JP3076825B2 - In-situ purification method of leachable contaminated water - Google Patents

In-situ purification method of leachable contaminated water

Info

Publication number
JP3076825B2
JP3076825B2 JP07213253A JP21325395A JP3076825B2 JP 3076825 B2 JP3076825 B2 JP 3076825B2 JP 07213253 A JP07213253 A JP 07213253A JP 21325395 A JP21325395 A JP 21325395A JP 3076825 B2 JP3076825 B2 JP 3076825B2
Authority
JP
Japan
Prior art keywords
contaminated water
sulfur
zeolite
water
leachable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07213253A
Other languages
Japanese (ja)
Other versions
JPH0957247A (en
Inventor
道夫 土弘
昭治 瀬尾
隆信 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP07213253A priority Critical patent/JP3076825B2/en
Publication of JPH0957247A publication Critical patent/JPH0957247A/en
Application granted granted Critical
Publication of JP3076825B2 publication Critical patent/JP3076825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、汚染源を廃棄物処
分場とした場合の当該廃棄物処分場における漏水浸出汚
染水やセメント系材料を用いた地中構造物等の施工に伴
うこのセメント系材料を汚染源とする浸出汚染水、その
他の汚染源からの漏水や浸出汚染水を原位置において水
処理する浸出汚染水の原位置浄化工法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a cement disposal system for constructing an underground structure or the like using a leaked or contaminated water or cement material at a waste disposal site when the pollution source is a waste disposal site. The present invention relates to an in-situ purification method for leachable contaminated water in which leachable contaminated water containing materials as a pollution source, leakage from other contaminated sources, and leachable contaminated water are treated in situ.

【0002】[0002]

【従来の技術】従来より、廃棄物処分場や汚染地盤のサ
イトでは、浸出汚染水が場外へ流出して地下水を汚染す
る危険性や、セメント系材料を用いた地盤改良工法など
からの浸出汚染水が地下水の水質汚濁を引き起こすと考
えられる。
2. Description of the Related Art Conventionally, at a waste disposal site or a contaminated ground site, there is a risk that leachable contaminated water will flow out of the site and contaminate groundwater, and leaching contamination from a ground improvement method using a cement-based material. Water is thought to cause groundwater pollution.

【0003】従来はこれらの浸出汚染水は集水して別に
設けた水処理施設で浄化することとし、場外へは漏洩し
ないような考え方で進められてきた。しかし、実際には
十分な対応が採られることは少なく、コストも掛かるの
でほとんど利用されていなかった。また、建設工事に伴
ってコンクリートやソイルセメントから浸出する水の水
質などについては、余り問題にはされていなかった。
Conventionally, such leach-contaminated water has been collected and purified in a separately provided water treatment facility, and the idea has been considered so as not to leak out of the site. However, in practice, sufficient responses were rarely taken and costs were high, so they were hardly used. In addition, the quality of water leached from concrete or soil cement during construction work was not so much considered.

【0004】一方、近年は地盤環境の汚染に対する意識
が社会的に厳しくなり、一般廃棄物処分場や産業廃棄物
処分場からの浸出水の土壌汚染の問題も顕在化し、さら
に、地中構造物等の施工に伴う浸出水などについても、
公害問題に発展しないように十分な配慮が必要となって
きており、汚染水のpH値にあっては公共用水域に排出
できる規制値pH5.8 〜8.6 をクリヤーすることが必要
となってきている。
[0004] On the other hand, in recent years, the awareness of the pollution of the ground environment has become socially strict, and the problem of soil contamination of leachate from general waste disposal sites and industrial waste disposal sites has also become apparent. Regarding leachate etc. accompanying construction of
Sufficient attention has been required to prevent the development of pollution problems, and it has become necessary to clear the regulated pH of 5.8 to 8.6, which can be discharged to public water bodies, for the pH value of contaminated water. I have.

【0005】[0005]

【発明が解決しようとする課題】これら廃棄物処分場に
おける漏水浸出汚染水やセメント系材料を用いた地盤改
良工事、地中構造物等の施工において発生する浸出汚染
水は、高い電気伝導度や高いpH値を示すものが多く、
集水して水処理施設で浄化するには処理コストがかかり
過ぎて実現性に乏しい。
SUMMARY OF THE INVENTION Leakage leachable contaminated water at these waste disposal sites, leachate contaminated water generated during ground improvement work using cement-based materials, and construction of underground structures, etc., have high electrical conductivity and Many exhibit high pH values,
Collecting water and purifying it in a water treatment facility requires too much processing cost and is not feasible.

