of the pump is stopped.

【0014】 応用として、第一,第二凝縮器10,10' に分けてもよく、図7に示すよう に圧縮機の高圧気体状冷媒が第一凝縮器10に圧入され、冷却を経て更に第二凝 縮器10' に送入され、冷却液化を持続させる。 熱交換器10の各層冷媒放熱管120の冷媒導出方式は、第一熱交換器10の ように各層の冷媒放熱管120の出口が同時に冷媒導出管126と並列して連結 されていることより、該各層の冷却液化を経た冷媒を収集及び導出する方式、或 いは第二熱交換器10' のように、各層の冷媒放熱管120' をそれぞれ組み分 けし、各組の冷媒放熱管120' の出口は先ず各組の冷媒導出管126'と並列 して連結することにより、該各組の冷媒導出管126' が再収集して導出する方 式となっている。As an application, the refrigerant may be divided into first and second condensers 10 and 10 ′. As shown in FIG. 7, a high-pressure gaseous refrigerant of a compressor is injected into the first condenser 10 and further cooled. The condensate is sent to the second condenser 10 ′ to maintain the cooling and liquefaction. The refrigerant derivation method of the refrigerant radiating pipes 120 of each layer of the heat exchanger 10 is different from that of the first heat exchanger 10 in that the outlets of the refrigerant radiating pipes 120 of each layer are simultaneously connected in parallel with the refrigerant discharging pipe 126. A method of collecting and discharging the refrigerant after cooling and liquefaction of the respective layers, or as in a second heat exchanger 10 ', the refrigerant radiating pipes 120' of the respective layers are separately assembled, and the refrigerant radiating pipes 120 'of each set are separated. Is connected in parallel with each set of refrigerant outlet pipes 126 'so that each set of refrigerant outlet pipes 126' collects and discharges.

【0015】[0015]

【考案の効果】[Effect of the invention]

本考案によると、従来の単一放熱管に取って代わった多数の管中の冷媒が同時 に冷却されることにより、単位時間内での冷却量が増加し、且つ圧縮機の圧力を 下げる方式以外による初のエネルギ節約の目的が達成された。また高圧冷媒は下 方から上方に各層分布管へと進入し、また逆に上方より下方に給水されることを 合わせて、各組の並列する放熱管の冷媒は同様の冷却効果が得られ、且つ後先な く同時に冷却が行われ、しかも圧力を上げずに済むことより、ここでもエネルギ 節約の目的が達成された。 According to the present invention, a method of simultaneously cooling the refrigerant in a number of tubes that have replaced the conventional single radiator tube, thereby increasing the amount of cooling per unit time and reducing the pressure of the compressor The first energy savings goal was achieved by a non-member. In addition, the high-pressure refrigerant enters each layer distribution pipe from below upward, and conversely, is supplied with water downward from above, so that the refrigerant in each set of parallel radiator pipes has the same cooling effect, In addition, the purpose of energy saving was also achieved here because cooling was performed at the same time without any delay and without increasing the pressure.

【0016】 フィン片組は冷媒管区にまで延伸している以外に、上下二つの放熱区を余分に 設けていることにより、放熱面積が増加して冷却効果が高められる目的が達成さ れた。 また垂水箱中には水孔の構造で下方に水を補給しており、水が放熱片上方に至 った際完全に圧力がなくとも、または極僅かな圧力により近距離で水滴が落ちる ため、また水が放熱片上にて僅かな重力が表面摩擦力に勝る際にのみ下方に流れ るため、水分が放熱片上で留まる時間が増加して充分に常温で蒸発が成され、よ ってフィン片及び冷媒管の熱量が効果的に吸収されて、大幅に冷媒の温度が下げ られて冷却効果が増大した。 更に蒸発水を冷却する際、先ず予冷として温度を下げ、残った水を予冷する設 計としていることで、従来の直接給水する方式とは異なり、第二放熱区で先に残 りの水の温度を下げ、更にフィン片熱交換器に入る前に更に第一放熱区で温度を 下げた後、比較的低い温度の冷却水で該フィン片と冷媒管などに対して熱交換が 行われるようになり、循環して繰り返し水を使用することによる温度の累積問題 も解決され、同時に安定した冷却効果が提供される目的が達成された。[0016] In addition to the fin piece set extending to the refrigerant section, by providing two upper and lower heat radiating sections, the purpose of increasing the heat radiating area and enhancing the cooling effect has been achieved. Water is replenished downward in the water drain box with a water hole structure.When the water reaches the upper part of the radiator, water drops will drop at a short distance even if there is no pressure, or if the pressure is very slight. In addition, since water flows downward only when slight gravitational force exceeds the surface friction force on the heat radiating piece, the time for which water stays on the heat radiating piece increases, and the water is sufficiently evaporated at room temperature, and thus the fins are formed. The heat of the pieces and the refrigerant pipes was effectively absorbed, and the temperature of the refrigerant was greatly reduced, increasing the cooling effect. Furthermore, when cooling the evaporating water, the temperature is reduced as pre-cooling first, and the remaining water is pre-cooled, which is different from the conventional direct water supply method. After lowering the temperature and further lowering the temperature in the first radiating section before entering the fin piece heat exchanger, heat exchange between the fin pieces and the refrigerant pipe etc. is performed with relatively low temperature cooling water. As a result, the problem of temperature accumulation due to repeated use of water in circulation was solved, and at the same time, the objective of providing a stable cooling effect was achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】公知構造におけるフィン式凝縮器の説明図であ
る。
FIG. 1 is an explanatory view of a fin condenser having a known structure.

【図2】本考案における熱交換器のシステム説明図であ
る。
FIG. 2 is a system explanatory diagram of the heat exchanger in the present invention.

【図3】本考案における熱交換器の実施例説明図であ
る。
FIG. 3 is an explanatory view of an embodiment of the heat exchanger according to the present invention.

【図4】図3における単層冷媒放熱管の説明図である。FIG. 4 is an explanatory view of a single-layer refrigerant radiating tube in FIG. 3;

【図5】本考案における熱交換器の正面図である。FIG. 5 is a front view of the heat exchanger according to the present invention.

【図6】本考案における熱交換器中、垂水箱の立体分解
説明図である。
FIG. 6 is a three-dimensional exploded view of the dripping box in the heat exchanger according to the present invention.

【図7】本考案における熱交換器のもう一つの実施例説
明図である。
FIG. 7 is an explanatory view of another embodiment of the heat exchanger according to the present invention.

【符号の説明】[Explanation of symbols]

10 熱交換器 110 フィン 120 冷媒放熱管 122 冷媒管 124 冷媒導入管 126 冷媒導出管 20 給水システム 210 垂水箱 212 底面水孔 214 隔離層 216 隔離層水孔 220 貯水箱 221 進水管 222 集水盆 224 液面測定スイッチ 226 ポンプ 228 水温測定器 230 第一放熱区 232 水管 240 第二放熱区 242 金属管 32 ファンモータ 34 ファン 40 圧縮機 DESCRIPTION OF SYMBOLS 10 Heat exchanger 110 Fin 120 Coolant radiation pipe 122 Coolant pipe 124 Coolant introduction pipe 126 Coolant outlet pipe 20 Water supply system 210 Water dripping box 212 Bottom water hole 214 Isolation layer 216 Isolation layer water hole 220 Water storage box 221 Launching pipe 222 Water collecting basin 224 Liquid level measurement switch 226 Pump 228 Water temperature measuring instrument 230 First heat radiation area 232 Water pipe 240 Second heat radiation area 242 Metal pipe 32 Fan motor 34 Fan 40 Compressor

Claims (7)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】フィン式熱交換器及び給水システムを含
み、該熱交換器は複数の放熱用フィン及び複数層の横向
きで該フィン間に穿設された冷媒放熱管を有し、該冷媒
放熱管及びフィン間には空気の通路が形成されており、 冷媒放熱管は多数の管が並列して連結されている方式に
より、圧縮機により圧入される高圧冷媒を導入し、並び
に該給水システムでは重力によって熱交換器上に垂れる
水を給水し、よって該フィン及び冷媒管が更なる熱交換
を行って、熱交換により蒸発する蒸気はファンによって
生ずる気流で該熱交換器の空気通路を通過して、熱源を
迅速に奪い取ることを特徴とする冷凍或いは空調設備用
の熱交換器。
The heat exchanger includes a fin type heat exchanger and a water supply system, the heat exchanger having a plurality of radiating fins and a plurality of layers of refrigerant radiating tubes formed between the fins in a horizontal direction. An air passage is formed between the pipes and the fins, and the refrigerant radiating pipe introduces high-pressure refrigerant press-fitted by a compressor by a method in which a number of pipes are connected in parallel, and in the water supply system, By gravity, the water dripping on the heat exchanger is supplied, so that the fins and the refrigerant pipes perform further heat exchange, and the vapor evaporated by the heat exchange passes through the air passage of the heat exchanger by the air flow generated by the fan. A heat exchanger for refrigeration or air conditioning equipment, wherein the heat source is quickly taken away.
【請求項2】該給水システムには垂水箱が設けられてお
り、該垂水箱底面には複数の水孔が設けられており、該
垂水箱の一端と水管の一端とが連結して該箱中に水を導
入するようになっており、また該垂水箱中には水孔を有
する隔離層が一枚以上あり、該隔離層上の水孔と該底面
水孔とが位置を相互に違えて開設されていることを特徴
とする請求項1記載の冷凍或いは空調設備用の熱交換
器。
2. A water supply box is provided in the water supply system, a plurality of water holes are provided in a bottom surface of the water supply box, and one end of the water supply box and one end of a water pipe are connected to form the water supply box. Water is introduced thereinto, and there is at least one separating layer having water holes in the dripping box, and the positions of the water holes on the separating layer and the bottom water holes are different from each other. The heat exchanger for refrigeration or air conditioning equipment according to claim 1, wherein the heat exchanger is opened.
【請求項3】該給水システムには貯水箱を含み、該貯水
箱の水を用いて冷却水とし、該貯水箱で該熱交換を経て
余った冷却水を収集させて、並びに外部より水量を給水
補充することを特徴とする請求項1記載の冷凍或いは空
調設備用の熱交換器。
3. The water supply system includes a water storage box, and the water in the water storage box is used as cooling water, the cooling water remaining after the heat exchange is collected in the water storage box, and the amount of water is supplied from outside. The heat exchanger for refrigeration or air conditioning equipment according to claim 1, wherein the water supply is supplemented.
【請求項4】該給水システムは第一放熱区を含み、該第
一放熱区はフィン上段に穿設された水管より形成されて
水温を予冷として下げることを特徴とする請求項1記載
の冷凍或いは空調設備用の熱交換器。
4. The refrigeration system according to claim 1, wherein said water supply system includes a first heat radiating section, wherein said first heat radiating section is formed by a water pipe formed in an upper stage of the fin to lower the water temperature as pre-cooling. Or a heat exchanger for air conditioning equipment.
【請求項5】該給水システムには第二放熱区を含み、熱
交換を経た後に余った冷却水を利用して予冷として温度
を下げることを特徴とする請求項1記載の冷凍或いは空
調設備用の熱交換器。
5. The refrigeration or air-conditioning system according to claim 1, wherein the water supply system includes a second heat radiation zone, and the temperature is reduced as pre-cooling by using surplus cooling water after heat exchange. Heat exchanger.
【請求項6】該給水システムの第二放熱区は、該フィン
下段より穿設されて定位及び支えの構造を提供するべく
金属管で構成されており、該余った冷却水を該フィン末
端にまで至らせた時、該ファンによって導入される空気
と熱交換を行って温度を下げることを特徴とする請求項
1記載の冷凍或いは空調設備用の熱交換器。
6. A second heat radiation section of the water supply system is constituted by a metal tube which is provided from the lower stage of the fin to provide a structure for localization and support, and the excess cooling water is supplied to an end of the fin. 2. The heat exchanger for refrigeration or air-conditioning equipment according to claim 1, wherein when the temperature is reached, heat is exchanged with air introduced by the fan to lower the temperature.
【請求項7】該フィン式熱交換機は同時に二組以上のフ
ィン式熱交換器を設置する時、各組の該フィン式熱交換
機の冷媒放熱管は同時に同一冷媒導入管及び冷媒導出管
に連結されることを特徴とする請求項1記載の冷凍或い
は空調設備用の熱交換器。
7. When the fin type heat exchanger is installed with two or more sets of fin type heat exchangers at the same time, the refrigerant radiating pipes of each set of the fin type heat exchangers are simultaneously connected to the same refrigerant introducing pipe and refrigerant discharging pipe. The heat exchanger for refrigeration or air conditioning equipment according to claim 1, wherein the heat exchanger is used.
JP2001005800U 2001-09-03 2001-09-03 Heat exchanger for refrigeration or air conditioning equipment Expired - Fee Related JP3084460U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001005800U JP3084460U (en) 2001-09-03 2001-09-03 Heat exchanger for refrigeration or air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001005800U JP3084460U (en) 2001-09-03 2001-09-03 Heat exchanger for refrigeration or air conditioning equipment

Publications (1)

Publication Number Publication Date
JP3084460U true JP3084460U (en) 2002-03-22

Family

ID=43235931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001005800U Expired - Fee Related JP3084460U (en) 2001-09-03 2001-09-03 Heat exchanger for refrigeration or air conditioning equipment

Country Status (1)

Country Link
JP (1) JP3084460U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250033A (en) * 2012-06-04 2013-12-12 Sharp Corp Parallel-flow heat exchanger and air conditioner comprising same
CN107504838A (en) * 2017-10-11 2017-12-22 成都歆雅春风科技有限公司 Finned heat exchanger and air conditioning terminal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250033A (en) * 2012-06-04 2013-12-12 Sharp Corp Parallel-flow heat exchanger and air conditioner comprising same
WO2013183508A1 (en) * 2012-06-04 2013-12-12 シャープ株式会社 Parallel-flow heat exchanger and air conditioner comprising same
CN104136876A (en) * 2012-06-04 2014-11-05 夏普株式会社 Parallel-flow heat exchanger and air conditioner comprising same
CN104136876B (en) * 2012-06-04 2016-04-20 夏普株式会社 Parallel flow heat exchanger and the air conditioner being provided with this parallel flow heat exchanger
CN107504838A (en) * 2017-10-11 2017-12-22 成都歆雅春风科技有限公司 Finned heat exchanger and air conditioning terminal
CN107504838B (en) * 2017-10-11 2024-03-22 成都歆雅春风科技有限公司 Fin heat exchanger and air conditioner tail end

Similar Documents

Publication Publication Date Title
AU2017306949B2 (en) Active/passive cooling system
JP2015514959A (en) Heat exchanger
KR100338913B1 (en) Refrigerator
CN105157281A (en) Tube-in-tube evaporative condenser with fins
WO2017071071A1 (en) Ice making apparatus and refrigerator
US3435631A (en) Two-stage evaporative condenser
JP2007309604A (en) Evaporator for refrigeration system, and refrigeration system
KR101451791B1 (en) Indirect liquid cooling apparatus
KR20090122157A (en) Air source heat exchange system and method utilizing temperature gradient and water
CN210601989U (en) Mobile air conditioner
JP2003083639A (en) Heat exchanger for refrigerating or air conditioning equipment
JP3084460U (en) Heat exchanger for refrigeration or air conditioning equipment
JP2016023925A (en) Evaporation air conditioning system
CN106568187B (en) Heat exchanger and air conditioner
KR20060129789A (en) An air-conditioner without out-door machine
US20240044591A1 (en) Header tank of heat exchanger
JP2006242394A (en) Heat source unit of air conditioner and air conditioner having this unit
CN101182959A (en) Two-phase changing temperature control device and method
CN218120258U (en) Heat abstractor and refrigeration plant
CN218895684U (en) Condensed water heat exchange system and storage device
CN220017537U (en) Air conditioning equipment
CN215892721U (en) Air return grid assembly for air conditioner and air conditioner
CN212720988U (en) Evaporation type condenser
KR20190040650A (en) Refrigerant cycle system of structure improvement type
CN114719540B (en) Quick defrosting type air cooler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees