JP3078925U - Nozzle device of dissolving device to dissolve solid in solvent - Google Patents

Nozzle device of dissolving device to dissolve solid in solvent

Info

Publication number
JP3078925U
JP3078925U JP2001000103U JP2001000103U JP3078925U JP 3078925 U JP3078925 U JP 3078925U JP 2001000103 U JP2001000103 U JP 2001000103U JP 2001000103 U JP2001000103 U JP 2001000103U JP 3078925 U JP3078925 U JP 3078925U
Authority
JP
Japan
Prior art keywords
nozzle
mixing tank
dissolving
nozzle device
annular gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001000103U
Other languages
Japanese (ja)
Inventor
カリノフスキー レイモンド
ヘロルド トーマス
ボーエ クリスティーナ
Original Assignee
株式会社ツーヘンハーゲンジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ツーヘンハーゲンジャパン filed Critical 株式会社ツーヘンハーゲンジャパン
Application granted granted Critical
Publication of JP3078925U publication Critical patent/JP3078925U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/20Dissolving using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/912Radial flow
    • B01F2025/9121Radial flow from the center to the circumference, i.e. centrifugal flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/913Vortex flow, i.e. flow spiraling in a tangential direction and moving in an axial direction

Abstract

The invention relates to a nozzle device (3) in a dissolving apparatus for dissolving a solid (F) in a solvent, preferably for dissolving a powdery solid in water. The nozzle device comprises a mixing tank (1) from which the solvent-solid suspension is removed in the bottom part (1a) thereof whereupon the suspension is subsequently pumped outside of the mixing tank (1) through a circulation line (6) and is returned once again. The aim of the invention is to reduce the dissolving time in the mixing tank (1) with regard to that of prior art dissolving apparatuses of the generic type and to simplify the apparatus itself. To these ends, the invention provides that the suspension is introduced into the mixing tank (1) via the nozzle device (3) arranged in the bottom part (1a) of said mixing tank. In addition, the invention provides that the nozzle device, starting from a feed tube (3a) and when viewed in a direction of flow, branches into an annular gap nozzle (3c) and a tubular nozzle (3d), that the annular gap nozzle (3c) generates an annular gap flow (R), which is oriented in an essentially transversal manner with regard to the longitudinal axis of the mixing tank (1), and that the tubular nozzle (3d) generates a driving flow (T) which, with regard to the longitudinal axis of the mixing tank (1), has both an axial and tangential directional component oriented toward the top part (1c) of the mixing tank.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the invention belongs]

本考案は、溶媒と固体の懸濁液が混合タンクの底部分から取り出され、続いて 懸濁液が混合タンクの外側で循環管路を経て循環させられて再び混合タンクに供 給される、固体を溶媒に溶解する溶解装置のノズル装置に関する。 According to the invention, a suspension of the solvent and the solid is removed from the bottom of the mixing tank, and then the suspension is circulated outside the mixing tank through a circulation line and supplied to the mixing tank again. The present invention relates to a nozzle device of a dissolving device for dissolving the compound in a solvent.

【0002】[0002]

【従来の技術】[Prior art]

飲料工業ではしばしば、例えばクエン酸または人工甘味料のような、個体粉末 としての所定の添加物を、水溶液にするという課題がある。添加物をこの水溶液 の状態にすることにより、それぞれの飲物の製造プロセスの範囲内で後続処理す ることができる。それぞれの固体を溶かすために先ず最初に、固体を溶媒、例え ば水内で懸濁させる必要がある。必要な量の水を含む混合タンクに、溶解すべき 量の固体を入れ、続いて攪拌装置を用いて懸濁することが知られている。この攪 拌装置は例えばモータ駆動の攪拌部材からなっている。更に、溶媒と固体の懸濁 液を混合タンクの外側で循環管路を経て循環させ、混合タンクに再び供給するこ とにより、攪拌作用と懸濁作用が改善される。その際通常は、懸濁液が混合タン クの底部分から取り出され、円筒状の外周壁部分の範囲に再び供給される。クエ ン酸または人工甘味料を水に溶解する際、このような溶解装置の場合には、例え ば15〜20分の溶解時間がかかる。 In the beverage industry, there is often the problem of turning certain additives as solid powders into aqueous solutions, for example citric acid or artificial sweeteners. By making the additive in this aqueous solution, it is possible to carry out the subsequent treatment within the production process of each beverage. First, the solids need to be suspended in a solvent, eg, water, to dissolve each solid. It is known that a mixing tank containing the required amount of water is charged with the amount of solid to be dissolved and subsequently suspended using a stirrer. This stirring device is composed of, for example, a motor driven stirring member. In addition, by circulating the suspension of the solvent and the solid outside the mixing tank through a circulation line and feeding it again to the mixing tank, the stirring action and the suspension action are improved. In this case, the suspension is usually removed from the bottom of the mixing tank and fed back into the region of the cylindrical outer wall. When dissolving citric acid or an artificial sweetener in water, such a dissolution apparatus requires a dissolution time of, for example, 15 to 20 minutes.

【0003】 溶解時間をできるだけ短縮するという基本的な要求のほかに、特に公知の溶解 装置のモータ駆動の攪拌装置は有利ではない。なぜなら、攪拌装置のコストが高 くつき、攪拌装置が洗浄困難な組み込み機器であるからである。この組み込み機 器は、いわゆる自動貫流洗浄(CIP(Cleaning in place)洗浄;現場での洗 浄)方法ではしばしば洗浄が困難であるかまたは不充分である。In addition to the basic requirement of shortening the dissolving time as much as possible, in particular the known motor-driven agitator of the dissolving apparatus is not advantageous. This is because the cost of the stirrer is high and the stirrer is an embedded device that is difficult to clean. This built-in device is often difficult or inadequate to clean with the so-called automatic cleaning in place (CIP) cleaning method.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the invention]

本考案の課題は、冒頭に述べた種類の公知の溶解装置と比べて混合タンク内の 溶解時間を短縮し、装置自体を簡単化することである。 The problem of the present invention is to reduce the dissolving time in the mixing tank and to simplify the device itself as compared to known dissolving devices of the kind mentioned at the outset.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

この課題は、溶媒と固体の懸濁液が混合タンクの底部分から取り出され、続い て懸濁液が混合タンクの外側で循環管路を経て循環させられて再び混合タンクに 供給される、固体を溶媒に、特に粉末状固体を水に溶解する溶解装置のノズル装 置において、 混合タンク(1)への懸濁液の供給が、混合タンクの底部分(1a)内に配置 されたノズル装置(3)を経て行われ、 このノズル装置が、供給管(3a)から流れ方向に見て、環状隙間ノズル(3 c)と管ノズル(3d)に分岐し、 環状隙間ノズル(3c)が環状隙間流れ(R)を発生させ、 この環状隙間流れが混合タンク(1)の縦軸線に対して横方向向きであり、 管ノズル(3d)が推進流(T)を発生させ、 この推進流が、混合タンク(1)の縦軸線に関して、混合タンクの頭部分(1 c)の方に向いた軸方向の成分と接線方向の成分を有することを特徴とするノズ ル装置によって解決された。提案したノズル装置の有利な実施形態は他の請求項 に記載されている。 The problem is that the suspension of solvent and solids is removed from the bottom of the mixing tank, and then the suspension is circulated outside the mixing tank via a circulation line and fed back into the mixing tank, where the solids are removed. In a nozzle device of a dissolving device for dissolving a solvent, particularly a powdery solid in water, the supply of the suspension to the mixing tank (1) is performed by a nozzle device (1a) arranged in the bottom portion (1a) of the mixing tank. This nozzle device branches into an annular gap nozzle (3c) and a pipe nozzle (3d) when viewed from the supply pipe (3a) in the flow direction, and the annular gap nozzle (3c) is This annular gap flow is oriented transversely to the longitudinal axis of the mixing tank (1), the tube nozzle (3d) generates a propulsion flow (T), With respect to the vertical axis of the mixing tank (1), It was solved by Nozzle apparatus characterized by having an axial component and a tangential component oriented towards the part (1 c). Advantageous embodiments of the proposed nozzle arrangement are described in the other claims.

【0006】 公知の溶解装置と異なり、懸濁液は混合タンクの外周壁部分からではなく底部 分から混合タンクに供給される。そのために、供給管から流れ方向に見て、環状 隙間ノズルと管ノズルに分岐しているノズル装置が設けられている。その際、環 状隙間ノズルは環状隙間流れを発生させ、この環状隙間流れは混合タンクの縦軸 線に対して横方向に向いている。供給される懸濁液の残りの部分流は管ノズルを 経て排出され、この管ノズルは混合タンク内に推進流を発生させ、この推進流は 、混合タンクの縦軸線に関して、混合タンクの頭部分の方に向いた軸方向及び接 線方向の両方向成分を有する。[0006] Unlike known dissolving devices, the suspension is supplied to the mixing tank from the bottom rather than from the outer peripheral wall of the mixing tank. For this purpose, a nozzle device is provided which branches into an annular gap nozzle and a pipe nozzle when viewed from the supply pipe in the flow direction. At that time, the annular gap nozzle generates an annular gap flow, which is oriented transversely to the longitudinal axis of the mixing tank. The remaining partial stream of the supplied suspension is discharged via a tube nozzle, which generates a propulsion flow in the mixing tank, which propulsion flow is, with respect to the longitudinal axis of the mixing tank, at the head of the mixing tank. It has both axial and tangential components pointing toward.

【0007】 上記の特徴により、管ノズルによって対流が混合タンク内に発生する。この対 流はタンク内容物全体を捕らえ、このタンク内容物を垂直方向と接線方向に循環 させる。環状隙間ノズルから出る他の懸濁液部分流は、特に下方に向いた対流と 交叉し、一方では懸濁液の強力な混合を生じ、他方では非常にエネルギーに富ん だ横流によって懸濁化条件が良化する。懸濁液の取り出しとその供給が、混合タ ンクの底部分を経て行われるので、対流と環状隙間流れが必然的に交叉する。従 って、対流によって、タンク内容物全部が混合プロセスと溶解プロセスに計画的 に取り込まれる。それによって、物質交換条件が望ましくないタンク内の停滞領 域が確実に回避される。[0007] Due to the above characteristics, convection is generated in the mixing tank by the tube nozzle. This convection captures the entire tank contents and circulates the tank contents vertically and tangentially. The other suspension partial flows exiting the annular gap nozzle intersect, in particular, with downwardly directed convection, on the one hand resulting in intense mixing of the suspension and, on the other hand, suspension conditions due to very energetic transverse flows. Is improved. Since the removal and supply of the suspension takes place via the bottom of the mixing tank, convection and annular gap flow necessarily cross. Thus, by convection, the entire contents of the tank are systematically incorporated into the mixing and dissolving processes. This ensures that stagnation areas in the tank where material exchange conditions are undesirable are avoided.

【0008】 環状隙間ノズルがほぼ360°の噴射角度にわたって延びるように形成されて いると有利であることが判った。この手段により、環状隙間流れは混合タンクの 横断面範囲にわたって排出され、それによって混合タンクの円筒状外周壁の全周 にわたって下向きに流れる対流と交叉する。[0008] It has been found to be advantageous if the annular gap nozzle is designed to extend over a spray angle of approximately 360 °. By this means, the annular gap flow is discharged over the cross-sectional area of the mixing tank and thereby intersects with the convection flowing downward over the entire circumference of the cylindrical outer wall of the mixing tank.

【0009】 提案したノズル装置は、供給管が底部分からの懸濁液の取り出しのために役立 つ排出ハウジングを通って案内されていると簡単化されるので有利である。この 場合、混合タンクの底部分に開口を1つ設けるだけでよい。[0009] The proposed nozzle arrangement is advantageous because it is simplified if the supply tube is guided through a discharge housing which serves for the removal of the suspension from the bottom part. In this case, it is only necessary to provide one opening at the bottom of the mixing tank.

【0010】 供給管が底部分に同軸に配置されていると、装置が一層簡単化され、かつ混合 タンク内での流れが充分に軸方向対称に形成されることにより、きわめて有効な 溶解条件および懸濁化条件が生じる。If the feed tube is arranged coaxially in the bottom part, the apparatus is further simplified and the flow in the mixing tank is made sufficiently axially symmetric, so that very effective melting conditions and Suspension conditions arise.

【0011】 溶解条件と懸濁化条件は更に、懸濁化および溶解すべき固体が混合タンクに直 接供給されないで、混合タンクの外側で循環される懸濁液に供給されることによ って大幅に改善される。そのために、固体のための供給装置が、排出ハウジング と循環ポンプの間に設けられた吸込み管路に開口していることが提案される。The dissolution and suspension conditions are furthermore such that the solids to be suspended and dissolved are not supplied directly to the mixing tank, but rather to a suspension which is circulated outside the mixing tank. Greatly improved. For this purpose, it is proposed that the supply device for the solids opens into a suction line provided between the discharge housing and the circulation pump.

【0012】 供給管路内の平均流速がv=2.5〜3m/sであり、環状隙間ノズル内の平 均流速がv =10〜15m/s、特に13.5〜14.4m/sであり、そ して管ノズル内の平均流速がv =4〜6m/s、特に4.5〜5.4m/s であるように、ノスル装置の横断面が採寸されていると、懸濁化および溶解の際 の最適な条件が生じる。The average flow velocity in the supply pipe is v = 2.5 to 3 m / s, and the average flow velocity in the annular gap nozzle is v 1 = 10 to 15 m / s, particularly 13.5 to 14.4 m / s. s and the cross-section of the nosul device is measured such that the average flow velocity in the tube nozzle is v 2 = 4-6 m / s, especially 4.5-5.4 m / s, Optimal conditions for suspension and dissolution occur.

【0013】[0013]

【考案の実施の形態】[Embodiment of the invention]

本考案によって提案したノズル装置の実施の形態が図に示してある。次に、こ の実施の形態について説明する。 溶解装置(図1)は実質的に混合タンク1とハウジング2と循環管路6とから なっている。この混合タンクは底部分1a、円筒状外周壁部分1bおよび頭部分 1cを備えている。ハウジングは底部分1aにフランジ止めされ、排出ハウジン グ2bとその下に配置された流入ハウジング2aとからなっている。循環管路6 は排出ハウジング2bから出て流入ハウジング2aに開口している。この循環管 路6は排出ハウジング2bと循環ポンプ5を接続する吸込み管路6aと、循環ポ ンプ5から流入ハウジング2aまで案内された圧力管路6bからなっている。固 体Fのための供給装置4が吸込み管路6aに開口している。 An embodiment of the nozzle device proposed by the present invention is shown in the drawings. Next, this embodiment will be described. The dissolving device (FIG. 1) substantially comprises a mixing tank 1, a housing 2, and a circulation line 6. This mixing tank has a bottom part 1a, a cylindrical outer peripheral wall part 1b and a head part 1c. The housing is flanged to the bottom part 1a and comprises a discharge housing 2b and an inflow housing 2a arranged therebelow. The circulation line 6 exits from the discharge housing 2b and opens to the inflow housing 2a. The circulation line 6 includes a suction line 6a connecting the discharge housing 2b and the circulation pump 5, and a pressure line 6b guided from the circulation pump 5 to the inflow housing 2a. A supply device 4 for the solid F opens into the suction line 6a.

【0014】 ノズル装置3が流入ハウジング2aから排出ハウジング2bを貫通し、底部分 1aの底開口1dを通って混合タンク1の底範囲内に達している。ノズル装置3 は供給管3a(図2)を備えている。この供給管3aは流入ハウジング2aと排 出ハウジング2bの間に配置された詳しく図示していない隔壁から出発し、他端 が蓋3bによって画成され、供給管3aの端部と蓋3bの間に環状隙間ノズル3 cが形成されている。その際、蓋3bは少なくとも1個の連結ウェブ3eを介し て供給管3aに連結されている。蓋3bは更に、特に中央に配置された開口を備 え、この開口に管ノズル3dが接続されている。管ノズル3dは、蓋3bと反対 側の流出口が次のような方向に向くように形成されている。すなわち、混合タン ク1の頭部分1cの方に向いた軸方向の成分と、接線方向の成分を有するように 形成されている。管ノズル3dの垂直方向の迎え角は図2においてαで示してあ り、接線方向の成分は図3においてβで示した接線方向の迎え角から生じる。A nozzle device 3 penetrates from the inflow housing 2a through the discharge housing 2b and reaches the bottom area of the mixing tank 1 through the bottom opening 1d of the bottom part 1a. The nozzle device 3 includes a supply pipe 3a (FIG. 2). The supply pipe 3a starts from a partition wall (not shown) arranged between the inflow housing 2a and the discharge housing 2b, and the other end is defined by a lid 3b, and is provided between the end of the supply pipe 3a and the lid 3b. An annular gap nozzle 3c is formed at the bottom. At this time, the lid 3b is connected to the supply pipe 3a via at least one connecting web 3e. The lid 3b is furthermore provided with a centrally located opening, to which the tube nozzle 3d is connected. The pipe nozzle 3d is formed such that the outlet on the side opposite to the lid 3b faces in the following direction. That is, the mixing tank 1 is formed so as to have an axial component directed toward the head portion 1c and a tangential component. The vertical angle of attack of the tube nozzle 3d is indicated by α in FIG. 2 and the tangential component results from the tangential angle of attack indicated by β in FIG.

【0015】 溶媒内での固体Fの懸濁および溶解は次のように行われる。先ず最初に、溶解 すべき固体Fの量のために必要な量の溶媒、一般的には水が混合タンク1に入れ られる。そして、水が循環ポンプ5によって混合タンク1の底範囲とそれに接続 する排出ハウジング2bから循環管路6を経て吸い出され、続いて流入ハウジン グ2aとそれに接続する供給管3aを経て、途中で環状隙間ノズル3c及び管ノ ズル3dから混合タンク3dに再び供給される。The suspension and dissolution of the solid F in the solvent are performed as follows. First, the required amount of solvent, generally water, for the amount of solid F to be dissolved is placed in the mixing tank 1. Then, water is sucked by the circulation pump 5 from the bottom area of the mixing tank 1 and the discharge housing 2b connected thereto through the circulation line 6, and then through the inflow housing 2a and the supply pipe 3a connected thereto, and on the way. It is again supplied from the annular gap nozzle 3c and the pipe nozzle 3d to the mixing tank 3d.

【0016】 固体Fは供給装置4から吸込み管路6aに連続的に供給される。固体Fと溶媒 からなるこの懸濁液は、循環ポンプ5と圧力管路6bを経て流入ハウジング2a に達し、そこから供給管3aを経て途中で環状隙間ノズル3cに、そして管ノズ ル3dに達する。その際、供給管3a内の供給横断面積Aは特に、供給管3a内 に形成される循環流れSの平均供給速度が約v=2.5 〜3m/sになるよう に採寸されていることが好ましい。管ノズル3dから推進流Tが流出する。この 推進流Tは管横断面積A に基づいて、管速度v =4〜6m/s、特に4. 5〜5.4m/sを有することが好ましい。推進流Tは混合タンク内に対流Kを 発生する。この対流は一方では上方に、他方では接線方向に向き、円筒状外周壁 部分1bの範囲内でほぼ下向きの流れとなる。この下向きの流れは混合タンク1 の底範囲内で、環状隙間ノズル3cから発生する環状隙間流れRと交叉する。こ の交叉する流れに基づいて、強い懸濁作用および混合運動が生じる。循環流れS に対応する吸引流れS は底開口1dを経て混合タンク1から出る。環状隙間 ノズル3cの環状隙間横断面積A は、環状隙間流れRが平均環状隙間速度v =10〜15m/s、特に13.5〜14.4m/sとなるように採寸する ことが好ましい。The solid F is continuously supplied from the supply device 4 to the suction line 6a. This suspension of solid F and solvent reaches the inflow housing 2a via the circulating pump 5 and the pressure line 6b and from there on the way through the supply pipe 3a to the annular gap nozzle 3c and to the pipe nozzle 3d. . At this time, the cross sectional area A in the supply pipe 3a is measured so that the average supply speed of the circulation flow S formed in the supply pipe 3a is about v = 2.5 to 3 m / s. Is preferred. The propulsion flow T flows out of the pipe nozzle 3d. This propulsion flow T has a pipe cross-sectional area A2 Based on the tube speed v2 = 4-6 m / s, especially 4. It is preferable to have 5 to 5.4 m / s. Propulsion flow T generates convection K in the mixing tank. This convection flows upwards on the one hand and tangentially on the other hand, and becomes a substantially downward flow within the area of the cylindrical outer peripheral wall portion 1b. This downward flow intersects with the annular gap flow R generated from the annular gap nozzle 3c in the bottom area of the mixing tank 1. Based on this crossing flow, strong suspension and mixing movements occur. Suction flow S corresponding to circulation flow S* Exits the mixing tank 1 through the bottom opening 1d. Annular gap Cross-sectional area A of annular gap of nozzle 3c1 Is the average annular clearance velocity v 1 = 10 to 15 m / s, particularly preferably 13.5 to 14.4 m / s.

【0017】 提案されたノズル装置によって、例えば5分以下の溶解時間が達成されること が判った。一方、類似の公知の溶解装置は同じ量の固体Fのために、15〜20 分の溶解時間を必要とする。It has been found that a dissolution time of, for example, 5 minutes or less is achieved with the proposed nozzle device. On the other hand, similar known dissolving devices require a dissolving time of 15 to 20 minutes for the same amount of solid F.

【図面の簡単な説明】[Brief description of the drawings]

【図1】概略的に示した溶解装置の他の部分と共に、混
合タンクとその中に配置されたノズル装置の一実施態様
を概略的に示す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically illustrating one embodiment of a mixing tank and a nozzle device disposed therein, along with other portions of the schematically illustrated dissolving apparatus.

【図2】図1において“X”で示したノズル装置の部分
の一実施態様を概略的に示す拡大縦断面図である。
FIG. 2 is an enlarged longitudinal sectional view schematically showing one embodiment of a portion of the nozzle device indicated by “X” in FIG. 1;

【図3】図2のノズル装置の一実施態様を概略的に示す
平面図である。
FIG. 3 is a plan view schematically showing one embodiment of the nozzle device of FIG. 2;

【符号の説明】[Explanation of symbols]

1 混合タンク 1a 底部分 1b 円筒状外周壁部分 1c 頭部分 1d 底開口 2 ハウジング 2a 流入ハウジング 2b 排出ハウジング 3 ノズル装置 3a 供給管 3b 蓋 3c 環状隙間ノズル 3d 管ノズル 3e 連結ウェブ 4 供給装置 5 循環ポンプ 6 循環管路 6a 吸込み管路 6b 圧力管路 F 固体 R 環状隙間流れ T 推進流 S 循環流れ S 吸引流れ A 供給横断面積 A 環状隙間横断面積 A 管横断面積 X ノズル装置 α 垂直方向の迎え角 β 接線方向の迎え角 v 供給管路内の平均流速 v 環状隙間ノズル内の平均流速 v 管ノズル内の平均流速DESCRIPTION OF SYMBOLS 1 Mixing tank 1a Bottom part 1b Cylindrical outer peripheral wall part 1c Head part 1d Bottom opening 2 Housing 2a Inflow housing 2b Discharge housing 3 Nozzle device 3a Supply pipe 3b Cover 3c Annular gap nozzle 3d Tube nozzle 3e Connection web 4 Supply device 5 Circulation pump 6 Circulation line 6a Suction line 6b Pressure line F Solid R Annular gap flow T Propulsion flow S Circulation flow S * Suction flow A Supply cross section A 1 Annular cross section A 2 Tube cross section X Nozzle device α Vertical direction Angle of attack β Angle of attack in the tangential direction v Average flow velocity in the supply line v 1 Average flow velocity in the annular gap nozzle v Average flow velocity in the 2 pipe nozzle

Claims (7)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】 溶媒と固体の懸濁液が混合タンクの底部
分から取り出され、続いて懸濁液が混合タンクの外側で
循環管路を経て循環させられて再び混合タンクに供給さ
れる、固体を溶媒に溶解する溶解装置のノズル装置にお
いて、 混合タンク(1)への懸濁液の供給が、混合タンクの底
部分(1a)内に配置されたノズル装置(3)を経て行
われ、 このノズル装置が、供給管(3a)から流れ方向に見
て、環状隙間ノズル(3c)と管ノズル(3d)に分岐
し、 環状隙間ノズル(3c)が環状隙間流れ(R)を発生さ
せ、 この環状隙間流れが混合タンク(1)の縦軸線に対して
横方向向きであり、 管ノズル(3d)が推進流(T)を発生させ、 この推進流が、混合タンク(1)の縦軸線に関して、混
合タンクの頭部分(1c)の方に向いた軸方向の成分と
接線方向の成分を有することを特徴とするノズル装置。
1. A suspension of solvent and solids is taken from the bottom of the mixing tank, and the suspension is subsequently circulated outside the mixing tank via a circulation line and fed again to the mixing tank. In a nozzle device of a dissolving device for dissolving the compound in a solvent, the supply of the suspension to the mixing tank (1) is performed via a nozzle device (3) arranged in a bottom portion (1a) of the mixing tank. The nozzle device branches into an annular gap nozzle (3c) and a pipe nozzle (3d) as viewed from the supply pipe (3a) in the flow direction, and the annular gap nozzle (3c) generates an annular gap flow (R). The annular interstitial flow is transverse to the longitudinal axis of the mixing tank (1), the tube nozzle (3d) generates a propulsion flow (T), and this propulsion flow is relative to the longitudinal axis of the mixing tank (1). , Facing the head (1c) of the mixing tank A nozzle device having an axial component and a tangential component.
【請求項2】 固体を溶媒に溶解する溶解装置が、粉末
固体を水に溶解する溶解装置である請求項1記載のノズ
ル装置。
2. The nozzle device according to claim 1, wherein the dissolving device for dissolving the solid in the solvent is a dissolving device for dissolving the powder solid in water.
【請求項3】 環状隙間ノズル(3c)がほぼ360°
の噴射角度にわたって延びている請求項1記載のノズル
装置。
3. The annular gap nozzle (3c) is approximately 360 °
2. The nozzle device according to claim 1, wherein the nozzle device extends over an injection angle of the nozzle.
【請求項4】 ノズル装置の供給管(3a)が底部分
(1a)からの懸濁液の取り出しのために役立つ排出ハ
ウジング(2b)を通って案内されている請求項1また
は2記載のノズル装置。
4. The nozzle according to claim 1, wherein the supply pipe of the nozzle device is guided through a discharge housing serving to remove the suspension from the bottom part. apparatus.
【請求項5】 供給管(3a)が底部分(1a)に同軸
に配置されている請求項1〜3のいずれか一つに記載の
ノズル装置。
5. The nozzle device according to claim 1, wherein the supply pipe (3a) is arranged coaxially with the bottom part (1a).
【請求項6】 固体の供給装置(4)が、排出ハウジン
グ(2b)と循環ポンプ(5)の間に設けられた吸込み
管路(6a)に開口している請求項1〜4のいずれか一
つに記載のノズル装置。
6. The solid supply device (4) opens into a suction line (6a) provided between the discharge housing (2b) and the circulation pump (5). Nozzle device according to one.
【請求項7】 供給管路(3a)内の平均流速(v)が
v=2.5 〜3m/sであり、 環状隙間ノズル(3c)内の平均流速(v )がv
=10〜15m/sであり、そして管ノズル(3d)内
の平均流速(v )がv =4〜6m/sである請求
項1〜5のいずれか一つに記載のノズル装置。
7. An average flow velocity (v) in the supply pipe (3a) is v = 2.5 to 3 m / s, and an average flow velocity (v 1 ) in the annular gap nozzle (3c) is v 1.
= 10 to 15 m / s, and then the average flow velocity in the tube nozzle (3d) (v 2) is v 2 = 4~6m / s at a nozzle device according to any one of claims 1 to 5.
JP2001000103U 2000-01-19 2001-01-15 Nozzle device of dissolving device to dissolve solid in solvent Expired - Lifetime JP3078925U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20000841.2 2000-01-19
DE20000841U DE20000841U1 (en) 2000-01-19 2000-01-19 Nozzle device in a dissolving apparatus for dissolving a solid in a solvent

Publications (1)

Publication Number Publication Date
JP3078925U true JP3078925U (en) 2001-07-27

Family

ID=7936079

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001000103U Expired - Lifetime JP3078925U (en) 2000-01-19 2001-01-15 Nozzle device of dissolving device to dissolve solid in solvent
JP2001553207A Withdrawn JP2003520129A (en) 2000-01-19 2001-01-17 A dissolving device having a nozzle device for dissolving a solid in a solvent

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2001553207A Withdrawn JP2003520129A (en) 2000-01-19 2001-01-17 A dissolving device having a nozzle device for dissolving a solid in a solvent

Country Status (5)

Country Link
EP (1) EP1248743B1 (en)
JP (2) JP3078925U (en)
AT (1) ATE254576T1 (en)
DE (2) DE20000841U1 (en)
WO (1) WO2001053191A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630989B1 (en) 2014-12-23 2016-06-16 주식회사 포스코 Dissolving Apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134781B2 (en) * 2003-02-11 2006-11-14 The Boc Group, Inc. Self-mixing tank
EP1800738A1 (en) * 2005-12-23 2007-06-27 Sika Technology AG Device and method for producing an adhesive and/or sealant composition, adhesive and/or sealant composition thus produced, and bonded substrates
TWI384123B (en) * 2006-02-23 2013-02-01 Levitronix Technologies Llc A rotary pump, hydrodynamic mixer with a rotary pump, and also the use of the rotary pump for the processing of fluids
JP5224382B2 (en) * 2009-03-30 2013-07-03 株式会社イズミフードマシナリ Dissolution pump with separation device
US9334471B2 (en) 2010-05-28 2016-05-10 Gea Brewery Systems Gmbh Method for accelerated fermentation and device for mixing a tank content
DE102010029469A1 (en) 2010-05-28 2011-12-01 Gea Brewery Systems Gmbh Huppmann Tuchenhagen Device for mixing a tank contents
CN103657520B (en) * 2013-12-31 2015-08-26 昆明特康科技有限公司 A kind of powder material and liquid material mixing apparatus
CN103691339A (en) * 2013-12-31 2014-04-02 昆明特康科技有限公司 Solid-liquid mixing equipment
DE102015220313A1 (en) * 2015-10-19 2017-04-20 Krones Ag Fermentation tank with displacement body, in particular for beer production
US11123698B2 (en) * 2017-06-21 2021-09-21 Alfa Laval Corporate Ab Fluid handling apparatus and fluid tank system
DE102021209275A1 (en) * 2021-08-24 2023-03-02 A. Berents GmbH & Co. Kommanditgesellschaft Mixing device for producing a flowable product and method for operating a mixing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US923571A (en) * 1908-07-23 1909-06-01 Rapid Cyanide Extraction Company Pulp-agitator.
US4007921A (en) * 1976-01-19 1977-02-15 The Dow Chemical Company Apparatus for mixing dry particles with a liquid
US4100614A (en) * 1976-06-18 1978-07-11 Houdaille Industries, Inc. Method for polymer dissolution
US4893937A (en) * 1988-06-30 1990-01-16 Eastman Kodak Company Apparatus and method for suspending solids
DE3844174A1 (en) * 1988-12-29 1990-07-05 Fresenius Ag Plant for the production of concentrates by mixing liquid with soluble solids
US5564825A (en) * 1992-12-02 1996-10-15 Shrader Canada Limited Integral inlet valve and mixer to promote mixing of fluids in a tank
JP3216445B2 (en) * 1994-10-31 2001-10-09 ニプロ株式会社 Melting equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630989B1 (en) 2014-12-23 2016-06-16 주식회사 포스코 Dissolving Apparatus

Also Published As

Publication number Publication date
EP1248743A2 (en) 2002-10-16
ATE254576T1 (en) 2003-12-15
JP2003520129A (en) 2003-07-02
EP1248743B1 (en) 2003-11-19
DE50100992D1 (en) 2003-12-24
WO2001053191A3 (en) 2001-12-20
DE20000841U1 (en) 2000-03-30
WO2001053191A2 (en) 2001-07-26

Similar Documents

Publication Publication Date Title
JP3078925U (en) Nozzle device of dissolving device to dissolve solid in solvent
US5069784A (en) Coagulation reaction tank
JP5626969B2 (en) Filter media cleaning device
JPH11314013A (en) Filter
US8091474B2 (en) Rotary fan press
JP2004230298A (en) Automatic washing device of filter
EP0338967B1 (en) Apparatus for treating slurry by gas-liquid contact method
CN210303204U (en) Novel dissolving tank
KR0174769B1 (en) Wet flue-gas desulfurization system
CN109650619A (en) A kind of centrifugal chemical engineering sewage recycling and reusing device
JP2006218388A (en) Water treat method and water treatment apparatus
JP5084990B2 (en) Distributor cleaning method and apparatus
JP3388197B2 (en) Chemical injection type centrifugal filtration concentrator
RU2106893C1 (en) Filter
JPH07108110A (en) Method for concentrating slurry and device therefor
JP3679903B2 (en) Powder suspension equipment
CN217093073U (en) Suspending agent emulsification device
NL1013238C2 (en) Crystallization reactor.
JPH0139692Y2 (en)
KR100386168B1 (en) Clean water processing system
JPS58163413A (en) Apparatus for filtration treatment of sewage
JPH0560527U (en) Liquid mixer feed nozzle
JPS646899Y2 (en)
SU1694742A1 (en) Method of washing, washing device
JP2006021136A (en) Sludge concentration part structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term