【0006】本発明の目的は前記の従来例の不都合を解
消し、高い電気伝導度や高いpH値によって汚染された
浸出汚染水を発生する原位置において容易に、安価に、
安全に処理できる浸出汚染水の原位置浄化工法を提供す
ることにある。
An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to easily and inexpensively generate leachable contaminated water contaminated by high electrical conductivity and a high pH value.
It is an object of the present invention to provide an in-situ purification method for leachable contaminated water that can be safely treated.

【0007】[0007]

【課題を解決するための手段】本発明は前記目的を達成
するため、第1に、汚染源の下流側に硫黄とゼオライト
との無機混合材からなる浄化層を形成し、この汚染源か
らの浸出汚染水を前記浄化層を通して原位置で水処理す
ること、第2に、無機混合材の硫黄とゼオライトとの配
合率が硫黄:ゼオライト=20〜40%:80〜60%であるこ
とを要旨とするものである。
In order to achieve the above object, the present invention firstly forms a purification layer made of an inorganic mixed material of sulfur and zeolite on the downstream side of a pollution source, and leaches and contaminates the pollution source from the pollution source. Secondly, water is treated in situ through the purification layer, and secondly, the blending ratio of sulfur and zeolite in the inorganic mixture is sulfur: zeolite = 20 to 40%: 80 to 60%. Things.

【0008】本発明に用いる硫黄およびゼオライトが、
高いpH値や高い電気伝導度を示す浸出汚染水を浄化す
る機能を持つという考え方は、実験室における特性実験
結果に基づくものである。
[0008] The sulfur and zeolite used in the present invention are:
The idea of having a function of purifying leachable contaminated water having a high pH value and high electrical conductivity is based on the results of characteristic experiments in a laboratory.

【0009】本発明の浄化層に用いる硫黄およびゼオラ
イトは、いずれも天然に存在する無機材料で安価に入手
でき、粒径は粉体から礫材として扱えるメリットを有し
ている。また、ゼオライトの成分はモルデナイトおよび
クリノプチロライトの単独または両者の共存であること
が知られている。
[0009] Both sulfur and zeolite used in the purification layer of the present invention are naturally occurring inorganic materials, which can be obtained at low cost, and have the advantage that the particle size can be handled as a gravel material from powder. It is known that the components of zeolite are mordenite and clinoptilolite alone or in combination.

【0010】硫黄は、S+O2 + 1/2O2 +H2 O→H
2 SO4 の反応式から生成される硫酸がpHを低下さ
せ、ゼオライトは汚染水の陽イオンを吸着してH+ を放
出し、H+ +OH- →H2 Oの反応式でOH- が減少し
て汚染水のpHを低下させる。また、ゼオライトは初期
のpH低下に、硫黄は経時変化によるpH低下に効果的
に働き、特に硫黄はpHの低下効率が高い結果が得られ
る。
The sulfur is S + O 2 + 1 / 2O 2 + H 2 O → H
2 sulfate produced from reaction formula SO 4 lowers the pH, zeolite releases the H + adsorbed cations contaminated water, H + + OH - → H 2 O OH by the reaction formula - decrease To lower the pH of the contaminated water. In addition, zeolite works effectively for lowering the initial pH, and sulfur works effectively for lowering the pH due to a change over time. In particular, sulfur has high pH lowering efficiency.

【0011】また、実験ではセメントミルクの上澄み液
100ml に硫黄2gを加えるとpH12.0であったものがp
H7.5 付近に低下して、これ以上に硫黄を増加してもp
H値は7.5 付近で一定で変わらず好ましい良い結果が得
られている。
In the experiment, the supernatant of cement milk was used.
When 2 g of sulfur was added to 100 ml, the pH was 12.0.
Even if it decreases to around H7.5 and further increases sulfur, p
The H value is constant at around 7.5, and a good result is obtained without change.

【0012】一方、電気伝導度については、ゼオライト
はそれ自身が持っている大きい吸着機能によって初期に
おいて著しい電気伝導度の低下を発揮し、硫黄は前記の
反応式によって生成する硫酸と汚染水に含まれている電
解物質、例えば、水酸化カルシウムが反応して石膏(C
aSO4 )を形成して経時によって徐々に電気伝導度を
低下させる結果が得られている。
On the other hand, in terms of electric conductivity, zeolite exhibits a remarkable decrease in electric conductivity at an early stage due to its large adsorption function, and sulfur is contained in sulfuric acid and contaminated water generated by the above reaction formula. Gypsum (C)
aSO 4 ) was formed, and the result was that the electrical conductivity gradually decreased with time.

【0013】さらに、実験ではセメントミルクの上澄み
液100ml にゼオライト8gを加えると電気伝導度が 2.7
mS/cmであったものが 0.4mS/cm付近に低下して、これ
以上にゼオライトを増加しても電気伝導度は 0.4mS/cm
付近で一定で変わらず好ましい良い結果が得られてい
る。
Further, in the experiment, when 8 g of zeolite was added to 100 ml of the supernatant of cement milk, the electric conductivity became 2.7.
mS / cm decreased to around 0.4 mS / cm, and even if zeolite was further increased, the electric conductivity was still 0.4 mS / cm.
A favorable result which is constant and unchanged in the vicinity is obtained.

【0014】また、硫黄とゼオライトとの混合比率は、
前記同様のセメントミルクの上澄み液(pH値12.0、電
気伝導度 2.7mS/cm)を用いた実験でpHの処理におい
ては、硫黄の混合率20%以上でpHの値がpH7.5 付近
でほぼ一定となり、一方、電気伝導度の処理においては
硫黄の混合率40%以下で電気伝導度の値が 0.4mS/cm付
近でほぼ一定となるので、硫黄:ゼオライト=20〜40
%:80〜60%の混合比率が有効である。中でも硫黄:ゼ
オライト=1:4の混合比率が好適である。
The mixing ratio of sulfur to zeolite is
In an experiment using a supernatant liquid of the same cement milk (pH value 12.0, electric conductivity 2.7 mS / cm), in the treatment of pH, when the mixing ratio of sulfur was 20% or more, the pH value was almost around 7.5. On the other hand, in the treatment of electric conductivity, the value of electric conductivity becomes almost constant at around 0.4 mS / cm when the mixing ratio of sulfur is 40% or less, so that sulfur: zeolite = 20 to 40
%: A mixing ratio of 80 to 60% is effective. Among them, a mixture ratio of sulfur: zeolite = 1: 4 is preferable.

【0015】さらに、これらの実験に対しては、バッチ
式の他にカラム法と呼ばれ直径12.6cm高さ12cmの鋼製モ
ールドの下層にゼオライト層とその上に汚濁源としての
モルタル層を設け、モルタル層の上部より加圧水を送っ
てモルタル層からゼオライト層を通過して流出するよう
にして実用に近い実験方法も採り入れて行っている。
Further, for these experiments, a zeolite layer was provided below a steel mold having a diameter of 12.6 cm and a height of 12 cm, and a mortar layer as a pollution source was provided thereon under a column method called a column method in addition to the batch method. In addition, an experimental method close to practical use is adopted by sending pressurized water from the upper part of the mortar layer so as to flow out from the mortar layer through the zeolite layer.

【0016】請求項1の記載の本発明によれば、硫黄と
ゼオライトとの無機混合材の浄化層を汚染源の下流側に
設けることによって、浸出汚染水が当該浄化層に接し、
通過する際にpHの値や電気伝導度の値が低下し、浸出
汚染水を常時集水して水処理することなく、発生する原
位置において無人で、効率よく浄化できる。
According to the first aspect of the present invention, by providing a purification layer of an inorganic mixed material of sulfur and zeolite downstream of the pollution source, the leach-contaminated water comes into contact with the purification layer,
When passing, the pH value and the electric conductivity value decrease, so that the leach-contaminated water can be purified efficiently and unattended at its original position without constantly collecting and treating water.

【0017】請求項2記載の本発明によれば、浸出汚染
水のpHの値や電気伝導度の値を同時に短時間に効率よ
く低下させることができる。
According to the second aspect of the present invention, the pH value and the electric conductivity value of the leached contaminated water can be simultaneously and efficiently reduced in a short time.

【0018】[0018]

【発明の実施の形態】以下、図面を付して本発明の実施
の形態を詳細に説明する。図1は本発明の浸出汚染水の
原位置浄化工法の第1実施形態を示す縦断側面図で、廃
棄物処分場に適用した例である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a longitudinal sectional side view showing a first embodiment of an in-situ purification method of leach-contaminated water of the present invention, which is an example applied to a waste disposal site.

【0019】図1に示すように、廃棄物処分場では、地
面を掘削した掘削穴1に廃棄物を堆積するが、この掘削
穴1の底面下の地盤および側壁面の地盤中には、合成ゴ
ムシートやビニールシートなどのしゃ水シートを敷いて
しゃ水層3を設け、掘削穴1の中の廃棄物からの浸出汚
染水が地中に浸出しないようにしている。
As shown in FIG. 1, in a waste disposal site, waste is deposited in a digging hole 1 from which the ground is excavated. A water-blocking sheet such as a rubber sheet or a vinyl sheet is laid to form a water-blocking layer 3 so that contaminated water leached from the waste in the excavation hole 1 does not leak into the ground.

【0020】また、廃棄物から出てくる浸出汚染水は掘
削穴1の中に設けた浸出水管2によって集水してしゃ水
層3に溜まることのないようにしている。
The leachable contaminated water coming out of the waste is collected by the leachate pipe 2 provided in the excavation hole 1 so that the leachable contaminated water does not accumulate in the water blocking layer 3.

【0021】さらに、しゃ水層3の下側に地下水管4を
配設し、下方からの地下水をこの地下水管4で排出し、
しゃ水層3に地下水圧がかからないようにしている。
Further, a groundwater pipe 4 is disposed below the shaking layer 3, and groundwater from below is discharged by the groundwater pipe 4.
The underwater pressure is not applied to the shading layer 3.

【0022】本発明はこのような廃棄物処分場のおい
て、しゃ水層3の外側(地面側)に、硫黄とゼオライト
との無機混合材を20cm程度の厚さに敷きつめて浄化層5
を形成するものとする。
According to the present invention, in such a waste disposal site, an inorganic mixed material of sulfur and zeolite is laid to a thickness of about 20 cm on the outside (ground side) of the water blocking layer 3 to purify the purification layer 5.
Is formed.

【0023】万一、しゃ水層3を構成するしゃ水シート
に部分的に穴が空いた場合には、そこから浸出汚染水が
地中に漏水して地下水を汚染することが想定されるが、
このように廃棄物処分場から浸出汚染水が漏水しても浄
化層5により、地下水の汚染を最小限にくい止めること
ができる。なお、対象となる汚染水の水量により、使用
する本発明の浄化層5の層厚は任意に変えることが可能
である。
In the unlikely event that a hole is partially formed in the water-shielding sheet constituting the water-sealing layer 3, it is supposed that contaminated water leached out there leaks into the ground and contaminates the groundwater. ,
As described above, even if the leachable contaminated water leaks from the waste disposal site, the purification layer 5 can minimize the contamination of the groundwater. Note that the thickness of the purification layer 5 of the present invention to be used can be arbitrarily changed depending on the amount of contaminated water to be used.

【0024】図2は本発明の浸出汚染水の原位置浄化工
法の別の実施形態を示す縦断側面図であり、セメント系
改良材7による改良地盤における地下水汚染を防止する
場合である。
FIG. 2 is a vertical sectional side view showing another embodiment of the in-situ purification method of leachable contaminated water of the present invention, in which groundwater contamination on the improved ground by the cement-based improving material 7 is prevented.

【0025】セメント系改良材7を軟弱地盤と混合して
固化処理するいわゆる混合処理工法は表層混合処理工法
と深層混合処理工法とに分かれるが、深層混合処理工法
の代表的なジェットグラウト工法では図2に示すように
軟弱地盤6中にセメント系改良材7による円柱状の固結
体を造成する。
The so-called mixing method for mixing and solidifying the cement-based modifier 7 with soft ground is divided into a surface mixing method and a deep mixing method. In a typical deep mixing method, a jet grout method is used. As shown in FIG. 2, a columnar consolidated body is formed in the soft ground 6 by the cement-based modifier 7.

【0026】このように一定間隔で設けたセメント系改
良材7の相互間に、本発明の硫黄とゼオライトとの無機
混合材による浄化層5を設ける。
The purification layer 5 made of the inorganic mixed material of sulfur and zeolite of the present invention is provided between the cement-based modifiers 7 provided at regular intervals as described above.

【0027】なお、この浄化層5は硫黄とゼオライトと
の無機混合材を布またはプラスチックの紐で編んだ袋に
入れ、この柱状体を並べて併設することによって形成す
る。
The purifying layer 5 is formed by putting an inorganic mixed material of sulfur and zeolite in a bag knitted with a cloth or a plastic string, and arranging and juxtaposing the columns.

【0028】これによって、セメント系改良材7から溶
出する高アルカリ汚染水が原位置において浄化層5を通
過する際に硫黄とゼオライトとの無機混合材と接触する
ことによって浄化され、地下水質の汚濁を軽減すること
ができる。
As a result, the highly alkaline contaminated water eluted from the cement-based modifier 7 is purified by coming into contact with the inorganic mixed material of sulfur and zeolite when passing through the purification layer 5 in situ, thereby contaminating the groundwater quality. Can be reduced.

【0029】図3は本発明のさらに他の実施形態を示す
もので、セメント系固化材による地下ダムの建設におい
てセメント系固化材によるしゃ水壁8からの浸出水によ
る地下水汚染を防止する浄化工法である。
FIG. 3 shows still another embodiment of the present invention. In the construction of an underground dam made of cement-based solidified material, a purification method for preventing groundwater contamination due to seepage water from the water blocking wall 8 made of cement-based solidified material. It is.

【0030】図3に示すように、セメント系固化材によ
るしゃ水壁8の外側(下流側)に本発明の硫黄とゼオラ
イトの無機混合材を20cm程度の厚さに敷きつめた浄化層
5の壁を設けた。
As shown in FIG. 3, the wall of the purification layer 5 in which the inorganic mixed material of sulfur and zeolite of the present invention is spread to a thickness of about 20 cm on the outside (downstream side) of the barrier wall 8 made of cement-based solidifying material. Was provided.

【0031】この浄化層5の壁によって、セメント系固
化材によるしゃ水壁8から溶出する高アルカリ汚染水が
原位置において無機混合材の浄化層5を通過することに
よって水質の汚濁を軽減することができる。
By the walls of the purification layer 5, highly alkaline contaminated water eluted from the barrier wall 8 made of cement-based solidification material passes through the purification layer 5 made of the inorganic mixed material at the original position to reduce water pollution. Can be.

【0032】[0032]

【発明の効果】以上述べたように本発明の浸出汚染水の
原位置浄化工法は、硫黄とゼオライトとの無機混合材を
浄化層として汚染源の下流側に設けることによって、浸
出汚染水が該浄化層を通過し、通過する際にpHの値と
電気伝導度の値を同時に低下させ、常時、集水して水処
理することなく発生する原位置において無人で、効率よ
く、安価に浸出汚染水を浄化できるものである。
As described above, the in-situ purification method of leach-contaminated water according to the present invention provides an inorganic mixed material of sulfur and zeolite as a purification layer on the downstream side of the pollution source, whereby the leach-contaminated water is purified. The pH value and the electric conductivity value are simultaneously lowered when passing through the layer, and uninhabited, efficiently, and inexpensively leached contaminated water at the original position where water is collected without water treatment at all times. Can be purified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の浸出汚染水の原位置浄化工法の1実施
形態を示す縦断側面図である。
FIG. 1 is a longitudinal sectional side view showing one embodiment of an in-situ purification method of leach-contaminated water of the present invention.

【図2】本発明の浸出汚染水の原位置浄化工法の他の実
施形態を示す縦断側面図である。
FIG. 2 is a vertical sectional side view showing another embodiment of the in-situ purification method of leach-contaminated water of the present invention.

【図3】本発明の浸出汚染水の原位置浄化工法のさらに
他の実施形態を示す斜視図である。
FIG. 3 is a perspective view showing still another embodiment of the in-situ purification method of leach-contaminated water of the present invention.

【符号の説明】[Explanation of symbols]

1…掘削穴 2…浸出水管 3…しゃ水層 4…地下水管 5…浄化層 6…軟弱地盤 7…セメント系改良材 8…しゃ水壁 DESCRIPTION OF SYMBOLS 1 ... Drilling hole 2 ... Leachate pipe 3 ... Water blocking layer 4 ... Groundwater pipe 5 ... Purification layer 6 ... Soft ground 7 ... Cement-based improvement material 8 ... Water blocking wall

フロントページの続き (56)参考文献 特開 昭63−194789(JP,A) 特開 平7−303870(JP,A) 特開 平8−12033(JP,A) 特開 平8−173928(JP,A) 特公 昭59−52242(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 1/28 C02F 1/66 - 1/66 540 B09B 1/00 Continuation of front page (56) References JP-A-63-194789 (JP, A) JP-A-7-303870 (JP, A) JP-A-8-12033 (JP, A) JP-A-8-173928 (JP) , A) JP-B-59-52242 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/28 C02F 1/66-1/66 540 B09B 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 汚染源の下流側に硫黄とゼオライトとの
無機混合材からなる浄化層を形成し、この汚染源からの
浸出汚染水を前記浄化層を通して原位置で水処理するこ
とを特徴とする浸出汚染水の原位置浄化工法。
1. A leaching method comprising: forming a purification layer made of an inorganic mixed material of sulfur and zeolite downstream of a pollution source; and treating water leached from the pollution source through the purification layer in situ. In situ purification method for contaminated water.
【請求項2】 無機混合材の硫黄とゼオライトとの配合
率が硫黄:ゼオライト=20〜40%:80〜60%である請求
項1記載の浸出汚染水の原位置浄化工法。
2. The in-situ purification method of leached contaminated water according to claim 1, wherein the blending ratio of sulfur and zeolite in the inorganic mixed material is sulfur: zeolite = 20-40%: 80-60%.
JP07213253A 1995-08-22 1995-08-22 In-situ purification method of leachable contaminated water Expired - Fee Related JP3076825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07213253A JP3076825B2 (en) 1995-08-22 1995-08-22 In-situ purification method of leachable contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07213253A JP3076825B2 (en) 1995-08-22 1995-08-22 In-situ purification method of leachable contaminated water

Publications (2)

Publication Number Publication Date
JPH0957247A JPH0957247A (en) 1997-03-04
JP3076825B2 true JP3076825B2 (en) 2000-08-14

Family

ID=16636043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07213253A Expired - Fee Related JP3076825B2 (en) 1995-08-22 1995-08-22 In-situ purification method of leachable contaminated water

Country Status (1)

Country Link
JP (1) JP3076825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200030771A1 (en) * 2018-07-26 2020-01-30 Korea Atomic Energy Research Institute Radionuclide adsorbent, method for preparing the same and method for removing radionuclide using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990068614A (en) * 1999-06-05 1999-09-06 최재영 The Self-Purificatory Structures
JP4644898B2 (en) * 2000-02-07 2011-03-09 株式会社大林組 Incineration ash treatment structure and design method
JP2005281607A (en) * 2004-03-30 2005-10-13 Yoshikazu Fuji Coating material for algae growth
JP5743449B2 (en) * 2010-07-28 2015-07-01 三菱マテリアル株式会社 Treatment structure with water flow structure in contaminated soil treatment and its construction method
JP2011224568A (en) * 2011-06-24 2011-11-10 Kurita Water Ind Ltd METHOD FOR pH ADJUSTMENT OF GROUND WATER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200030771A1 (en) * 2018-07-26 2020-01-30 Korea Atomic Energy Research Institute Radionuclide adsorbent, method for preparing the same and method for removing radionuclide using the same

Also Published As

Publication number Publication date
JPH0957247A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
US9022698B2 (en) Natural analog system for reducing permeability of ground
JP3076825B2 (en) In-situ purification method of leachable contaminated water
Al-Tabbaa et al. Laboratory-scale soil mixing of a contaminated site
JP2634220B2 (en) Watertight soil formation method especially for construction of sedimentation repository
CN111320216A (en) Reaction medium material for groundwater heavy metal remediation and construction method of permeable wall
JP3455952B2 (en) How to fix harmful substances
JP3367042B2 (en) Pile construction method
EP2982450A1 (en) In-situ process for stabilization and solidification of contaminated soil into composite material - building material
JP5292672B2 (en) Contaminated groundwater purification method and purification structure
JP3688263B2 (en) Organic chlorine compound contaminated soil purification material and contaminated soil purification construction method using the same
JP4067440B2 (en) Underground purification body with poorly permeable partition layer and construction method of underground purification body
JP4859458B2 (en) On-site treatment system for improved residual soil
CN106629914A (en) Method for remediating heavy metal polluted water in situ through osmotic response brick and application
JP2940867B1 (en) Water seal type impermeable wall and its function management method
JP2004285560A (en) Sand cover structure and sand cover method
JPH0971777A (en) Process for neutralizing solidified soil resulting from solidification of sludge and soft soil
JP2873902B2 (en) How to treat pollutant barriers
CN114634346B (en) Solid waste base cementing material for treating pyrite slag and use method thereof
JP3145557B2 (en) How to capture pollutants
JPH10204906A (en) Alkali absorbing sheet and alkali elusion preventing method
Glendinning et al. Lime stabilization of inorganic contaminants in clays
JP2622301B2 (en) Construction method of underwater structure by dredging sludge
JP3830606B2 (en) Purification method for contaminated ground
JP2876358B2 (en) How to purify contaminated groundwater
KR100482713B1 (en) The water transmission characteristic interception wall which purifies the underground water which be imbrued

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees